Computer Architecture
Parallel Computers

76

The basic idea

Spread operations over many processors

If n operations take time t on 1 processor,

Does this become t/p on p processors (p<=n)?

for (i=0; i<n; i++)
a[i] = b[i]+c[1]

a = b+c

Idealized version: every process
has one array element

77

A

78

The basic idea

« Spread operations over many processors

« If n operations take time t on 1 processor,

« Does this become t/p on p processors (p<=n)?

for (i=0; i<n; i++)
a[i] = b[i]+c[1i]

a = b+c

for (i=my low; i<my high; i++)
af[i] = b[i]+c[1i]

Idealized version: every process
has one array element

Slightly less ideal: each
processor has part of the array

79

The basic idea (cont’d)

Spread operations over many processors
If n operations take time t on 1 processor,
Does it always become t/p on p processors (p<=n)?

S

= sum(a[i], i=0,n-1)

80

N
(o}
O
S N~
Eppspiun gpotep paspeg 2% dsasl a \\\\\\\\\ g
+
¥y .
5 .
— \ s |+] o
- <
< ¥ o
a a
™M
S ™M
— \Oo_ | N~
N ©
" o) it
e SR ‘en | .
o
- 1
(e} S “ +
— \t | I L B
S/5/ s
) [} e}
S
N
S
]
6]
oS
]
]
LN 1
oS
]
]
< 1
(o}
S
- N ™M
S o o o
+ ¥ F
S
N
S
+ +
—
2 —
S
$ 3
S
oS

81

The basic idea (cont’d)

s = sum(a[i], i=0,n-1)

for (s=2; s<n; s*=2)
for (i=0; i<n; i+=s)
a[i] += a[i+s/2]

Spread operations over many processors
If n operations take time t on 1 processor,
Does it always become t/p on p processors (p<=n)?

Conclusion: n operations can be
done with n/2 processors, in total
time log,n

Theoretical question: can addition
be done faster?

Practical question: can we even do
this?

82

m
o] /
- U
s [+
O\
o
—
S

83

Some theory

....before we get into the hardware

Optimally, p processes give T,=T,/p

Speedup S, = Tl/Tp, is p at best

Superlinear speedup not possible in theory, sometimes
happens in practice.

Perfect speedup in “embarrassingly parallel
applications”

Less than optimal: overhead, sequential parts,
dependencies

84

Some more theory

....before we get into the hardware
Optimally, p processes give T,=T,/p

Speedup S, = Tl/Tp, is p at best
Efficiency E, = Sp/p

Scalability: efficiency bounded below

85

Scaling

Increasing the number of processors for a given problem
makes sense up to a point: p > n/2 in the addition
example has no use

Strong scaling: problem constant, number of processors
Increasing

More realistic: scaling up problem and processors
simultaneously, for instance to keep data per processor
constant: Weak scaling

Weak scaling not always possible: problem size depends
on measurements or other external factors.

86

Amdahl’s Law

Some parts of a code are not parallelizable
=> they ultimately become a bottleneck

For instance, if 5% is sequential, you can not get a
speedup over 20, no matter p.

Formally, if F_is the sequential fraction and Fpthe
parallelizable fraction (Fp+FS=1):

— T = (sequential) + (parallelized) = (T F) + (Tle/p)
Amdahl’s law: Tp=T1(Fs+Fp/p)

— T,approaches (T,F) as p increases; speedup S <= 1/F

87

Theoretical characterization of
architectures

88

Parallel Computers Architectures

« Parallel computing means using multiple processors, possibly
comprising multiple computers

e Flynn's (1966) taxonomy is a first way to classify parallel
computers into one of four types:

— (SISD) Single instruction, single data
 Your (old, single core) desktop
— (SIMD) Single instruction, multiple data

e Thinking machines CM-2, Cray 1, and other vector machines
(there’s some controversy here)

e Parts of modern GPUs
— (MISD) Multiple instruction, single data
 Special purpose machines
« No commercial, general purpose machines
— (MIMD) Multiple instruction, multiple data
) , : : 89
« Nearly all of today’s parallel machines, including your laptop

SIMD

Based on regularity of computation: all processors
often doing the same operation: data parallel

Big advantage: processor do not need separate ALU
=> |ots of small processors packed together
Ex: Goodyear MPP: 64k processors in 1983

Use masks to let processors differentiate

90

SIMD then and now

« There used to be computers that were entirely SIMD
(usually attached processor to a front end)

e SIMD these days:

— SSE instructions in regular CPUs
— GPUs are SIMD units (sort of)

91

Kinda SIMD: Vector Machines

e Based on a single processor with:
— Segmented (pipeline) functional units
— Needs sequence of the same operation
« Dominated early parallel market
— overtaken in the 90s by clusters, et al.

e Making a comeback (sort of)

— clusters/constellations of vector machines:
« Earth Simulator (NEC SX6) and Cray X1/X1E

— Arithmetic units in CPUs are pipelined.

92

Remember the pipeline

o Assembly line model (body on frame, attach wheels,
doors, handles on doors)

« Floating point addition: exponent align, add mantissas,
exponent normalize

« Separate hardware for each stage: pipeline processor

93

——1 +by

94

MIMD

« Multiple Instruction, Multiple Data

« Most general model: each processor works on its own
data with its own data stream: task parallel

« Example: one processor produces data, next processor
consumes/analyzes data

95

MIMD

e |In practice SPMD: Single Program Multiple Data:

— all processors execute the same code
— Just not the same instruction at the same time
— Different control flow possible too

— Different amounts of data: load unbalance

96

Granularity

You saw data parallel and task parallel

Medium grain parallelism: carve up large job into tasks
of data parallel work

(Example: array summing, each processor has a
subarray)

Good match to hybrid architectures:

task -> node
data parallel -> SIMD engine

97

GPU: the miracle architecture (?)

Lots of hype about incredible speedup / high performance
for low cost. What’s behind it?

Origin of GPUs: that “G”

Graphics processing: identical (fairly simple) operations on
lots of pixels

Doesn’t matter when any individual pixel gets processed, as
long as they all get done in the end

(Otoh, CPU: heterogeneous instructions, need to be done
ASAP.)

=> GPU is SIMD engine
...and scientific computing is often very data-parallel

98

GPU programming:

e KernelProc<< m,n >>(args)
e Explicit SIMD programming

o There is more: threads (see later)

99

Characterization by Memory
structure

100

Parallel Computer Architectures

Top500 List now dominated by MPPs and Clusters
The MIMD model “won”.

SIMD exists only on smaller scale

A much more useful way to classification is by memory
model

— shared memory

— distributed memory

101

Two memory models

« Shared memory: all processors share the same address
space

— OpenMP: directives-based programming
— PGAS languages (UPC, Titanium, X10)

e Distributed memory: every processor has its own
address space

— MPI: Message Passing Interface

102

Shared and Distributed Memory

Shared memory: single address
space. All processors have access
to a pool of shared memory.

(e.g., Single Cluster node (2-way, 4-way, ...

Methods of memory access :
- Bus
- Distributed Switch
- Crossbar

Network

Distributed memory: each processor
has its own local memory. Must do
message passing to exchange data
between processors.

(examples: Linux Clusters, Cray XT3)

Methods of memory access :
- single switch or switch hierarchy
with fat tree, etc. topology

103

Shared Memory: UMA and NUMA

E25000 at TACC)

Non-Uniform Memory Access (NUMA):

Uniform Memory Access (UMA):

| | | I Each processor has uniform access time to
BUS memory - also known as symmetric

multiprocessors (SMPs) (example: Sun

Time for memory access depends on

I1|3|LP_||I|’II1|3I | LITJ

galraliy

BIIJS

location of data; also known as Distributed IIJS

Shared memory machines. Local access is Memory

faster than non-local access. Easier to
scale than SMPs (e.g.: SGI Origin 2000)

Memory

Network

104

Interconnects

105

Topology of interconnects

What is the actual ‘shape’ of the interconnect? Are the

nodes connected by a 2D mesh? A ring? Something
more elaborate?

=> some graph theory

106

Completely Connected and Star
Networks

« Completely Connected : Each processor has direct
communication link to every other processor

Py

« Star Connected Network : The middle processor is the
central processor; every other processor is connected
to it.

107

Arrays and Rings

e Linear Array:

° R|ng . \.7

o Mesh Network (e.g. 2D-array) > o & &

108

Torus

2-d Torus (2-d version of the ring)

109

Hypercubes

e Hypercube Network : A multidimensional mesh of
processors with exactly two processors in each dimension.
A d dimensional processor consists of

p = 2d processors

e Shown below are 0, 1, 2, and 3D hypercubes

ID

1-D 3-D hypercubes

110

Inductive definition

4D

-— s oo o o
- | e
-—
-
o e

I
1} | I
v Iy _._ 1
| I b 1
h) | 7]
noy __ Iy
oy AR
G
N TN
_
_ \ : \
N . |
' o
'\ o
'\l Jo
4 |
\ \
\ \
\

111

Pros and cons of hypercubes

Pro: processors are close together: never more than

log(p)
Lots of bandwidth

Little chance of contention

Con: the number of wires out of a processor depends
on p: complicated design

Values of p other than 2r not possible.

112

Mapping applications to
hypercubes

Is there a natural mapping from 1,2,3D to a hypercube?
Naive node numbering does not work:

Nodes 0 and 1 have distance 1, but

3 and 4 have distance 3

(so do 7 and 0) ,211 —o 117
001 $ '12)1
f)j.o &+ 110
| Rl ¢

113

Mapping applications to
hypercubes

Is there a natural mapping from 1,2,3D to a hypercube?

=> Gray codes

Recursive definition: number subcube, then other
subcube in mirroring order.

Subsequent processors (in the
Linear ordering) all one link apart

4 o Recursive definition:

2 7 |'H‘h"» 2 00|11
a 01110

0 1 0000|1111

00111100
0110]0110 114

0 1

Busses/Hubs and Crossbars

Hub/Bus: Every processor shares the communication links

© o o o

Crossbar Switches: Every processor connects to the

switch which routes communications to their
destinations

¥ Y T R

115

Butterfly exchange network

L ¢ |
Built out of simple switching [

elements

Multi-stage; #tstages grows : —

with #procs L—'/>/<L_J

Multiple non-colliding paths £ N

possible

Uniform memory access ° : ° :
N S

116

Fat Trees

Multiple switches

Each level has the same
number of links in as out

Increasing number of links at
each level

Gives full bandwidth between
the links

Added latency the higher you
go

117

Fat Trees

 |In practice emulated by switching network

Router L] | | Root
Intfermediate
levels

PE| [Y O Leaves

118

Interconnect graph theory

e Degree
— How many links to other processors does each node have?
— More is better, but also expensive and hard to engineer

e Diameter
— maximum distance between any two processors in the network.

— The distance between two processors is defined as the shortest path,
in terms of links, between them.

— completely connected network is 1, for star network is 2, for ring is p/2
(for p even processors)

e Connectivity

— measure of the multiplicity of paths between any two processors (#
arcs that must be removed to break the connection).

— high connectivity is desired since it lowers contention for
communication resources.

— 1 for linear array, 1 for star, 2 for ring, 2 for mesh, 4 for torus

— technically 1 for traditional fat trees, but there is redundancy in the

switch infrastructure 119

Practical issues in interconnects

Latency : How long does it take to start sending a
"message"? Units are generally microseconds or
milliseconds.

Bandwidth : What data rate can be sustained once the
message is started? Units are Mbytes/sec or Gbytes/
sec.

— Both point-to-point and aggregate bandwidth are of interest

Multiple wires: multiple latencies, same bandwidth
Sometimes shortcuts possible: 'wormhole routing’

120

Measures of bandwidth

« Aggregate bandwidth: total data rate if every processor
sending: total capacity of the wires. This can be very
high and quite unrealistic.

« Imagine linear array with processor i sending to P/2+i:
‘Contention’

e Bisection bandwidth: bandwidth across the minimum
number of wires that would split the machine in two.

121

AN

O\
v

Pn-1

Pp 5 P1 = P2 /1 P3

122

Interconnects

Bisection width

— Minimum # of communication links that have to be removed to partition
the network into two equal halves. Bisection width is

— 2 for ring, sq. root(p) for mesh with p (even) processors, p/2 for
hypercube, (p*p)/4 for completely connected (p even).

Channel width

— of physical wires in each communication link

Channel rate

— peak rate at which a single physical wire link can deliver bits

Channel BW

— peak rate at which data can be communicated between the ends of a
communication link

— = (channel width) * (channel rate)

Bisection BW

— minimum volume of communication found between any 2 halves of the
network with equal # of procs

= (hicarBAn wid+h) ¥ [~rhannal RA/

123

Bandwidth and Latency

IB-DDR 10 Gigabit |1 Gigabit

Ping-Pong

bandwidth, [1466 1000 112.5
MB/s

Exchange

bandwidth, {2659 2073 157.6
MB/s

Latency, us [2.01 3.23 46.52

124

