Computer Architecture Parallel Computers

The basic idea

- Spread operations over many processors
- If *n* operations take time *t* on 1 processor,
- Does this become *t/p* on *p* processors (*p*<=*n*)?

for (i=0; i<n; i++)
a[i] = b[i]+c[i]</pre>

Idealized version: every process has one array element

a = b+c

The basic idea

- Spread operations over many processors
- If *n* operations take time *t* on 1 processor,
- Does this become t/p on p processors (p<=n)?

$$a = b+c$$

for (i=my_low; i<my_high; i++)
 a[i] = b[i]+c[i]</pre>

Idealized version: every process has one array element

Slightly less ideal: each processor has part of the array

The basic idea (cont'd)

- Spread operations over many processors
- If *n* operations take time *t* on 1 processor,
- Does it always become t/p on p processors (p<=n)?

```
s = sum(a[i], i=0, n-1)
```


The basic idea (cont'd)

- Spread operations over many processors
- If *n* operations take time *t* on 1 processor,
- Does it always become t/p on p processors (p<=n)?

s = sum(a[i], i=0, n-1)

Conclusion: n operations can be done with n/2 processors, in total time $\log_2 n$

Theoretical question: can addition be done faster?

Practical question: can we even do this?

Some theory

-before we get into the hardware
- Optimally, p processes give $T_p = T_1/p$
- Speedup $S_p = T_1/T_p$, is p at best
- Superlinear speedup not possible in theory, sometimes happens in practice.
- Perfect speedup in "embarrassingly parallel applications"
- Less than optimal: overhead, sequential parts, dependencies

Some more theory

-before we get into the hardware
- Optimally, p processes give $T_p = T_1/p$
- Speedup $S_p = T_1/T_p$, is p at best
- Efficiency $E_p = S_p/p$
- Scalability: efficiency bounded below

Scaling

- Increasing the number of processors for a given problem makes sense up to a point: p > n/2 in the addition example has no use
- **Strong scaling**: problem constant, number of processors increasing
- More realistic: scaling up problem and processors simultaneously, for instance to keep data per processor constant: Weak scaling
- Weak scaling not always possible: problem size depends on measurements or other external factors.

Amdahl's Law

- Some parts of a code are not parallelizable
- => they ultimately become a bottleneck
- For instance, if 5% is sequential, you can not get a speedup over 20, no matter p.
- Formally, if F_s is the sequential fraction and F_p the parallelizable fraction ($F_p + F_s = 1$):

 $-T_p = (sequential) + (parallelized) = (T_1F_s) + (T_1F_p/p)$

Amdahl's law: T_p=T₁(F_s+F_p/p)

 $-T_p$ approaches (T_1F_s) as p increases; speedup $S_p <= 1/F_s$

Theoretical characterization of architectures

Parallel Computers Architectures

- Parallel computing means using multiple processors, possibly comprising multiple computers
- Flynn's (1966) taxonomy is a first way to classify parallel computers into one of four types:
 - (SISD) Single instruction, single data
 - Your (old, single core) desktop
 - (SIMD) Single instruction, multiple data
 - Thinking machines CM-2, Cray 1, and other vector machines (there's some controversy here)
 - Parts of modern GPUs
 - (MISD) Multiple instruction, single data
 - Special purpose machines
 - No commercial, general purpose machines
 - (**MIMD**) Multiple instruction, multiple data
 - Nearly all of today's parallel machines, including your laptop

89

SIMD

- Based on regularity of computation: all processors often doing the same operation: *data parallel*
- Big advantage: processor do not need separate ALU
- => lots of small processors packed together
- Ex: Goodyear MPP: 64k processors in 1983
- Use masks to let processors differentiate

SIMD then and now

- There used to be computers that were entirely SIMD (usually attached processor to a front end)
- SIMD these days:
 - SSE instructions in regular CPUs
 - GPUs are SIMD units (sort of)

Kinda SIMD: Vector Machines

- Based on a single processor with:
 - Segmented (pipeline) functional units
 - Needs sequence of the same operation
- Dominated early parallel market
 overtaken in the 90s by clusters, et al.
- Making a comeback (sort of)
 - clusters/constellations of vector machines:
 - Earth Simulator (NEC SX6) and Cray X1/X1E
 - Arithmetic units in CPUs are pipelined.

Remember the pipeline

- Assembly line model (body on frame, attach wheels, doors, handles on doors)
- Floating point addition: exponent align, add mantissas, exponent normalize
- Separate hardware for each stage: pipeline processor

MIMD

- Multiple Instruction, Multiple Data
- Most general model: each processor works on its own data with its own data stream: *task parallel*
- Example: one processor produces data, next processor consumes/analyzes data

MIMD

- In practice SPMD: Single Program Multiple Data:
 - all processors execute the same code
 - Just not the same instruction at the same time
 - Different control flow possible too
 - Different amounts of data: load unbalance

Granularity

- You saw data parallel and task parallel
- Medium grain parallelism: carve up large job into tasks of data parallel work
- (Example: array summing, each processor has a subarray)
- Good match to hybrid architectures: task -> node data parallel -> SIMD engine

GPU: the miracle architecture (?)

- Lots of hype about incredible speedup / high performance for low cost. What's behind it?
- Origin of GPUs: that "G"
- Graphics processing: identical (fairly simple) operations on lots of pixels
- Doesn't matter when any individual pixel gets processed, as long as they all get done in the end
- (Otoh, CPU: heterogeneous instructions, need to be done ASAP.)
- => GPU is SIMD engine
- ...and scientific computing is often very data-parallel

GPU programming:

- KernelProc<< m,n >>(args)
- Explicit SIMD programming
- There is more: threads (see later)

Characterization by Memory structure

Parallel Computer Architectures

- Top500 List now dominated by MPPs and Clusters
- The MIMD model "won".
- SIMD exists only on smaller scale
- A much more useful way to classification is by memory model
 - shared memory
 - distributed memory

Two memory models

- Shared memory: all processors share the same address space
 - **OpenMP**: directives-based programming
 - PGAS languages (UPC, Titanium, X10)
- Distributed memory: every processor has its own address space
 - MPI: Message Passing Interface

Shared and Distributed Memory

Shared memory: single address space. All processors have access to a pool of shared memory. (e.g., Single Cluster node (2-way, 4-way, ...))

Methods of memory access :

- Bus
- Distributed Switch
- Crossbar

Distributed memory: each processor has its own local memory. Must do message passing to exchange data between processors. (examples: Linux Clusters, Cray XT3)

Methods of memory access :

- single switch or switch hierarchy with fat tree, etc. topology

Shared Memory: UMA and NUMA

Uniform Memory Access (UMA):

Each processor has uniform access time to memory - also known as symmetric multiprocessors (SMPs) (example: Sun E25000 at TACC)

Non-Uniform Memory Access (NUMA):

Time for memory access depends on location of data; also known as Distributed Shared memory machines. Local access is faster than non-local access. Easier to scale than SMPs (e.g.: SGI Origin 2000)

Interconnects

Topology of interconnects

- What is the actual 'shape' of the interconnect? Are the nodes connected by a 2D mesh? A ring? Something more elaborate?
- => some graph theory

Completely Connected and Star Networks

• Completely Connected : Each processor has direct communication link to every other processor

 Star Connected Network : The middle processor is the central processor; every other processor is connected to it.

Arrays and Rings

- Linear Array :
- Ring :

• Mesh Network (e.g. 2D-array)

Torus

2-d Torus (2-d version of the ring)

Hypercubes

 Hypercube Network : A multidimensional mesh of processors with exactly two processors in each dimension.
 A d dimensional processor consists of

 $p = 2^d$ processors

• Shown below are 0, 1, 2, and 3D hypercubes

Inductive definition

Pros and cons of hypercubes

- Pro: processors are close together: never more than log(p)
- Lots of bandwidth
- Little chance of contention
- Con: the number of wires out of a processor depends on p: complicated design
- Values of *p* other than 2^{*p*} not possible.

Mapping applications to hypercubes

- Is there a natural mapping from 1,2,3D to a hypercube?
- Naïve node numbering does not work:
- Nodes 0 and 1 have distance 1, but
- 3 and 4 have distance 3
- (so do 7 and 0)

Mapping applications to hypercubes

- Is there a natural mapping from 1,2,3D to a hypercube?
- => Gray codes
- Recursive definition: number subcube, then other subcube in mirroring order.

Subsequent processors (in the Linear ordering) all one link apart

Recursive definition: 0 | 1 0 0 | 1 1 0 1 | 1 0 0 0 0 0 | 1 1 1 1 0 0 1 1 | 1 1 0 0 0 1 1 0 | 0 1 1 0

Busses/Hubs and Crossbars

Hub/Bus: Every processor shares the communication links

Crossbar Switches: Every processor connects to the switch which routes communications to their destinations

Butterfly exchange network

- Built out of simple switching elements
- Multi-stage; #stages grows with #procs
- Multiple non-colliding paths possible
- Uniform memory access

Fat Trees

- Multiple switches
- Each level has the same number of links in as out
- Increasing number of links at each level
- Gives full bandwidth between the links
- Added latency the higher you go

Fat Trees

• In practice emulated by switching network

Interconnect graph theory

- Degree
 - How many links to other processors does each node have?
 - More is better, but also expensive and hard to engineer
- Diameter
 - maximum distance between any two processors in the network.
 - The distance between two processors is defined as the shortest path, in terms of links, between them.
 - completely connected network is 1, for star network is 2, for ring is p/2 (for p even processors)
- Connectivity
 - measure of the multiplicity of paths between any two processors (# arcs that must be removed to break the connection).
 - high connectivity is desired since it lowers contention for communication resources.
 - 1 for linear array, 1 for star, 2 for ring, 2 for mesh, 4 for torus
 - technically 1 for traditional fat trees, but there is redundancy in the switch infrastructure

Practical issues in interconnects

- Latency : How long does it take to start sending a "message"? Units are generally microseconds or milliseconds.
- Bandwidth : What data rate can be sustained once the message is started? Units are Mbytes/sec or Gbytes/ sec.

Both point-to-point and aggregate bandwidth are of interest

- Multiple wires: multiple latencies, same bandwidth
- Sometimes shortcuts possible: `wormhole routing'

Measures of bandwidth

- Aggregate bandwidth: total data rate if every processor sending: total capacity of the wires. This can be very high and quite unrealistic.
- Imagine linear array with processor *i* sending to *P/2+i*: Contention'
- Bisection bandwidth: bandwidth across the minimum number of wires that would split the machine in two.

Interconnects

• Bisection width

- Minimum # of communication links that have to be removed to partition the network into two equal halves. Bisection width is
- 2 for ring, sq. root(p) for mesh with p (even) processors, p/2 for hypercube, (p*p)/4 for completely connected (p even).

Channel width

- of physical wires in each communication link
- Channel rate
 - peak rate at which a single physical wire link can deliver bits

Channel BW

- peak rate at which data can be communicated between the ends of a communication link
- = (channel width) * (channel rate)

Bisection BW

- minimum volume of communication found between any 2 halves of the network with equal # of procs
- = (hisection width) * (channel RW)

Bandwidth and Latency

	IB-DDR	10 Gigabit	1 Gigabit
Ping-Pong bandwidth, MB/s	1466	1000	112.5
Exchange bandwidth, MB/s	2659	2073	157.6
Latency, us	2.01	8.23	46.52