
Introduction to GPU Programming
with CUDA

Orian Louant

INFO0939: High Performance Scientific Computing

Fall 2025

CPU vs GPU execution model 2 / 68

CPUs and GPUs are both powerful processors but they’re optimized for very different
goals. CPUs use a latency-optimized design:

• CPUs are built to minimize the time per task, i.e., latency. They have a few complex
cores that run instructions sequentially but very fast.

• Each core uses pipelining, large caches, sophisticated branch predictors and out-of-
order execution

• CPUs are general purpose, ideal for control-heavy or diverse workloads where each
thread does something different

CPU vs GPU execution model 3 / 68

CPUs and GPUs are both powerful processors but they’re optimized for very different
goals. GPUs use a throughput-optimized design:

• GPUs are built to maximize throughput,
with thousands of simple cores executing
many threads in parallel

• When one group of threads stalls waiting
for memory, the GPU quickly switches to
another ready group, hiding latency and
keeping work flowing

• GPUs are perfect for data-parallel
workloads

CUDA 4 / 68

CUDA (Compute Unified Device Architecture) is NVIDIA’s platform for parallel
computing.

• By extending the standard C/C++, it lets developers write programs that run directly
on the GPU, using its thousands of lightweight cores to perform many operations at
once

• CUDA exposes a programming model where you launch large numbers of threads
organized into blocks and grids

• CUDA is a proprietary platform, so executables run only on NVIDIA GPUs. AMD
offers HIP (Heterogeneous-computing Interface for Portability), a near drop-in
replacement that lets most CUDA code run on AMD hardware with minimal changes

A First CUDA Application

CUDA Hello World 6 / 68

A CUDA program is composed of
two components that run in distinct
execution environments:

• The host side: the code that
runs on the CPU, including calls
to the CUDA runtime and kernel
launches

• The device side: the code
(kernel) that executes on the
GPU

#include <stdio.h>
#include <cuda_runtime.h>

__global__ void hello_kernel()
{
 printf("Hello from GPU thread %d out of %d "
 "of block %d out of %d\n",
 threadIdx.x, blockDim.x, blockIdx.x, gridDim.x);
}

int main(int argc, char* argv[])
{
 const int num_threads = 4;
 const int num_blocks = 2;

 hello_kernel<<<num_blocks, num_threads>>>();

 cudaDeviceSynchronize();

 return 0;
}

CUDA kernel: the __global__ function qualifier 7 / 68

A CUDA kernel is a function defined using __global__ function qualifier. This qualifier
defines a function that runs on the GPU but is called from the CPU.

When a CUDA compiler encounters a function marked with __global__, it compile the
code in two phases: one for the host (CPU) and one for the device (GPU). The result is

• A host-side stub function that sets up the kernel launch parameters

• A device-side kernel function compiled into PTX (or SASS) that the GPU executes

__global__ functions cannot be called directly like normal C/C++ functions, they must
be launched with the special triple chevrons syntax :

kernel<<<grid, block>>>(args);

CUDA kernel: the grid of blocks of threads 8 / 68

In CUDA, when you launch a kernel (a __global__ function), you don’t just call it once
but launch many parallel threads organized into a hierarchy:

• Block: a group of threads that can cooperate. Threads in the same block can share
data through fast shared memory and can synchronize

• Indexes of the thread: threadIdx.x, threadIdx.y, threadIdx.z

• Dimensions of the block: blockDim.x, blockDim.y, blockDim.z

• Grid: the collection of all blocks launched for one kernel call. Blocks in the same grid
cannot directly synchronize or share memory

• Indexes of the block: blockIdx.x, blockIdx.y, blockIdx.z

• Dimensions of the grid: gridDim.x, gridDim.y, gridDim.z

Multidimensional grid of blocks of threads 9 / 68

A grid of block of threads can have up to 3 dimensions. A 1-dimensional grid can be
created by providing integers values at kernel launch:

kernel<<<<num_blocks, num_threads>>>(args)

For multidimensional grids, CUDA provide the dim3 type:

2-dimensional grid

dim3 grid(num_block_x, num_block_y)
dim3 block(num_threads_x, num_threads_y)
kernel<<<grid, block>>>(args)

3-dimensional grid

dim3 grid(num_block_x, num_block_y, num_block_y)
dim3 block(num_threads_x, num_threads_y, num_threads_z)
kernel<<<grid, block>>>(args)

CUDA device function: the __device__ function qualifier 10 / 68

In CUDA, the __device__ qualifier marks a function that executes on the GPU and can
only be called from other GPU code. Such functions can be invoked from within a GPU
kernel or another __device__ function, whereas host functions (without this qualifier)
cannot be called from device code.

__device__ void print_thread_info(int tidx, int blkdim, int blkidx, int gdim) {
 printf("Hello from GPU thread %d out of %d of block %d out of %d\n",
 tidx, blkdim, blkidx, gdim);
}

__global__ void hello_kernel() {
 print_thread_info(threadIdx.x, blockDim.x, blockIdx.x, gridDim.x);
}

Compiling a CUDA application 11 / 68

On Lyra, CUDA applications can be built with either the NVIDIA-provided nvcc compiler
or the LLVM-based clang compiler

Using NVDIA compiler

module load CUDA
nvcc -o <EXECUTABLE> --gpu-architecture sm_<CC> <SOURCE>

Using LLVM Clang

module load Clang
clang++ -o <EXECUTABLE> --cuda-gpu-arch=sm_<CC> <SOURCE> \
 -lcudart -ldl -lrt -pthread

where <SOURCE> is the CUDA source file, <EXECUTABLE> is the name of the output
program you want to generate, and <CC> specifies the target compute capability

Compiling a CUDA application 12 / 68

CUDA source code, that is, code containing CUDA-specific constructs such as kernels
(__global__ functions) or kernel launch syntax (<<< >>>) — must be compiled as C++
source code

• The standard file extension for CUDA source files is .cu. When this extension is
used, the compiler automatically recognizes the file as CUDA code and compiles it
appropriately using both the host C++ compiler and the device compiler

• If a CUDA source file uses a nonstandard extension (such as .c, .cpp, or .cc), the
compiler will not automatically treat it as CUDA code. In that case, you can explicitly
tell the compiler to interpret it as CUDA source by using the -x cu compiler flag.

nvcc -x cu source_code.cpp -o output_executable

Compiling a CUDA application: compute capability 13 / 68

Every NVIDIA GPU has a compute capability, often written as a pair of numbers like 8.0
or 8.9. It’s essentially the GPU’s version number from the CUDA compiler’s perspective,
defining what hardware instructions, memory types, and features the device supports.
You can use the CUDA deviceQuery demo to determine the compute capability of a
GPU. For example, on Lyra

module load CUDA
$EBROOTCUDA/extras/demo_suite/deviceQuery | grep Capability

This produces output such as:

CUDA Capability Major/Minor version number: 8.9

This value corresponds to a compiler flag --gpu-architecture=sm_89 for the NVIDIA
compiler, or --cuda-gpu-arch=sm_89 when using LLVM Clang

🔗 Technical Specifications per Compute Capability

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications-technical-specifications-per-compute-capability

Compile and run the Hello World 14 / 68

Now, we can compile the hello_word.cu source file with

module load CUDA
nvcc --gpu-architecture sm_89 -o hello_world hello_world.cu

and then run the executable:

./hello_world
Hello from GPU thread 0 out of 4 of block 0 out of 2
Hello from GPU thread 1 out of 4 of block 0 out of 2
Hello from GPU thread 2 out of 4 of block 0 out of 2
Hello from GPU thread 3 out of 4 of block 0 out of 2
Hello from GPU thread 0 out of 4 of block 1 out of 2
Hello from GPU thread 1 out of 4 of block 1 out of 2
Hello from GPU thread 2 out of 4 of block 1 out of 2
Hello from GPU thread 3 out of 4 of block 1 out of 2

The GPU kernel hello_kernel was launched with a grid of 2 blocks, each containing 4
threads, for a total of 8 threads

Run the Hello World with SLURM 15 / 68

With SLURM, allocating a GPU is done using the --gpus=<NGPUS> option. A simple job
script to run our Hello World CUDA example would look like this:

#!/bin/bash
#
#SBATCH --job-name="CUDA Hello World"
#SBATCH --ntasks=1
#SBATCH --gpus=1
#SBATCH --time=01:00
#SBATCH --output="cuda_hello_world.out"

module load CUDA

./hello_world

A note about kernel execution 16 / 68

CUDA kernel launches are asynchronous with respect to the host: the call returns
immediately and the host continues execution without waiting for the device to finish

Synchronization may be forced using cudaDeviceSynchronize() which blocks until the
device has completed all preceding requested tasks

__host__​ __device__​ cudaError_t cudaDeviceSynchronize(void)

If the host code depends on GPU results, explicit synchronization may be required. We
will see later that some operations, like memory copies may be synchronous

When a CUDA program ends the CUDA runtime automatically performs an implicit
device synchronization before shutting down the context

CUDA Execution Model

NVIDIA GPUs: hardware overview 18 / 68

Threads, blocks, grid: hardware mapping 19 / 68

The concepts of threads, blocks,
and grids in CUDA are directly
mapped to the underlying GPU
hardware components:

• Each thread executes
instructions on a CUDA core

• Threads blocks are scheduled
to run on one Streaming
Multiprocessor (SM)

• A grid consists of multiple
blocks, which are distributed
across all SMs in the GPU

Lyra GPUs: NVIDIA RTX 6000 Ada 20 / 68

Lyra features 40 nodes, each with one NVIDIA RTX 6000 Ada GPU with

• 48 GB of GDDR6 memory (960 GB/s)

• 96 MB of L2 cache

• 142 streaming multiprocessors (SMs)

• 64K 32-bit registers register file

• 128 KB of L1 cache from which up to 100 KB can be used for shared memory

• 128 FP32 cores and 2 FP64 cores

Theoretical FP32 peak performance:

𝟣𝟤𝟪 𝖼𝗈𝗋𝖾𝗌 ⋅ 𝟤 𝖥𝖬𝖠 𝖥𝖫𝖮𝖯𝗌 ⋅ 𝟣𝟦𝟤 𝖲𝖬𝗌 ⋅ 𝟤𝟧𝟢𝟧 𝖬𝖧𝗓 𝖼𝗅𝗈𝖼𝗄 = 𝟫𝟣.𝟢𝟨 𝖳𝖥𝖫𝖮𝖯𝖲

Theoretical FP64 peak performance:

𝟤 𝖼𝗈𝗋𝖾𝗌 ⋅ 𝟤 𝖥𝖬𝖠 𝖥𝖫𝖮𝖯𝗌 ⋅ 𝟣𝟦𝟤 𝖲𝖬𝗌 ⋅ 𝟤𝟧𝟢𝟧 𝖬𝖧𝗓 𝖼𝗅𝗈𝖼𝗄 = 𝟣.𝟦𝟤 𝖳𝖥𝖫𝖮𝖯𝖲

Lucia GPUs: NVIDIA A100 21 / 68

Lucia features 50 GPU nodes, each with 4 NVIDIA A100 GPUs with

• 40 GB of HBM2e memory (1.460 TB/s)

• 40 MB of L2 cache

• 108 streaming multiprocessors (SMs)

• 64K 32-bit registers register file

• 192 KB of L1 cache from which up to 164 KB can be used for shared memory

• 32 FP64 cores and 64 FP32 cores

Theoretical FP32 peak performance:

𝟨𝟦 𝖼𝗈𝗋𝖾𝗌 ⋅ 𝟤 𝖥𝖬𝖠 𝖥𝖫𝖮𝖯𝗌 ⋅ 𝟣𝟢𝟪 𝖲𝖬𝗌 ⋅ 𝟣𝟦𝟣𝟢 𝖬𝖧𝗓 𝖼𝗅𝗈𝖼𝗄 = 𝟣𝟫.𝟦𝟫 𝖳𝖥𝖫𝖮𝖯𝖲

Theoretical FP64 peak performance:

𝟥𝟤 𝖼𝗈𝗋𝖾𝗌 ⋅ 𝟤 𝖥𝖬𝖠 𝖥𝖫𝖮𝖯𝗌 ⋅ 𝟣𝟢𝟪 𝖲𝖬𝗌 ⋅ 𝟣𝟦𝟣𝟢 𝖬𝖧𝗓 𝖼𝗅𝗈𝖼𝗄 = 𝟫.𝟩𝟧 𝖳𝖥𝖫𝖮𝖯𝖲

Threads, blocks, grid: flexibility 22 / 68

The CUDA programming model allows
the GPU architecture to span a wide
market range by scaling the number of
multiprocessors:

• Thread blocks can run on any
available GPU multiprocessor and
the runtime system alone manages
the actual number of
multiprocessors

• The same CUDA code can scales
across a wide range of GPUs, from
high-end HPC or workstation GPUs
to mainstream gaming GPUs

Single instruction multiple thread 23 / 68

The basic scheduling unit on NVIDIA GPUs is a warp, a group of threads (typically 32
threads) that execute the same instruction simultaneously on a GPU

• All active threads in a
warp execute the same
instruction

• Each thread has its own
registers and can access
different data

The CUDA execution model is commonly referred to as Single Instruction, Multiple
Threads (SIMT).

Branching and thread divergence 24 / 68

On GPU it’s recommended to avoid branching. When threads in a program take different
code paths (e.g., through if or else), threads within the same warp may diverge.

• If threads diverge, the GPU must serialize the
different paths, executing one branch while
masking off threads not taking it

• After all paths complete, threads reconverge to
continue execution together

The consequence is a reduced parallel efficiency whith some threads staying idle while
others run.

Memory and Data Management

Host and device memory 26 / 68

Let’s consider this simple vector addition kernel:

__global__ void vector_add_kernel(float* a, float* b, float* c) {
 const size_t idx = blockIdx.x * blockDim.x + threadIdx.x;

 c[idx] = a[idx] + b[idx];
}

The arrays a, b, and c need to be accessible to the GPU kernel, which means they must
reside in device memory. Since regular host memory (allocated with malloc or new) is
not directly visible to the GPU, we must:

• Allocate memory on the GPU

• Copy the input data (a and b) from host memory to device memory

• Launch the kernel, passing the device pointers as arguments

• Copy the result (c) back from device to host memory after the kernel finishes.

• Free the device memory.

Allocating memory on the GPU 27 / 68

The cudaMalloc() allocates size bytes of linear memory on the device and returns in
*devPtr a pointer to the allocated memory. The memory is not cleared. Returns
cudaErrorMemoryAllocation in case of failure. The cudaFree() function frees memory
on the device

__host__ ​__device__​ cudaError_t cudaMalloc(void** devPtr, size_t size)

devPtr Pointer to allocated device memory

size Requested allocation size in bytes

__host__ ​__device__​ cudaError_t cudaFree(void* devPtr)

devPtr Device pointer to memory to free

Copy data to and from the GPU 28 / 68

The cudaMemcpy() function copies count bytes from the memory area pointed to by src
to the memory area pointed to by dst, where kind specifies the direction of the copy.
cudaMemcpy() is blocking (synchronous) with respect to the host.

__host__​ cudaError_t cudaMemcpy(void* dst, const void* src,
 size_t count, cudaMemcpyKind kind)

dst Destination memory address

src Source memory address

count Size in bytes to copy

kind Type of transfer. must be one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault

GPU vector addition (1/3) 29 / 68

The first step is to allocate arrays that live in CPU memory and fill these with test data

float* host_a = (float*)malloc(VECTOR_SIZE * sizeof(float));
float* host_b = (float*)malloc(VECTOR_SIZE * sizeof(float));

for (size_t i = 0; i < VECTOR_SIZE; i++) {
 host_a[i] = (float)i;
 host_b[i] = (float)i;
}

Then, allocate the corresponding arrays in GPU memory and transfer the data from CPU
to GPU memory using cudaMemcpy()

float *device_a, *device_b, *device_c;
cudaMalloc(&device_a, VECTOR_SIZE * sizeof(float));
cudaMalloc(&device_b, VECTOR_SIZE * sizeof(float));
cudaMalloc(&device_c, VECTOR_SIZE * sizeof(float));

cudaMemcpy(device_a, host_a, VECTOR_SIZE * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(device_b, host_b, VECTOR_SIZE * sizeof(float), cudaMemcpyHostToDevice);

GPU vector addition (2/3) 30 / 68

The kernel calculates each thread’s global index, performs a bounds check, and
computes the element-wise sum of the input vectors

__global__ void vector_add_kernel(float* a, float* b, float* c) {
 const size_t idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= VECTOR_SIZE)
 return;

 c[idx] = a[idx] + b[idx];
}

This kernel can be launched as a grid of blocks with 256 threads per block, where the
grid size is computed based on the vector length

const int num_threads = 256;
const int num_blocks = (VECTOR_SIZE + (num_threads - 1)) / num_threads;

vector_add_kernel<<<num_blocks, num_threads>>>(device_a, device_b, device_c);

GPU vector addition (3/3) 31 / 68

The kernel calculates each thread’s global index, performs a bounds check, and
computes the element-wise sum of the input vectors

float* host_c = (float*)malloc(VECTOR_SIZE * sizeof(float));
cudaMemcpy(host_c, device_c, VECTOR_SIZE * sizeof(float), cudaMemcpyDeviceToHost);

This kernel can be launched as a grid of blocks with 256 threads per block, where the
grid size is computed based on the vector length

cudaFree(device_a);
cudaFree(device_b);
cudaFree(device_c);

free(host_a);
free(host_b);
free(host_c);

Dealing with structures 32 / 68

When passing structures as kernel arguments in CUDA, special care must be taken to
ensure that all members of the structure are valid in device memory

• This is particularly important for structures that contain pointers or references to
dynamically allocated data. When such a structure is passed by value to a kernel,
CUDA copies it from host to device memory as a raw byte sequence. Any pointer
members will still reference host memory addresses, which are invalid on the GPU

• To avoid illegal memory accesses, all pointer members must be allocated in device
memory, and the structure itself should either reside in device memory or be
updated so that its internal pointers refer to device addresses

• In practice, this often means performing a deep copy of the structure before
launching the kernel and passing a pointer to the device-side copy rather than
passing the structure by value

Deep copy of a structure 33 / 68

The deep copy of a structure from the
host to the device involve:

• Allocating the structure on the
device

• Allocating memory for all internal
pointers on the device

• Copying the data referenced by
these pointers to device memory

• Updating the host structure to use
the device pointers

• Copying the updated structure to
the device

typedef struct matrix_ {
 size_t num_rows, num_cols;
 float* data;
} matrix_t;

void matrix_copytodevice(matrix_t** devptr,
 const matrix_t* hostptr) {
 matrix_t* devmat;
 cudaMalloc(&devmat, sizeof(matrix_t));

 float* devdata;
 const size_t num_elems =
 hostptr->num_rows * hostptr->num_cols;

 cudaMalloc((void**)&devdata, num_elems * sizeof(float));
 cudaMemcpy(devdata, hostptr->data, num_elems * sizeof(float),
 cudaMemcpyHostToDevice);

 matrix_t temp = *hostptr;
 temp.data = devdata;

 cudaMemcpy(devmat, &temp, sizeof(matrix_t),
 cudaMemcpyHostToDevice);

 *devptr = devmat;
}

Shared Memory

The 1D diffusion equation 35 / 68

The diffusion equation, also known as the heat equation, reads

𝜕𝑢
𝜕𝑡

= 𝛼
𝜕2𝑢
𝜕𝑥2

, 𝑥 ∈ (0, 𝐿), 𝑡 ∈ (0, 𝑇]

where 𝑢(𝑥, 𝑡) is the unknown function to be solved for, 𝑥 is a coordinate in space, 𝑡 is
time and 𝛼 is the diffusion coefficient

After discretization and using a forward difference in time and a central difference in
space, we get

𝑢𝑛+1
𝑖 − 𝑢𝑛

𝑖

Δ𝑡
= 𝛼

𝑢𝑛
𝑖+1 − 2𝑢𝑛

𝑖 + 𝑢𝑛
𝑖−1

Δ𝑥2

so that, at time step 𝑛 + 1, we can update the value of 𝑢 using

𝑢𝑛+1
𝑖 = 𝑢𝑛

𝑖 +
𝛼Δ𝑡
Δ𝑥2

(𝑢𝑛
𝑖+1 − 2𝑢𝑛

𝑖 + 𝑢𝑛
𝑖−1)

The 1D diffusion equation: first kernel 36 / 68

__global__ void update_kernel(const float* uold, float* unew,
 const float alpha_dt_dx2, const int ncells)
{
 const int idx = blockIdx.x * blockDim.x + threadIdx.x + 1;

 if (idx > ncells)
 return;

 unew[idx] = uold[idx] + alpha_dt_dx2
 * (uold[idx + 1] - 2.0f * uold[idx] + uold[idx - 1]);
}

For each thread, we access 3 locations in the uold array. Most of these accesses are
shared with neighboring threads

Shared memory overview 37 / 68

Shared Memory is a small, fast on-chip memory space that is shared among threads
within the same thread block on a GPU. It provides much lower latency than global
memory (hundreds of times faster if used efficiently)

Starting with the Volta architecture, NVIDIA unified the physical hardware for L1 cache
and shared memory into a single pool of on-chip memory:

• L1 cache managed by the hardware and the access pattern can be non-deterministic
as it depends on cache replacement policy. The data exists as long as cache lines
remain valid

• Shared memory: managed by the programmer who explicitly allocates and accesses
it. Data remains valid within a kernel execution and specific thread block

Allocating shared memory 38 / 68

Shared memory variables are declared in the kernel function using the __shared__
qualifier

__shared__ type shmem_array[SIZE]

where SIZE is a compile time constant which means the size of fixed at compile time.
The value of SIZE specifies the amount of shared memory allocated per thread block.

To allocate shared memory dynamically at runtime, use the extern keyword:

extern __shared__ type shmem_array[]

Then specify the total shared memory size (in bytes) when launching the kernel:

kernel<<<grid, block, shmem_in_bytes>>>(args)

Shared memory and synchronization 39 / 68

After filling a shared memory array, it’s essential to ensure that all threads in the block
have finished writing their data before any thread starts reading or modifying it.

This synchronization is achieved by calling the CUDA built-in barrier function
__syncthreads() which acts as a barrier at which all threads in the block must wait
before any is allowed to proceed

__shared__ float shmem_array[SIZE]

// Fill the array from global memory

__syncthreads();

// Read shmem_array

The 1D diffusion equation: shared memory 40 / 68

Shared memory can be used to reduce the number of redundant transfers from global
memory by storing the data required by a block into shared memory

The 1D diffusion equation: shared memory kernel 41 / 68

For the 1D diffusion equation
implementation using shared
memory:

• Each thread loads its own cell
value into shared memory

• The first thread in each block
loads the left ghost cell

• The last thread in each block (or
the thread whose global index
equals the number of cells) loads
the right ghost cell

__global__ void update_kernel(const float* uold, float* unew,
 const float alpha_dt_dx2, const int ncells)
{
 __shared__ float u_shared[BLOCK_SIZE + 2];

 const int g_idx = blockIdx.x * blockDim.x + threadIdx.x + 1;
 const int s_idx = threadIdx.x + 1;

 if (g_idx > ncells)
 return;

 u_shared[s_idx] = uold[g_idx];

 if (threadIdx.x == 0)
 u_shared[0] = uold[g_idx - 1];

 if (threadIdx.x == blockDim.x - 1 || g_idx == ncells)
 u_shared[s_idx + 1] = uold[g_idx + 1];

 __syncthreads();

 unew[g_idx] = u_shared[s_idx] + alpha_dt_dx2
 * (u_shared[s_idx + 1] - 2.0f * u_shared[s_idx]
 + u_shared[s_idx - 1]);
}

Memory coalescence and
alignment

Memory coalescing 43 / 68

Memory coalescing is a technique to optimize data access by grouping multiple logical
memory requests into a single, wider physical one. It improves memory bandwidth by
ensuring that threads in a warp or group access consecutive memory locations. On
NVIDIA GPUs

• Global memory is accessed via 32-byte memory transactions

• When a thread requests data from global memory, memory accesses from all
threads in that warp are coalesced into a minimum number of memory transactions

• The number of memory transactions required depends on the size of the word
accessed by each thread and the distribution of the memory addresses across the
threads

Memory coalescing 44 / 68

If a kernel accesses global memory with a
stride, it can lead to additional 32 bytes
sectors read/write. For example, if a
kernel reads an an array of float:

• stride 1: 4 sectors

• stride 4: 16 sectors

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx >= SIZE)
 return;

int strided_idx = (idx * stride) % SIZE;
out[idx] = 2.0f * in[strided_idx];

Memory coalescing: effect on effective bandwidth 45 / 68

• Non-coalescent memory
accesses have a huge impact
on effective memory
bandwidth

• For large strides, when
threads of a warp access
memory addresses that are
far apart in physical memory,
the hardware can’t combine
these accesses efficiently, the
effective bandwidth is poor

8 16 24 32

Access stride

150

300

450

600

750

900

E
ff

e
c

ti
ve

 b
a
n

d
w

id
th

 (
G

B
/s

)

Single precision
Lyra - RTX 6000 Ada

Memory coalescing: multi-dimensional arrays 46 / 68

When using 2 or 3-dimensional thread blocks in a CUDA kernel, the threads are laid out
linearly with the X index, or threadIdx.x, moving the fastest, then Y (threadIdx.y) and
then Z (threadIdx.z)

When using a 2D thread blocks to access 2D data such as a matrix stored as a 1D
memory array in row-major storage row accesses are contiguous.

• If consecutive threads access consecutive memory locations across a row, those
accesses will be efficient (coalesced)

• Column access is inefficient (strided, non-coalesced).

Memory coalescing: multi-dimensional arrays 47 / 68

Because of how memory requests are handled, performance improves when each row
starts at an address aligned to the GPU natural transaction size (typically 128 bytes per
warp)

If threads in a warp access misaligned addresses, such as rows not starting on a 128-
byte boundary,the hardware must issue multiple overlapping transactions to fetch the
same data, wasting bandwidth

To prevents this we can add padding bytes between rows so each begins on a properly
aligned boundary

Allocation of a 2D array with memory alignment 48 / 68

The cudaMallocPitch() function allocates “pitched” (2D) memory on the device.
Pitched memory means that each row of the 2D array is padded to meet specific
alignment requirements imposed by the GPU hardware. This ensures that data accesses
by consecutive threads are properly aligned and coalesced

__host__ ​cudaError_t cudaMallocPitch(void** devPtr, size_t* pitch,
 size_t width, size_t height)

devPtr Pointer to allocated pitched device memory

pitch Pitch for allocation

width Requested pitched allocation width (in bytes)

height Requested pitched allocation height

Copy of a 2D array with memory alignment 49 / 68

The cudaMemcpy2D() function copies a matrix (height rows of width bytes each) from
the memory area pointed to by src to the memory area pointed to by dst, where kind
specifies the direction of the copy. dpitch and spitch are the widths in memory in
bytes of the 2D arrays pointed to by dst and src

__host__​ cudaError_t cudaMemcpy2D (void* dst, size_t dpitch,
 const void* src, size_t spitch, size_t width,
 size_t height, cudaMemcpyKind kind)

dst Destination memory address dpitch Pitch of destination memory

src Source memory address spitch Pitch of source memory

width Width of the matrix (in bytes) height Height of the matrix

kind Type of transfer

Pitched array example: matrix addition (1/3) 50 / 68

As an example, consider a matrix addition kernel where each thread computes the sum
of a single matrix element. The pitch parameter accounts for the padding bytes added
between rows by cudaMallocPitch(), ensuring correct indexing across properly
aligned rows

__global__ void matrix_add_kernel(float* a, float* b, float* c, size_t mat_sz, size_t
pitch) {
 const size_t col_idx = blockIdx.x * blockDim.x + threadIdx.x;
 const size_t row_idx = blockIdx.y * blockDim.y + threadIdx.y;

 if (col_idx >= mat_sz || row_idx >= mat_sz)
 return;

 const size_t idx = row_idx * pitch + col_idx;

 c[idx] = a[idx] + b[idx];
}

Pitched array example: matrix addition (2/3) 51 / 68

To launch the kernel presented on the previous slide, we use cudaMallocPitch() to
allocate the memory and cudaMemcpy2D() to copy memory to and from the device

cudaMallocPitch(&dev_a, &pitch, row_bytes, mat_sz);
// Same for dev_b and dev_c
cudaMemcpy2D(dev_a, pitch, host_a, row_bytes, row_bytes, mat_sz, cudaMemcpyHostToDevice);
// Same for dev_b

const size_t pitched_size = pitch / sizeof(float);

dim3 block(32, 8);
dim3 grid((mat_sz + block.x - 1) / block.x, (mat_sz + block.y - 1) / block.y);

matrix_add_kernel<<<grid, block>>>(dev_a, dev_b, dev_c, mat_sz, pitched_size);

cudaMemcpy2D(host_c, row_bytes, dev_c, pitch, row_bytes, mat_sz, cudaMemcpyDeviceToHost);
cudaDeviceSynchronize();

Pitched array example: matrix addition (3/3) 52 / 68

For a matrix of size 1024, the kernel should execute with (𝟣𝟢𝟤𝟦 ⋅ 𝟣𝟢𝟤𝟦)/𝟥𝟤 = 𝟥𝟤𝟩𝟨𝟪 warps.
The number of sectors transferred for each matrices should be

𝟣𝟢𝟤𝟦 ⋅ 𝟣𝟢𝟤𝟦 ⋅
𝟦 𝖻𝗒𝗍𝖾𝗌

𝟥𝟤 𝖻𝗒𝗍𝖾𝗌 𝗉𝖾𝗋 𝗌𝖾𝖼𝗍𝗈𝗋
= 𝟣𝟥𝟣𝟢𝟩𝟤 𝗌𝖾𝖼𝗍𝗈𝗋𝗌 ⋅ 𝟤 𝗆𝖺𝗍𝗋𝗂𝖼𝖾𝗌 = 𝟤𝟨𝟤𝟣𝟦𝟦 𝗌𝖾𝖼𝗍𝗈𝗋𝗌

In the non-pitched case, a matrix width of 1023 causes additional memory sectors to be
fetched because the rows are not properly aligned, resulting in misaligned and less
efficient memory accesses.

Non-pitched
(size = 1023)

Non-pitched
(size = 1024)

Pitched
(size = 1023)

Pitched
(size = 1024)

Number of read requests 65 472 65 536 65 472 65 536

Number of read sectors 313 839 262 144 261 888 262 144

The 1D diffusion equation: memory alignment 53 / 68

A one-dimensional array can also suffer from unaligned memory accesses. In the 1D
diffusion example, the presence of the left ghost cell causes the global-to-shared
memory loads to become misaligned with the sector boundaries.

The stores of the final results are affected by the same issue

__shared__ float u_shared[BLOCK_SIZE + 2];

const int g_idx = blockIdx.x * blockDim.x + threadIdx.x + 1;
const int s_idx = threadIdx.x + 1;

u_shared[s_idx] = uold[g_idx];

// ...

unew[g_idx] = u_shared[s_idx] + ...

The 1D diffusion: with left padding 54 / 68

The solution is to add padding to align
global-to-shared memory loads with
sector boundaries, including the left
ghost cell in the padding.

This approach also reduces the
number of sectors accessed when
writing the results back to global
memory

Load without
padding

Load with
padding

Store without
padding

Store with
padding

Number of requests 80 000 80 000 64 000 64 000

Number of sectors 318 913 272 001 320 000 256 000

Occupancy and latency hiding

Occupancy: definition 56 / 68

Occupancy is a performance metric that measures how effectively the GPU
computational resources are being utilized. It refers to the ratio of active warps to the
maximum number of warps that can theoretically reside on a streaming multiprocessor
at any given time

For example, if a SM has four warp slots and
we consider an execution over 4 clock cycles

• the total number of available slots is 𝟦 ⋅ 𝟦 =

𝟣𝟨 slots.

• there are active warps in 15 of them,
therefore the occupancy is 𝟣𝟦/𝟣𝟧 ≈ 𝟫𝟦%.

Occupancy: latency hiding 57 / 68

Having a lot of wraps executing concurrently is important for latency hiding. Latency
hiding is a strategy to mask long-latency operations by running many of them
concurrently.

For example, consider the vector addition kernel:

c[idx] = a[idx] + b[idx];

LDG.E R4, [R4.64] # Load from a (400 cycles)
LDG.E R3, [R2.64] # Load from b (400 cycles)
FADD R9, R4, R3 # Add a and b (4 cycles)
STG.E [R6.64], R9 # Store to c (100 cycles)

Executed sequentially, this would take 904 cycles to complete but by operating
concurrently, latency can be hidden by other operations

Occupancy: limiting factor 58 / 68

The maximum number of warps active at one time on a Streaming Multiprocessor (SM)
is limited by several factors:

• Hardware limits: each GPU architecture has a fixed maximum number of active
warps per SM. For example, Lyra GPUs support up to 1 536 threads per SM (48
warps)

• Register Usage: every thread consumes a certain number of registers. Higher
register usage per thread reduces the total number of threads (and thus warps) that
can be active simultaneously, since registers are a shared resource

• Shared Memory: shared memory is also limited per SM. If a kernel uses a large
amount of shared memory, fewer thread blocks can reside on the SM at once,
lowering overall occupancy

Occupancy: limiting factor examples 59 / 68

Register usage

• Hardware limit: 64K (65536) registers per SM

• Kernel configuration: Each thread uses 64 registers and a block size of 256 threads
(𝟤𝟧𝟨 ⋅ 𝟨𝟦 = 𝟣𝟨𝟥𝟪𝟦 registers)

• Occupancy: 𝟨𝟧𝟧𝟥𝟨/𝟣𝟨𝟥𝟪𝟦 = 𝟦 blocks can fit on an SM (32 warps)

Shared memory usage

• Hardware limit: 100 KB shared memory per SM

• Kernel configuration: Each block of 256 threads uses 40 KB of shared memory

• Occupancy: Only ⌊𝟣𝟢𝟢/𝟦𝟢⌋ = 2 blocks can fit on an SM (16 warps)

Getting registers usage 60 / 68

You can obtain register usage at compile time by enabling verbose output from the PTX
optimizing assembler (--ptxas-options=-v)

 $ nvcc --ptxas-options=-v -O3 -o vector_add vector_add.cu 2>&1 | c++filt
ptxas info : 0 bytes gmem
ptxas info : Compiling entry function 'vector_add_kernel(float*, float*, float*)' for 'sm_89'
ptxas info : Function properties for vector_add_kernel(float*, float*, float*)
 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 12 registers, used 0 barriers, 376 bytes cmem[0]

Register allocations are rounded up to the nearest 256 registers per warp which means
that the real number of registers used will be

⌈
𝟥𝟤 ⋅ 𝟣𝟤
𝟤𝟧𝟨

⌉ ⋅
𝟤𝟧𝟨
𝟥𝟤

= 𝟣𝟨 𝗋𝖾𝗀𝗂𝗌𝗍𝖾𝗋𝗌/𝗍𝗁𝗋𝖾𝖺𝖽𝗌

High occupancy ≠ performance: instruction level parallelism 61 / 68

A common guideline for achieving good performance is to increase the number of
threads per SM and the size of thread blocks. Although high occupancy can help hide
latencies and improve efficiency, it represents only one of the many factors influencing
performance

For instance, a high degree of instruction-level parallelism can greatly improve
performance. By providing sufficient independent instructions, it is possible to minimize
warp stalls and mask execution latencies.

x = a + b; // takes ~4 cycles to execute
y = a + c; // independent, can start anytime
// stall
z = x + d; // dependent, must wait for completion

🔗 Understanding Latency Hiding on GPUs, PhD thesis of V. Volkov

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.pdf

Instruction level parallelism in action 62 / 68

For kernels with sufficient
instruction-level parallelism (ILP),
fewer threads are needed to
achieve a significant fraction of
the GPU peak performance

• ILP 4: more than 80% of peak
can can be achieved at 25%
occupancy

• ILP 8: more than 80% of peak
can can be achieved at 16%
occupancy

ILP 1
ILP 2
ILP 4
ILP 8
ILP 16

128 256 384 512 640 768 896 1024

Threads per SM

0

20

40

60

80

100

Fr
a
c

ti
o

n
 o

f
p

e
a
k

(%
)

High occupancy ≠ performance: data parallelism 63 / 68

A common guideline for achieving good performance is to increase the number of
threads per SM and the size of thread blocks. Although high occupancy can help hide
latencies and improve efficiency, it represents only one of the many factors influencing
performance

Threads stall when encountering data dependencies rather than during memory
accesses per se. By issuing several independent memory operations the hardware can
overlap these accesses and hide data access latency, improving overall throughput

float a0 = src[index];
// no stall
float a1 = src[index + blockDim.x];
// stall
dst[index] = a0;
dst[index + blockDim.x] = a1;

Data parallelism in action 64 / 68

For kernels with sufficient
independent memory accesses,
fewer threads are needed to
achieve a significant fraction of
the GPU peak memory
bandwidth

• 16 bytes/thread: more than
80% of peak can can be
achieved at 8% occupancy

• 32 bytes/thread: more than
80% of peak can can be
achieved at 4% occupancy

4 bytes/thread
8 bytes/thread
16 bytes/thread
32 bytes/thread

128 256 384 512 640 768 896 1024

Threads per SM

0

20

40

60

80

100

Fr
a
c

ti
o

n
 o

f
p

e
a
k

(%
)

Latency hiding: take home message 65 / 68

Hiding latency is critical to achieving good performance, which requires maintaining
enough active warps. While having a high number of active warps per SM (high
occupancy) is important, it is not the only factor influencing GPU kernel performance:

• For low arithmetic intensity, it is possible to achieve a large fraction of the available
memory bandwidth even at low occupancy, as long as enough independent memory
requests are in flight

• For high arithmetic intensity, latency can be effectively hidden even with low
occupancy by exploiting instruction-level parallelism

Using more registers or shared memory per thread or block can reduce occupancy
but may still improve overall performance

Some extras

CUDA runtime call error checking 67 / 68

Manually verifying the return
code for each CUDA runtime API
call can be cumbersome.
Therefore, developers often
encapsulate these checks within
a macro to simplify error handling
and improve code readability

The macro serves to encapsulate
CUDA runtime calls, providing
optional error-checking
functionality that can be enabled
at compile time by defining the
CUDA_DEBUG flag (using the
-DCUDA_DEBUG compiler option)

// Compile with -DCUDA_DEBUG to enable checks
#ifndef CUDA_DEBUG
 #define CUDART_CHECK(call) call
#else
 #define CUDART_CHECK(call) cuda_error_check(\
 (call), __FILE__, __LINE__)

 static inline void cuda_error_check(cudaError_t err,
 const char *file, int line) {
 if (err != cudaSuccess) {
 fprintf(stderr, "CUDA check failed at %s:%d: %s\n",
 file, line, cudaGetErrorString(err));
 exit(1);
 }
 }
#endif

// Runtime call
CUDART_CHECK(cudaMalloc (&devptr, N * sizeof (float)));

// Kernel launches are asynchronous, check cudaGetLastError()
kernel<<<grid, block>>>(args);
CUDART_CHECK(cudaGetLastError());

Measuring kernel execution time 68 / 68

To measure how long a kernel takes to execute on the
GPU, not on the CPU, i.e., measuring the elapsed time
between two points in the GPU command stream, we
can use CUDA events

CUDA events are lightweight synchronization and
timing primitives provided by the CUDA runtime:

• cudaEventRecord() inserts an event and when the
GPU reaches this point, it timestamps the event

• cudaEventSynchronize() makes the CPU wait
until the GPU reaches a given event

• cudaEventElapsedTime() computes the time
difference between two recorded events, in
milliseconds

float elapsed;

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaEventRecord(start);

kernel<<<grid, block>>>(args);

cudaEventRecord(stop);
cudaEventSynchronize(stop);
// Elapsed time in milliseconds
cudaEventElapsedTime(
 &elapsed, start, stop);

	A First CUDA Application
	2-dimensional grid
	3-dimensional grid
	Using NVDIA compiler
	Using LLVM Clang

	CUDA Execution Model
	Memory and Data Management
	Shared Memory
	Memory coalescence and alignment
	Occupancy and latency hiding
	Register usage
	Shared memory usage

	Some extras

