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The basic idea
• Spread opera1ons over many processors 
• If n opera1ons take 1me t on 1 processor, 
• Does this become t/p on p processors (p<=n)?

for (i=0; i<n; i++) 
  a[i] = b[i]+c[i]

a = b+c

Idealized version: every process 
has one array element
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The basic idea
• Spread opera1ons over many processors 
• If n opera1ons take 1me t on 1 processor, 
• Does this become t/p on p processors (p<=n)?

for (i=0; i<n; i++) 
  a[i] = b[i]+c[i]

a = b+c

for (i=my_low; i<my_high; i++) 
  a[i] = b[i]+c[i]

Idealized version: every process 
has one array element

Slightly less ideal: each 
processor has part of the array
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The basic idea (cont’d)
• Spread opera1ons over many processors 
• If n opera1ons take 1me t on 1 processor, 
• Does it always become t/p on p processors (p<=n)?

s = sum( a[i], i=0,n-1 )
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The basic idea (cont’d)
• Spread opera1ons over many processors 
• If n opera1ons take 1me t on 1 processor, 
• Does it always become t/p on p processors (p<=n)?

s = sum( a[i], i=0,n-1 ) Conclusion: n opera1ons can be 
done with n/2 processors, in total 
1me log2n 

Theore1cal ques1on: can addi1on 
be done faster? 

Prac1cal ques1on: can we even do 
this?
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for (s=2; s<n; s*=2) 
  for (i=0; i<n; i+=s) 
    a[i] += a[i+s/2] 
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2. Parallel Computing

Figure 2.2: Parallelization of a vector addition

First let us look systematically at communication. We can take the second half of figure 2.2 and turn it
into a tree graph (see Appendix A.5) by defining the inputs as leave nodes, all partial sums as interior
nodes, and the root as the total sum. There is an edge from one node to another if the first is input to
the (partial) sum in the other. This is illustrated in figure 2.3. In this figure nodes are horizontally aligned
with other computations that can be performed simultaneously; each level is sometimes called a superstep
in the computation. Nodes are vertically aligned if they are computed on the same processors, and an
arrow corresponds to a communication if it goes from one processor to another. The vertical alignment in

Figure 2.3: Communication structure of a parallel vector addition

figure 2.3 is not the only one possible. If nodes are shuffled within a superstep or horizontal level, a different
communication pattern arises.
Exercise 2.1. Consider placing the nodes within a superstep on random processors. Show that,

if no two nodes wind up on the same processor, at most twice the number of commu-
nications is performed from the case in figure 2.3.

Exercise 2.2. Can you draw the graph of a computation that leaves the sum result on each
processor? There is a solution that takes twice the number of supersteps, and there is
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Some theory

• ….before we get into the hardware 
• Op1mally, p processes give TP=T1/p 

• Speedup SP = T1/Tp, is p at best 

• Superlinear speedup not possible in theory, some1mes 
happens in prac1ce. 

• Perfect speedup in “embarrassingly parallel 
applica1ons” 

• Less than op1mal: overhead, sequen1al parts, 
dependencies
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Some more theory

• ….before we get into the hardware 
• Op1mally, p processes give TP=T1/p 

• Speedup SP = T1/Tp, is p at best 

• Efficiency EP = Sp/p 

• Scalability: efficiency bounded below
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Scaling
• Increasing the number of processors for a given problem 

makes sense up to a point: p > n/2 in the addi1on 
example has no use 

• Strong scaling: problem constant, number of processors 
increasing 

• More realis1c: scaling up problem and processors 
simultaneously, for instance to keep data per processor 
constant: Weak scaling 

• Weak scaling not always possible: problem size depends 
on measurements or other external factors.
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Amdahl’s Law 

• Some parts of a code are not parallelizable 
• => they ul1mately become a boAleneck 
• For instance, if 5% is sequen1al, you can not get a 

speedup over 20, no maAer p. 

• Formally, if Fs is the sequen1al frac1on and Fp the 
parallelizable frac1on (Fp+Fs=1): 

– Tp= (sequenCal) + (parallelized) = (T1Fs) + (T1Fp/p) 

• Amdahl’s law: Tp=T1(Fs+Fp/p) 

– Tp approaches (T1Fs) as p increases; speedup Sp <= 1/Fs
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Theore1cal characteriza1on of 
architectures

88



Parallel Computers Architectures
• Parallel compu(ng means using mul1ple processors, possibly 

comprising mul1ple computers 
• Flynn's (1966) taxonomy is a first way to classify parallel 

computers into one of four types: 
– (SISD) Single instruc1on, single data 

• Your (old, single core) desktop 
– (SIMD) Single instruc1on, mul1ple data 

• Thinking machines CM-2, Cray 1, and other vector machines 
(there’s some controversy here) 
• Parts of modern GPUs 

– (MISD) Mul1ple instruc1on, single data 
• Special purpose machines 
• No commercial, general purpose machines 

– (MIMD) Mul1ple instruc1on, mul1ple data 
• Nearly all of today’s parallel machines, including your laptop 89



SIMD

• Based on regularity of computa1on: all processors 
ozen doing the same opera1on: data parallel 

• Big advantage: processor do not need separate ALU 
• => lots of small processors packed together 
• Ex: Goodyear MPP: 64k processors in 1983 
• Use masks to let processors differen1ate
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SIMD then and now

• There used to be computers that were en1rely SIMD 
(usually aAached processor to a front end) 

• SIMD these days: 
– SSE instruc1ons in regular CPUs 
– GPUs are SIMD units (sort of)
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Kinda SIMD: Vector Machines
• Based on a single processor with: 

– Segmented (pipeline) func1onal units 
– Needs sequence of the same opera1on 

• Dominated early parallel market 
– overtaken in the 90s by clusters, et al. 

• Making a comeback (sort of) 
– clusters/constella1ons of vector machines: 

• Earth Simulator (NEC SX6) and Cray X1/X1E 

– Arithme1c units in CPUs are pipelined.
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Remember the pipeline

• Assembly line model (body on frame, aAach wheels, 
doors, handles on doors) 

• Floa1ng point addi1on: exponent align, add man1ssas, 
exponent normalize 

• Separate hardware for each stage: pipeline processor
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1.2. Modern floating point units

Figure 1.1: Schematic depiction of a pipelined operation

aibi + ci feeds the result of one iteration (ai) to the input of the next (ai+1 = . . .), so the operations are not
independent.

A pipelined processor can speed up operations by a factor of 4, 5, 6 with respect to earlier CPUs. Such
numbers were typical in the 1980s when the first successful vector computers came on the market. These
days, CPUs can have 20-stage pipelines. Does that mean they are incredibly fast? This question is a bit
complicated. Chip designers continue to increase the clock rate, and the pipeline segments can no longer
finish their work in one cycle, so they are further split up. Sometimes there are even segments in which
nothing happens: that time is needed to make sure data can travel to a different part of the chip in time.

The amount of improvement you can get from a pipelined CPU is limited, so in a quest for ever higher
performance several variations on the pipeline design have been tried. For instance, the Cyber 205 had
separate addition and multiplication pipelines, and it was possible to feed one pipe into the next without
data going back to memory first. Operations like 8i : ai  bi + c · di were called ‘linked triads’ (because
of the number of paths to memory, one input operand had to be scalar).

Exercise 1.2. Analyse the speedup and n1/2 of linked triads.

Another way to increase performance is to have multiple identical pipes. This design was perfected by the
NEC SX series. With, for instance, 4 pipes, the operation 8i : ai  bi + ci would be split module 4, so that
the first pipe operated on indices i = 4 · j, the second on i = 4 · j + 1, et cetera.

Exercise 1.3. Analyze the speedup and n1/2 of a processor with multiple pipelines that operate
in parallel. That is, suppose that there are p independent pipelines, executing the same
instruction, that can each handle a stream of operands.

Victor Eijkhout 11



MIMD

• Mul1ple Instruc1on, Mul1ple Data 
• Most general model: each processor works on its own 

data with its own data stream: task parallel 
• Example: one processor produces data, next processor 

consumes/analyzes data
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MIMD

• In prac1ce SPMD: Single Program Mul1ple Data:  
– all processors execute the same code 
– Just not the same instruc1on at the same 1me 
– Different control flow possible too 
– Different amounts of data: load unbalance
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Granularity

• You saw data parallel and task parallel 
• Medium grain parallelism: carve up large job into tasks 

of data parallel work 
• (Example: array summing, each processor has a 

subarray) 

• Good match to hybrid architectures: 
task -> node 
data parallel -> SIMD engine
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GPU: the miracle architecture (?)
• Lots of hype about incredible speedup / high performance 

for low cost. What’s behind it? 
• Origin of GPUs: that “G” 
• Graphics processing: iden1cal (fairly simple) opera1ons on 

lots of pixels 
• Doesn’t maAer when any individual pixel gets processed, as 

long as they all get done in the end  
• (Otoh, CPU: heterogeneous instruc1ons, need to be done 

ASAP.) 
• => GPU is SIMD engine 
• …and scien1fic compu1ng is ozen very data-parallel
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GPU programming:

• KernelProc<< m,n >>( args ) 
• Explicit SIMD programming 
• There is more: threads (see later)
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Characteriza1on by Memory 
structure
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Parallel Computer Architectures

• Top500 List now dominated by MPPs and Clusters 
• The MIMD model “won”. 
• SIMD exists only on smaller scale 
•  A much more useful way to classifica1on is by memory 

model 
– shared memory 
– distributed memory
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Two memory models

• Shared memory: all processors share the same address 
space 
– OpenMP: direc1ves-based programming 
– PGAS languages (UPC, Titanium, X10) 

• Distributed memory: every processor has its own 
address space 
– MPI: Message Passing Interface
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Shared and Distributed Memory

Shared memory: single address  
space. All processors have access  
to a pool of shared memory. 
(e.g., Single Cluster node (2-way, 4-way, ...)) 

Methods of memory access : 
   - Bus 
   - Distributed Switch  
   - Crossbar

Distributed memory: each processor 
has its own local memory. Must do  
message passing to exchange data  
between processors.  
(examples: Linux Clusters, Cray XT3) 

Methods of memory access : 
   - single switch or switch hierarchy  
     with fat tree, etc. topology
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Shared Memory: UMA and NUMA
Uniform Memory Access (UMA): 
Each processor has uniform access 1me to 
memory - also known as symmetric 
mul1processors (SMPs) (example: Sun 
E25000 at TACC)

Non-Uniform Memory Access (NUMA): 
Time for memory access depends on 
loca1on of data; also known as Distributed 
Shared memory machines. Local access is 
faster than non-local access. Easier to 
scale than SMPs (e.g.: SGI Origin 2000)
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Interconnects
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Topology of interconnects

• What is the actual ‘shape’ of the interconnect? Are the 
nodes connected by a 2D mesh? A ring? Something 
more elaborate? 

• => some graph theory
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Completely Connected and Star 
Networks

• Completely Connected : Each processor has direct 
communica1on link to every other processor 

• Star Connected Network : The middle processor is the 
central processor; every other processor is connected 
to it. 
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Arrays and Rings

• Linear Array :  

• Ring : 

• Mesh Network (e.g. 2D-array)
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Torus

2-d Torus (2-d version of the ring)
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Hypercubes
• Hypercube Network : A mul1dimensional mesh of 

processors with exactly two processors in each dimension. 
A d dimensional processor consists of 

    p = 2d processors  
• Shown below are 0, 1, 2, and 3D hypercubes

0-D    1-D       2-D                 3-D       hypercubes
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Induc1ve defini1on
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Pros and cons of hypercubes

• Pro: processors are close together: never more than 
log(p) 

• Lots of bandwidth 
• LiAle chance of conten1on 
• Con: the number of wires out of a processor depends 

on p: complicated design 
• Values of p other than 2p not possible. 
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Mapping applica1ons to 
hypercubes

• Is there a natural mapping from 1,2,3D to a hypercube? 
• Naïve node numbering does not work: 
• Nodes 0 and 1 have distance 1, but 
• 3 and 4 have distance 3 
• (so do 7 and 0)
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Mapping applica1ons to 
hypercubes

• Is there a natural mapping from 1,2,3D to a hypercube? 
• => Gray codes 
• Recursive defini1on: number subcube, then other 

subcube in mirroring order.

10

23

10

23
6

7

54

Subsequent processors (in the 
Linear ordering) all one link apart

Recursive defini1on: 
0 | 1 

0 0 | 1 1 
0 1 | 1 0 

0 0 0 0 | 1 1 1 1 
0 0 1 1 | 1 1 0 0 
0 1 1 0 | 0 1 1 0 114



Busses/Hubs and Crossbars
Hub/Bus: Every processor shares the communica1on links 

Crossbar Switches: Every processor connects to the 
switch which routes communica1ons to their 
des1na1ons
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BuAerfly exchange network

• Built out of simple switching 
elements 

• Mul1-stage; #stages grows 
with #procs 

• Mul1ple non-colliding paths 
possible 

• Uniform memory access
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Fat Trees
• Mul1ple switches 
• Each level has the same 

number of links in as out 
• Increasing number of links at 

each level 
• Gives full bandwidth between 

the links 
• Added latency the higher you 

go
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Fat Trees
• In prac1ce emulated by switching network
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Interconnect graph theory
• Degree 

– How many links to other processors does each node have? 
– More is beAer, but also expensive and hard to engineer 

• Diameter 
– maximum distance between any two processors in the network. 
– The distance between two processors is defined as the shortest path, 

in terms of links, between them.  
– completely connected network is 1, for star network is 2, for ring is p/2 

(for p even processors) 
• Connec1vity 

– measure of the mul1plicity of paths between any two processors (# 
arcs that must be removed to break the connec1on). 

– high connec1vity is desired since it lowers conten1on for 
communica1on resources.  

– 1 for linear array, 1 for star, 2 for ring, 2 for mesh, 4 for torus 
– technically 1 for tradi1onal fat trees, but there is redundancy in the 

switch infrastructure 119



Prac1cal issues in interconnects
• Latency : How long does it take to start sending a 

"message"? Units are generally microseconds or 
milliseconds.  

• Bandwidth : What data rate can be sustained once the 
message is started? Units are Mbytes/sec or Gbytes/
sec. 
– Both point-to-point and aggregate bandwidth are of interest 

• Mul1ple wires: mul1ple latencies, same bandwidth 
• Some1mes shortcuts possible: `wormhole rou1ng’
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Measures of bandwidth

• Aggregate bandwidth: total data rate if every processor 
sending: total capacity of the wires. This can be very 
high and quite unrealis1c. 

• Imagine linear array with processor i sending to P/2+i: 
`Conten1on’ 

• Bisec1on bandwidth: bandwidth across the minimum 
number of wires that would split the machine in two.

121



122



Interconnects
• Bisec1on width 

– Minimum # of communica1on links that have to be removed to par11on 
the network into two equal halves.  Bisec1on width is  

– 2 for ring, sq. root(p) for mesh with p (even) processors, p/2 for 
hypercube, (p*p)/4 for completely connected (p even). 

• Channel width 
– of physical wires in each communica1on link 

• Channel rate  
– peak rate at which a single physical wire link can deliver bits 

• Channel BW  
– peak rate at which data can be communicated between the ends of a 

communica1on link  
– =  (channel width) * (channel rate)  

• Bisec1on BW 
– minimum volume of communica1on found between any 2 halves of the 

network with equal # of procs 
– = (bisec1on width) * (channel BW) 
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Bandwidth and Latency
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IB-DDR 10 Gigabit 1 Gigabit

Ping-Pong 
bandwidth, 
MB/s

1466 1000 112.5

Exchange 
bandwidth, 
MB/s

2659 2073 157.6

Latency, us 2.01 8.23 46.52


