
OpenMP

Shared-Memory Parallel Programming

Orian Louant

INFO0939 - Fall 2024

Motivations for Parallel Computing

Most applications today are parallel applications

in the years 2000’s the CPU manufacturers have run out of room for boosting CPU

performance

instead of driving clock speeds and straight-line instruction throughput higher,

they turn to hyperthreading and multicore architectures

In HPC in particular, it’s crucial to be able to run your application in parallel

in HPC, recent high-end CPUs have high core count: 36-64 cores

high core count but lower clock, single core performance of an HPC CPU can be

worse than your laptop CPU with turbo boost
2/105

Types of Parallel Systems

multiple compute nodes: distributed memory

in HPC the dominant model for distributed memory

programming is MPI, a standard that was introduced

by the MPI Forum in May 1994 and updated in June

1995, last version 4.0 (2021).

single compute node: shared memory

in HPC the dominant model for shared-memory

programming is OpenMP, a standard that was

introduced in 1997 (Fortran) and 1998 (C/C++), last

version is 5.1 (2020)
3/105

SharedMemory Systems

OpenMP use threads to parallelize

applications for shared memory systems

the system consists of processing

elements (CPUs, cores, GPUs) and

memory

the processing elements have access the

entire memory of the system via an

interconnect

every processing elements can read and

write the memory (single address space)

4/105

SharedMemory Systems in the RealWorld

the memory may be split into chunks leading

to some of the core being closer (faster

access) to a chunk of the memory

different levels of cache may exist, some

shared between the cores and other private to

the core

all the cores have access to the entire memory

of the system but the hardware complexity

may have an impact on performance

5/105

MultithreadedApplication

thread parallelism is one of the options for shared

memory systems

all the threads can access the shared memory

threads can have private data, which can only be

accessed by the thread owning the data

the threads have their own program counter and

thus, can follow different control flow

6/105

ThreadCommunication

most parallel applications require some form of communication

in the shared memory model, threads communicate by reading and writing shared

data

thread 1 write to a shared variable

thread 2 read the value of the shared

variable

7/105

The Synchronization Problem

reading and writing shared data with threads executing asynchronously

in the shared-memory model, we need to ensure that read and write operations

occur in the correct order

thread 1 and thread 2 execute

instructions independently of each other

thread 2 read the value of the shared

variable before thread 1 write the variable

8/105

Data Race

a data race occur when one or more threads in a single process access the same

memory location concurrently, and at least one of the accesses is a write

we need synchronization to ensure proper time ordering of the memory accesses

the lack of proper synchronization lead to non-deterministic behaviour

9/105

Parallelism: Tasks

task parallelism consists in executing different

operations in parallel

in this model, each thread is responsible for the

execution of one task

tasks may have sub-tasks that also execute in parallel

writing a task parallel application consists in

identifying independent computations to be assigned

to the tasks

10/105

Parallelism: Loop Parallelism

in scientific applications, the main source of

parallelism is loops

if the iterations of a loop are independent then the

loop become embarrassingly parallel

each thread work on a portion of the iterations

11/105

Shared-Memory Parallel Programming: WhatWeNeed

In order to write a shared-memory parallel application we need a way to

run the program in parallel, to create threads

specify which data is shared among the threads and which data is private to the

thread

a way to synchronize the threads, avoiding data race

a way to create tasks and enable loop parallelism

All these elements are provided by OpenMP

12/105

What is OpenMP?

OpenMP is a shared-memory application programming interface

OpenMP hides the low-level details and allows the programmer to describe the

parallel code with high-level constructs: compiler directives

OpenMP consist of

compiler directive

runtime library routines

environment variables

13/105

OpenMP is using directives

Directives are programming language constructs that specifies how a compiler should

process its input

An OpenMP program is the combination of

a base language (C, C++ or Fortran)

annotations with OpenMP directives

14/105

Anatomy of anOpenMPdirective

OpenMPdirective in C/C++

#pragma omp construct [clauses]

OpenMPdirective in Fortran

!$omp construct [clauses]

Tells the compiler that it is a directive

15/105

Anatomy of anOpenMPdirective

OpenMPdirective in C/C++

#pragma omp construct [clauses]

OpenMPdirective in Fortran

!$omp construct [clauses]

Indicates that it is as an OpenMP directive

15/105

Anatomy of anOpenMPdirective

OpenMPdirective in C/C++

#pragma omp construct [clauses]

OpenMPdirective in Fortran

!$omp construct [clauses]

Give instruction on what to do

15/105

Anatomy of anOpenMPdirective

OpenMPdirective in C/C++

#pragma omp construct [clauses]

OpenMPdirective in Fortran

!$omp construct [clauses]

Additional options (optional)

15/105

TheAdvantages of Using directive

does not modify the serial implementation, you can still compile and run the

program as a serial code

they can be added incrementally allowing a gradual parallelization

directives hide the actual parallelization work from the programmer, the compiler

replaces the directives by the appropriate calls to the OpenMP runtime and library

easier to maintain

16/105

Going Parallel

The Parallel Construct

Parallel construct in C/C++

#pragma omp parallel [clauses]
structured-block

Parallel construct in Fortran

!$omp parallel [clauses]
structured-block

!$omp end parallel

Creates a parallel region by spawning a team of threads

18/105

The Parallel Construct

Parallel construct in C/C++

#pragma omp parallel [clauses]
structured-block

Parallel construct in Fortran

!$omp parallel [clauses]
structured-block

!$omp end parallel

Optional clause

18/105

The Parallel Construct

Parallel construct in C/C++

#pragma omp parallel [clauses]
structured-block

Parallel construct in Fortran

!$omp parallel [clauses]
structured-block

!$omp end parallel

Block of code

18/105

OpenMPRuntime Functions

#include <omp.h> use omp_lib

needed to access declarations of the OpenMP runtime library routines

int omp_get_num_threads(); integer function omp_get_num_threads()

returns the number of threads in the current team

returns 1 if called outside of a parallel region

int omp_get_thread_num(); integer function omp_get_thread_num()

returns the thread number, within the current team

returns 0 if called outside of a parallel region

19/105

OpenMPHelloWorld

#include <stdio.h>
#include <omp.h>

int main(int argc, char* argv[]) {
int tid, nthreads;

#pragma omp parallel private(tid, nthreads)
{

tid = omp_get_thread_num();
nthreads = omp_get_num_threads();

printf("Hello, I'm thread %d of %d.\n",
tid, nthreads);

}

return 0;
}

program main
use omp_lib

integer :: tid, nthreads

!$omp parallel private(tid)
tid = omp_get_thread_num()

print 100, tid, nthreads
100 format('Hello, I am thread ', &
& i0, ' of ', i0)

!$omp end parallel
end program

20/105

Compiling theOpenMPHelloWorld

To compile an OpenMP program, you need to pass a specific flag to the compiler

GCC gcc/gfortran -fopenmp

Clang/AOCC clang -fopenmp

Intel classic icc/ifort -qopenmp

Intel DPC++ icx -fopenmp

HPECray cc/ftn -fopenmp

NVIDIA nvc/nvfortran -mp

AMDROCm amdclang/amdflang -fopenmp

This flag instructs the compiler to consider OpenMP directives
21/105

Compiling

For this training we will use the GCC compiler that is available on all CÉCI clusters.

Enabling OpenMP with GCC is done by using the -fopenmp flag.

These flags may be also be of interest:

-march=native Generate instructions for the compiling machine

-Wall -Wextra Enable most of the compiler warning

-O3 Enable most optimizations

-Ofast Enable aggressive optimizations

-fopt-info Provide an optimization report

22/105

Executing theOpenMPHelloWorld

The basic command to compile the OpenMP hello world is

$ gcc -fopenmp -o example omp_helloworld.c
$ OMP_NUM_THREADS=4 ./example
Hello, I'm thread 1 of 4.
Hello, I'm thread 2 of 4.
Hello, I'm thread 3 of 4.
Hello, I'm thread 0 of 4.

Notice that we use an environment variable in front of the command to launch our

application
23/105

Executing theOpenMPHelloWorld

The OMP_NUM_THREADS environment variable sets the number of threads to use for

parallel regions

export OMP_NUM_THREADS=4
./example

OMP_NUM_THREADS=4 ./example

OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK ./example

4 threads for the

duration of the session

4 threads for this

execution of the program

convenient way to determines

the number of threads from a

slurm script

24/105

Submitting anOpenMP Job

When submitting your OpenMP job to one of the CÉCI clusters set cpus-per-task to

specify the number of threads. For example, for NIC5:

#!/bin/bash
Basic submission script for an openmp job
#SBATCH --time=01:00:00
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load GCC

./your_omp_app

25/105

Private and SharedVariables

In the Hello World code, we use a private(tid) clause to privatize the tid variable as

each thread need to set its own value.

shared(list) all thread see the same copy of the variables in list

private(list) each thread has its own copy of the variables in list

default(shared|none) define the default sharing attribute

If you set the default sharing attribute to none then, you need to specify the sharing

attribute for all the variables used in the parallel region

26/105

Private Variables

when you privatize a variable it’s as if you create a new variable, private variables

are uninitialized

it also means that, at the end of the parallel region the original variable is

unchanged

if you declare a variable inside a parallel region, this variable is private

in C++ the default constructor is called to create the variable

if you want to privatize a variable but initialize it with the value before entering the

parallel region you can use the firstprivate(list) clause

in C++ the default copy constructor is called to initialize the variable
27/105

SharedVariables

variables are shared by default

data allocated on heap (with a malloc) are shared and can’t be privatized

shared variables must be handled with care to avoid data races

int x = 0;
#pragma omp parallel num_threads(2)
{

x = x + 1;
}

Thread 1 Thread 2 x (inmemory)

load x ← 0

x + 1 load x ← 0

store x x + 1 → 1

store x → 1

28/105

Making ThingsGo Parallel

Creating a parallel region does not mean that that the work will be shared among the

threads. For example, if we consider this piece of code:

#pragma omp parallel private(tid, niters)
{

tid = omp_get_thread_num();
niters = 0;

for(int i = 0; i < 1000; ++i)
niters++;

printf("Number of iterations performed"
"by thread %d: %d\n", i, niters);

}

!$omp parallel private(tid, niters)
tid = omp_get_thread_num()
niters = 0

do i = 1,1000
niters = niters + 1

end do

print 100, i, niters
100 format('Number of iteration for thread ', &
& i0, ': ', i0)

!$omp end parallel

29/105

Making ThingsGo Parallel

Creating a parallel region does not mean that that the work will be shared among the

threads. For example, if we consider this piece of code:

#pragma omp parallel private(tid, niters)
{

tid = omp_get_thread_num();
niters = 0;

#pragma omp for
for(int i = 0; i < 1000; ++i)

niters++;

printf("Number of iterations performed"
"by thread %d: %d\n", i, niters);

}

!$omp parallel private(tid, niters)
tid = omp_get_thread_num()
niters = 0

!$omp for
do i = 1,1000

niters = niters + 1
end do
!$omp end for

print 100, i, niters
100 format('Number of iteration for thread ', &
& i0, ': ', i0)

!$omp end parallel

30/105

Making ThingsGo Parallel

$ gcc -fopenmp -o example omp_iterations.c
$ OMP_NUM_THREADS=4 ./example
Number of iteration for thread 0: 1000
Number of iteration for thread 1: 1000
Number of iteration for thread 2: 1000
Number of iteration for thread 3: 1000

There is no worksharing: all the threads execute all the iterations of the loop

31/105

Parallel ̸=Worksharing

The parallel construct means that

a team of threads is created, i.e. there is a fork

the code is executed redundantly by each thread

the threads in the team join at the end of the region

but

most scientific workloads can be parallelized by distributing the iterations of a

loop among threads

therefore the parallel construct is not sufficient we need a way to distribute the

iterations
32/105

Worksharing

Worksharing a loop is dividing the iteration space into chunks and distribute these

chunks to the threads

As the threads run in parallel, we can expect a nthreads speedup as each thread works

on niters/nthreads iterations of the loop
33/105

Distributing iterations

One of the options for sharing the work between the threads is to define lower and

higher bounds of the loop depending on the thread ID.

#pragma omp parallel
{

int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();

int low = n * tid / nthreads;
int high = n * (tid + 1) / nthreads;

for(int i = low; i < high; ++i)
iterations[tid]++;

}

!$omp parallel private(tid)
tid = omp_get_thread_num()
nthreads = omp_get_num_threads()

low = n * tid / nthreads + 1
high = n * (tid + 1) / nthreads

do i = low, high
iterations(tid) = iterations(tid) +

1
end do

!$omp end parallel
34/105

Distributing iterations

$ gcc -fopenmp -o example omp_iterations.c
$ OMP_NUM_THREADS=4 ./example
Number of iteration for thread 0: 250
Number of iteration for thread 1: 250
Number of iteration for thread 2: 250
Number of iteration for thread 3: 250

35/105

Distributing iterationswith a directive

Instead of computing the bounds, we can use the for (or do) construct.

for(int i = 0; i < max_threads; ++i)
iterations[i] = 0;

#pragma omp parallel
{

#pragma omp for
for(int i = 0; i < n; ++i)
iterations[tid]++;

}

!$omp parallel private(tid)
!$omp do
do i = 1, n

iterations(tid) = iterations(tid) +
1

end do
!$omp end do

!$omp end parallel

36/105

Distributing iterationswith a directive

$ gcc -fopenmp -o example omp_for_iters.c
$ OMP_NUM_THREADS=4 ./example
Number of iteration for thread 0: 250
Number of iteration for thread 1: 250
Number of iteration for thread 2: 250
Number of iteration for thread 3: 250

37/105

TheCanonical for-loop

The for-loop needs to be in canonical form to be used with the for directive

#pragma omp for
for ([inttype] var = start; var < end; ++var

<= var++
> var += incr
>= var = var + incr

var--, ...)

var, cannot be modified in the loop body. It must be an integer (signed or

unsigned), a pointer or random access iterator type

start, end and incr must be loop invariant expressions, the number of iterations

must be computable when the loop begins
38/105

Parallel Region Binding

In order for the iterations of a loop to be shared among the threads by a for/do, the

construct needs a parallel region to bind to. If we take the previous example and remove

the parallel region:

int max_threads = omp_get_max_threads();
int* iterations = malloc(sizeof(int)*max_threads);

for(int i = 0; i < max_threads; ++i)
iterations[i] = 0;

#pragma omp for
for(int i = 0; i < n; ++i)
iterations[tid]++;

for(int i = 0; i < max_threads; ++i)
printf("Number of iteration for thread %d: %d\n",

i, iterations[i]);

max_threads = omp_get_max_threads()
allocate(iterations(0:max_threads-1))

iterations = 0

!$omp do
do i = 1, n
iterations(tid) = iterations(tid) + 1

end do
!$omp end do

do i = 0, max_threads-1
print 100, i, iterations(i)

100 format('Number of iteration for thread ', i0, &
& ': ', i0)

end do

39/105

Parallel Region Binding

$ OMP_NUM_THREADS=4 ./example
Number of iteration for thread 0: 1000
Number of iteration for thread 1: 0
Number of iteration for thread 2: 0
Number of iteration for thread 3: 0

As there was no parallel region to bind to, the for/do construct binds to the master

thread.

40/105

Combined Directive

The following code snippet,

#pragma omp parallel
{

#pragma omp for
for(int i = 0; i < n; ++i)
do_something()

}

!$omp parallel
!$omp do

do i = 1,n
call do_something()

end do
!$omp end do

!$omp end parallel

may also be written as combined parallel and for directives

#pragma omp parallel for
for(int i = 0; i < n; ++i)
do_something();

!$omp parallel do
do i = 1,n

call do_something()
end do

!$omp end parallel do

41/105

Orphaning

Directives are active in the dynamic scope of a parallel region, not just its lexical

scope. This allows for orphaned directives.

Orphaning is a situation when directives related to a parallel region are outside the

lexical extent of the parallel region.

Typical situation is calling a function containing a worksharing directive from a

parallel region.

42/105

Orphaning Example

void ax(int n, double alpha, double* x) {
int nthreads = omp_get_num_threads();
int tid = omp_get_thread_num();

printf("Executing ax by thread %d of %d threads.\n", tid,
nthreads);

int niters = 0;

#pragma omp for
for (int i = 0; i < n; ++i) {

x[i] = alpha * x[i];
niters++;

}

printf("Thread with id %d did %d iterations.\n", tid, niters);
}

int main (int argc, char *argv[]) {
// [...]

#pragma omp parallel
{
ax(n, 3.0, x);

}

ax(n, 5.0, y);

!$omp parallel
call ax(n, 3.0d0, x)

!$omp end parallel

call ax(n, 5.0d0, y)

! [...]

contains
subroutine ax(n, alpha, x)
! [...]

print 100, tid, nthreads
100 format('Executing ax by thread ', i0,
& ' of ', i0, ' threads.')

!$omp do
do i = 1,n
x(i) = alpha * x(i)
niters = niters + 1

end do
!$omp end do

print 200, tid, niters
200 format('Thread with id ', i0, &
& ' did ', i0, ' iterations.')

43/105

Orphaning Example

$ gcc -fopenmp -o example omp_orphaned.c
$ OMP_NUM_THREADS=4 ./example

Executing ax by thread 0 of 4 threads.
Executing ax by thread 2 of 4 threads.
Executing ax by thread 1 of 4 threads.
Executing ax by thread 3 of 4 threads.
Thread with id 0 did 250 iterations.
Thread with id 1 did 250 iterations.
Thread with id 2 did 250 iterations.
Thread with id 3 did 250 iterations.
Executing ax by thread 0 of 1 threads.
Thread with id 0 did 1000 iterations.

44/105

Loop collapsing

In some cases, you can collapse the loops into one in order to increase the run trip of the

loop.

#pragma omp parallel for collapse(2)
for (int i = 0; i < 3; ++i) {

for (int j = 0; j < n; ++j) {
a[i][j] = do_something();

}
}

!$omp parallel do collapse(2)
do j = 1,3

do i = 1,n
a(i, j) = do_something()

end do
end do

!$omp end parallel do

This is particularly useful when one of the loops is not of sufficient length to have

efficient parallelization.

45/105

Loop collapsing

The collapse clause, collapse the iterations of the n-associated loops to which the

clause applies into one larger iteration space. This clause can only apply on tightly

nested loops, meaning that there is no code between the loops.

#pragma omp for collapse(n)
nested-for-loops

!$omp do collapse(n)
nested-do-loops

46/105

Loop Scheduling

Loop scheduling, specify how iterations of a loop are divided into contiguous non-empty

subsets (chunks), and how these chunks are distributed to the threads. Changing the

loop scheduling is possible to use the schedule clause.

#pragma omp for schedule(kind, chunk)
for-loop

!$omp do schedule(kind, chunk)
do-loop

!$omp end do

Where the value of kind can be static, dynamic, guided or runtime. The default

scheduling is static. The optional chunk may have different behaviour depending on

the scheduling.

47/105

Static Loop Scheduling

With static loop scheduling, iterations are divided into chunks and the chunks are

assigned to the threads. Each chunk contains the same number of iterations, except for

the chunk that contains the last iteration, which may have fewer iterations.

#pragma omp for schedule(static)
for-loop

!$omp do schedule(static)
do-loop

!$omp end do

You can also provide a chunk size

#pragma omp for schedule(static, 100)
for-loop

!$omp do schedule(static, 100)
do-loop

!$omp end do

48/105

Dynamic Loop Scheduling

With dynamic loop scheduling, the iterations are distributed to threads in chunks. Each

thread executes a chunk of iterations, then requests another chunk, until no chunks

remain to be distributed.

#pragma omp for schedule(dynamic)
for-loop

!$omp do schedule(dynamic)
do-loop

!$omp end do

You can also provide a chunk size

#pragma omp for schedule(dynamic, 100)
for-loop

!$omp do schedule(dynamic, 100)
do-loop

!$omp end do

49/105

Dynamic Loop Scheduling

Dynamic scheduling particularly relevant when the amount of work of the loop iteration

is not constant.

50/105

Guided Loop Scheduling

The guided loop scheduling is similar to the dynamic scheduling except that the size of

each chunk is proportional to the number of unassigned iterations, decreasing to one.

#pragma omp for schedule(guided)
for-loop

!$omp do schedule(guided)
do-loop

!$omp end do

51/105

WhyUsing the Scheduling Clause?

The default scheduling, static with a chunk size equals to niter/nthreads
is not ideal for all workload.

It may be the case that iterations of high index represent more work. In that case,

some of the threads will finish early and have nothing to do. We have a load

imbalance.

Changing the scheduling may help balance the amount of work between the

threads.

52/105

Example: Number of PrimeNumbers

int prime, sum = 0;
#pragma omp parallel shared(n) private(prime)
{

#pragma omp for reduction(+:sum)
for (int i = 2; i <= n; i++) {

prime = 1;

for (int j = 2; j < i; j++) {
if (i % j == 0) {

prime = 0;
break;

}
}

sum += prime;
}

}

Trip count of this loop may be very low or

very high depending if the number is prime

or not

53/105

Example: Number of PrimeNumbers

int prime, sum = 0;
#pragma omp parallel shared(n) private(prime)
{

#pragma omp for reduction(+:sum)
for (int i = 2; i <= n; i++) {

prime = 1;

for (int j = 2; j < i; j++) {
if (i % j == 0) {

prime = 0;
break;

}
}

sum += prime;
}

}

If the number is not a prime number, we have an early exit

53/105

Example: Number of PrimeNumbers

$ gcc -fopenmp -o example omp_schedule_prime.c
$ OMP_NUM_THREADS=4 ./example

Default Static Dynamic Guided
N Pi(N) Time Time Time Time

1024 172 0.000182 0.000120 0.000104 0.000121
2048 309 0.000561 0.000359 0.000425 0.000393
4096 564 0.001987 0.001309 0.001216 0.001239
8192 1028 0.007116 0.004474 0.004375 0.005114
16384 1900 0.029730 0.015594 0.015902 0.015161
32768 3512 0.099248 0.058475 0.056940 0.057160
65536 6542 0.358250 0.218291 0.244626 0.254815
131072 12251 1.416871 0.848736 0.788619 0.819390
262144 23000 5.207946 3.193940 3.062080 3.064527
524288 43390 20.565462 12.638959 12.086839 12.102800

54/105

Example: Triangular Loop

#pragma omp parallel shared(a, n)
{

#pragma omp for
for (int i = 0; i < n; ++i) {

a[i] = 0.0;

for (int j = 0; j < i; ++j) {
a[i] += cos(-3.1 * sin(2.3 * cos ((double) j))) ;

}
}

}

55/105

Example: Triangular Loop

$ gcc -fopenmp -o example omp_schedule_triangular.c
$ OMP_NUM_THREADS=4 ./example

Default Static Dynamic Guided
N Time Time Time Time

1024 0.025865 0.016811 0.018739 0.018241
2048 0.100062 0.070023 0.082587 0.091206
4096 0.383107 0.238520 0.232556 0.226914
8192 1.515341 0.905186 0.895541 0.880046

16384 6.064787 3.540685 3.526388 3.590453
32768 24.041088 15.465762 14.088137 14.539937
65536 97.495829 59.291353 59.403173 60.252156

56/105

Synchronization

Synchronization

Synchronization ensures that two or more threads do not simultaneously execute some

part of the program.

Synchronization may be needed for various reasons:

makes sure that a particular operation is only executed once

to avoid conflicts when accessing shared data

ensure the order in which tasks are executed

58/105

Barrier

A barrier directive is a synchronization point at which the threads in a parallel region

will wait until all other threads in that section reach the same point.

When a first thread reaches the barrier, it waits

When a second thread reaches the barrier, it does the same thing and so on

When the last thread reaches the barrier, all the threads resume execution

59/105

Barrier

Most common usage of a barrier is to make sure that the value set by a thread is

correctly defined before reading it from another thread.

#pragma omp parallel private(tid, neighb)
{

tid = omp_get_thread_num();
neighb = tid - 1;

if (tid == 0)
neighb = omp_get_num_threads() - 1;

a[tid] = a[tid] * 3.5;

#pragma omp barrier

b[tid] = a[neighb] + c;
}

!$omp parallel private(tid, neighb, nthreads)
tid = omp_get_thread_num()
nthreads = omp_get_num_threads()
neighb = tid - 1

if (tid .eq. 0) then
neighb = nthreads - 1

end if

a(tid) = a(tid) * 3.5

!$omp barrier

b(tid) = a(neighb) + c
!$omp end parallel

60/105

Implicit Barrier

Some constructs in OpenMP have an implicit barrier. This is the case for the parallel

and for/do constructs.

#pragma omp parallel
{

#pragma omp for
for (int i = 0; i < n; ++i) {

// ...

}

// ...

}

Implicit barrier, wait for all the threads to finish their iterations

Implicit barrier, wait for all the threads to join
61/105

Master Directive

A master construct specifies a block of code that should be executed only by the

master thread of the team.

#pragma omp master
structured-block

!$omp master
structured-block

!$omp end master

62/105

HelloWorld,Master Edition

Let’s revisit the hello world program but, this time, only the master thread print the

number of threads in the team.

#pragma omp parallel
{
printf("Hello, I'm thread %d\n",

omp_get_thread_num());

#pragma omp master
{
printf("There is %d threads in the team\n",

omp_get_num_threads());
}

}

!$omp parallel
print 100, omp_get_thread_num()

100 format('Hello, I am thread ', i0)

!$omp master
print 200, omp_get_num_threads()

200 format('There is ', i0, &
& ' threads in the team')

!$omp end master
!$omp end parallel

63/105

HelloWorld,Master Edition

$ gcc -fopenmp -o example omp_helloworld_master.c
$ OMP_NUM_THREADS=4 ./example
Hello, I'm thread 3
Hello, I'm thread 0
There is 4 threads in the team
Hello, I'm thread 2
Hello, I'm thread 1

64/105

Single Directive

A single directive is executed by only one of the threads in the team (not necessarily

the master thread). There is an implicit barrier at the end.

#pragma omp single
structured-block

!$omp single
structured-block

!$omp end single

65/105

HelloWorld, Single Edition

Let’s revisit the hello world program using the single construct. This time we illustrate

the most common usage of the single construct, that is, assign a value to a shared

variable.

#pragma omp parallel private(tid)
{

tid = omp_get_thread_num();

#pragma omp single
{

nthreads = omp_get_num_threads();

printf("Hello, I'm thread %d of %d"
" in the single construct.\n",
tid, nthreads);

}

printf("Hello, I'm thread %d of %d.\n",
tid, nthreads);

}

!$omp parallel private(tid)
tid = omp_get_thread_num()

!$omp single
nthreads = omp_get_num_threads()

print 100, tid, nthreads
100 format('Hello, I am thread ', i0, &
& ' of ', i0, &
& ' in the single construct.')

!$omp end single

print 200, tid, nthreads
200 format('Hello, I am thread ', i0, &
& ' of ', i0, '.')

!$omp end parallel
66/105

HelloWorld, Single Edition

$ gcc -fopenmp -o example omp_helloworld_single.c
$ OMP_NUM_THREADS=4 ./example
Hello, I'm thread 3 of 4 in the single construct.
Hello, I'm thread 3 of 4.
Hello, I'm thread 2 of 4.
Hello, I'm thread 0 of 4.
Hello, I'm thread 1 of 4.

67/105

Critical Section

A critical section restricts execution of the associated structured block to one thread

at a time.

#pragma omp critical
structured-block

!$omp critical
structured-block

!$omp end critical

68/105

Critical Section

Critical section is mostly used to update shared variables avoiding a data race.

#pragma omp parallel private(tid, local_sum)
{

tid = omp_get_thread_num();
local_sum = 0;

#pragma omp for
for (int i = 0; i < n; ++i)

local_sum += a[i];

#pragma omp critical
{

sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

printf("Sum after parallel region: %d.\n", sum);

!$omp parallel private(tid, local_sum)
tid = omp_get_thread_num()
local_sum = 0

!$omp do
do i = 1,n
local_sum = local_sum + a(i)

end do
!$omp end do

!$omp critical
global_sum = global_sum + local_sum

print 100, tid, local_sum, global_sum
100 format('Thread ', i0, ': local sum = ', i0, &
& ', sum = ', i0, '.')

!$omp end critical
!$omp end parallel

print*, 'Sum after parallel region:', global_sum
69/105

Critical Section

Critical section is mostly used to update shared variables avoiding a data race.

#pragma omp parallel shared(sum) private(tid, local_sum)
{

tid = omp_get_thread_num();
local_sum = 0;

#pragma omp for
for (int i = 0; i < n; ++i)

local_sum += a[i];

#pragma omp critical
{

sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

printf("Sum after parallel region: %d.\n", sum);

Critical section to update the global sum. Without the critical section,

there is a potential data race here

70/105

Critical Section

$ gcc -fopenmp -o example omp_critical.c
$ OMP_NUM_THREADS=4 ./example
Thread 0: local sum = 300, sum = 300.
Thread 3: local sum = 2175, sum = 2475.
Thread 1: local sum = 925, sum = 3400.
Thread 2: local sum = 1550, sum = 4950.
Sum after parallel region: 4950.

71/105

NamedCritical Section

#pragma omp critical (name)
structured-block

Optional name clause

A thread waits at the beginning of a critical section until no other thread is

executing a critical section with the same name

All unnamed critical directives map to the same name

Critical section names are global to the program

72/105

NamedCritical Section

#pragma omp critical (sum)
{

sum += local_sum;
printf("Thread %d: local sum = %d,"

" sum = %d.\n",
tid, local_sum, sum);

}

#pragma omp critical (max)
{

max = MAX(max, local_max);
printf("Thread %d: local max = %d,"

" max = %d.\n",
tid, local_max, max);

}

!$omp critical (sum)
global_sum = global_sum + local_sum

;
print 100, tid, 'sum', local_sum, &

& 'sum', global_sum
!$omp end critical (sum)

!$omp critical (max)
global_max = max(global_max,

local_max)
print 100, tid, 'max', local_max, &

& 'max', global_max
!$omp end critical (max)

73/105

NamedCritical Section

#pragma omp critical (sum)
{

sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

#pragma omp critical (max)
{

max = MAX(max, local_max);
printf("Thread %d: local max = %d, max = %d.\n",

tid, local_max, max);
}

First critical section for the global sum

74/105

NamedCritical Section

#pragma omp critical (sum)
{

sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

#pragma omp critical (max)
{

max = MAX(max, local_max);
printf("Thread %d: local max = %d, max = %d.\n",

tid, local_max, max);
}

First critical section for the global sum

Second critical section for the global maximum.

A thread can be in the first section while an other

is in the second one

74/105

NamedCritical Section

$ gcc -fopenmp -o example omp_critical_named.c
$ OMP_NUM_THREADS=4 ./example

Thread 3: local sum = 2175, sum = 2175.
Thread 3: local max = 99, max = 99.
Thread 1: local sum = 925, sum = 3100.
Thread 1: local max = 49, max = 99.
Thread 2: local sum = 1550, sum = 4650.
Thread 0: local sum = 300, sum = 4950.
Thread 2: local max = 74, max = 99.
Thread 0: local max = 24, max = 99.
Sum after parallel region: 4950.
Max after parallel region: 99.

75/105

ThenowaitClause

#pragma omp for
for (int i = 0; i < n; ++i) {

local_sum += a[i];
}

#pragma omp critical
{

sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

There is an implicit barrier here

76/105

ThenowaitClause

#pragma omp for
for (int i = 0; i < n; ++i) {

local_sum += a[i];
}

#pragma omp critical
{

sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

There is no need to wait for the other threads to finish

the iterations to execute the critical section

76/105

ThenowaitClause

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

local_sum += a[i];
}

#pragma omp critical
{

sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

We add a nowait clause to the directive

The implicit barrier at the end of the loop is lifted

76/105

ThenowaitClause

The nowait clause applied to a for construct remove the implicit barrier at the end of

the construct.

#pragma omp for nowait
structured-block

!$omp do
structured-block

!$omp end do nowait

The nowait clause can also be applied to a single directive.

#pragma omp single nowait
structured-block

!$omp do
structured-block

!$omp end single nowait

77/105

ThenowaitClause

The nowait clause can also be convenient when the work in two different loops are

independent from each other.

#pragma omp parallel
{

#pragma omp for nowait
for (int i = 0; i < n; ++i) {
d[i] = a[i] + b[i];

}

#pragma omp for nowait
for (int i = 0; i < n; ++i) {
e[i] = a[i] + c[i];

}
}

!$omp parallel
!$omp do
do i = 1,n

d(i) = a(i) + b(i)
end do

!$omp end do nowait

!$omp do
do i = 1,n

e(i) = a(i) + c(i)
end do

!$omp end do nowait
!$omp end parallel

78/105

ThenowaitClause

The nowait clause can also be convenient when the work in two different loops are

independent from each other.

#pragma omp parallel
{

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

d[i] = a[i] + b[i];
}

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

e[i] = a[i] + c[i];
}

}

No barrier at the end of the loop

The threads start the iterations of this loop as

soon as they finish their work in the first loop

79/105

ThenowaitClause

The nowait clause can also be convenient when the work in two different loops are

independent from each other.

#pragma omp parallel
{

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

d[i] = a[i] + b[i];
}

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

e[i] = a[i] + c[i];
}

} Implicit barrier at the end of the parallel region

79/105

Reduction

The reduction clause avoid data races when summing or combining values. This

clause can be applied to the parallel and for constructs

reduction(op:list)

op is an operator:

Arithmetic reductions: + * − max min

Logical operator reductions: & && | ||

80/105

Reduction

The sum and maximum example using critical region can be rewritten with reduction

clauses instead

#pragma omp parallel for reduction(+:sum) \
reduction(max:max)

for (int i = 0; i < n; ++i) {
sum += a[i];
max = MAX(max, a[i]);

}

printf("Sum after parallel region: %d.\n", sum);
printf("Max after parallel region: %d.\n", max);

!$omp parallel for reduction(+:sum) &
!$omp& reduction(max:imax)

do i = 1,n
sum += sum + a(i)
imax = max(imax, a(i))

end do
!$omp end parallel for

print*, 'Sum after parallel region: ', sum
print*, 'Max after parallel region: ', imax

81/105

Atomic operation

An atomic operation is an operation that will always be executed without any other

thread being able to read or change state that is read or changed during the operation.

#pragma omp atomic [atomic-clause]
expression-statement

82/105

Atomic operation

#pragma omp atomic atomic-clause
expression-statement

The value of atomic-clause can be one of the following: read, write, update and

capture. If no atomic-clause is specified, the default value is update.

83/105

Atomic operation: Read andWrite

The read clause allows for the atomic read of x.

#pragma omp atomic read
v = x;

The write clause allows for the atomic write of x. Here, expr is an expression with

scalar type, i.e. the result of the expression is a scalar.

#pragma omp atomic write
x = expr;

84/105

Atomic operation: Update

The update clause allows for the atomic update of x.

#pragma omp atomic update
expression-statement

Expression statement

x++; x--; ++x; --x;

x op= expr; x = x op expr; x = expr op x;

85/105

Atomic operation: Capture

The capture clause allows for atomic update of the location designated by x while also

capturing the original or final value of the location designated by x.

#pragma omp atomic capture
expression-statement

Expression statement

v = x++; v = x--; v = ++x; v = --x;

v = x op= expr; v = x = x op expr;

v = x = expr op x;
86/105

Atomic operation: Capture

The capture clause allows for atomic update of the location designated by x while also

capturing the original or final value of the location designated by x.

#pragma omp atomic update
structured-block

Structured block (part. 1)

{ v = x; x op= expr; } { x op= expr; v = x; }

{ v = x; x = x op expr; } { v = x; x = expr op x; }

{ x = x op expr; v = x; } { x = expr op x; v = x; }
87/105

Atomic operation: Capture

The capture clause allows for atomic update of the location designated by x while also

capturing the original or final value of the location designated by x.

#pragma omp atomic update
structured-block

Structured block (part. 2)

{ v = x; x++; } { v = x; ++x; } { ++x; v = x; }

{ x++; v = x; } { v = x; x--; } { v = x; --x; }

{ --x; v = x; } { x--; v = x; }
87/105

Atomic example

The previous example of the summation of the elements of an array using a critical

construct can be rewritten using an atomic update.

#pragma omp for
for (int i = 0; i < n; ++i) {
local_sum += a[i];

}

#pragma omp atomic
sum += local_sum;

!$omp do
do i = 1,n
local_sum += local_sum + a(i)

end do
!$omp end do

!$omp atomic
sum = sum + local_sum

!$omp end atomic

88/105

Atomic example

for (i = 0; i < 10000; ++i) {
index[i] = i % 1000;

}

for (i = 0; i < 1000; ++i)
x[i] = 0.0;

#pragma omp parallel for
for (i = 0; i < 10000; ++i) {

#pragma omp atomic update
x[index[i]] += 1.0 * i;

}

do i = 1,10000
inds(i) = mod(i, 1000)

end do

do i = 1,1000
x(i) = 0.0

end do

!$omp parallel do
do i = 1,10000

!$omp atomic update
x(inds(i)) = x(inds(i)) + 1.0 * i

end do
!$omp end parallel do

89/105

Atomic example

for (i = 0; i < 10000; ++i) {
index[i] = i % 1000;

}

for (i = 0; i < 1000; ++i)
x[i] = 0.0;

#pragma omp parallel for
for (i = 0; i < 10000; ++i) {

#pragma omp atomic update
x[index[i]] += 1.0 * i;

}

The advantage of using atomic in this example is that

it allows updates of two different elements of x

in parallel. If a critical construct were used,

all updates to elements of x would be executed serially

90/105

Atomic vs. Critical

Safely increasing the value of count in parallel can be done either by using an atomic

or a critical directive

#pragma omp atomic
count++;

#pragma omp critical
count++;

An atomic operation has much lower

overhead but the set of possible

operations is restricted

It can take advantage of hardware

support for atomic operations

A critical section can surround any

arbitrary block of code

There is a significant overhead when

a thread enters and exits the critical

section

91/105

Atomic vs. Reduction

Don’t use atomic operation this way:

#pragma omp parallel for
for (int i = 0; i < n; ++i) {

#pragma omp atomic
sum += a[i];

}

!$omp parallel do
do i = 1,n

!$omp atomic
sum = sum + a(i)

end do
!$omp end parallel do

It is better to use a reduction clause:

#pragma omp parallel for reduction(+sum)
for (int i = 0; i < n; ++i) {

sum += a[i];
}

!$omp parallel do reduction(+sum)
do i = 1,n

sum = sum + a(i)
end do

!$omp end parallel do

92/105

PerformanceConsiderations

Avoid or minimize the use of barrier and critical sections.

Use the nowait clause where possible to eliminate unnecessary barriers

Favour the use of master instead of single

93/105

OpenMP andNUMA

NUMA

Non-uniform memory access (NUMA) is a memory design where the memory access

time depends on the memory location relative to the NUMA node

access to the memory

within the same NUMA

node is faster (local

access)

access to the memory

outside of the NUMA

node is slower (remote

access)

95/105

OpenMP and cc-NUMA

double* A = (double*)malloc(N * sizeof(double));

#pragma omp parallel for
for (int i = 0; i < N; i++) {
A[i] = 0.0;

}

For a serial code: all array elements are allocated in the memory of the NUMA

node containing the core executing the thread

For a parallel code on an OS with a first touch policy the array elements are

allocated in the memory of the NUMA node containing the core executing the

thread initializing
96/105

OpenMP and cc-NUMA

You also have two options for the placement of your threads. The first is put the threads

far apart, i.e. on different sockets.

may improve the aggregated memory bandwidth available to your application

may improve the combined cache size available to your application

may decrease performance of synchronization constructs

The second option is to put the threads close together, i.e. on two adjacent cores.

may improve performance of synchronization constructs

may decrease the available memory bandwidth and cache size

97/105

OpenMP and cc-NUMA

For the placement, you can use the OMP_PROC_BIND environment variable with the

values:

close: successively through the available places

spread: which spreads the threads over the places

The second option is the OMP_PLACES environment variable with the values:

cores: places correspond to the cores

sockets: places correspond to the sockets

98/105

False Sharing

False Sharing in Action

Another thing you need to consider if you want to get the best out of OpenMP is false

sharing. To discuss this we will start with this piece of code:

double local_sum[omp_get_max_threads()];
double sum = 0.0;

#pragma omp parallel shared(sum)
{

int tid = omp_get_thread_num();
local_sum[tid] = 0.0;

#pragma omp omp for
for (int i = 0; i < n; ++i)

local_sum[tid] += 0.5 * x[i] + y[i];

#pragma omp atomic
sum += local_sum[tid];

}
100/105

False Sharing in Action

Let’s measure the time spend in the parallel region (using the omp_get_wtime()

function).

Threads Time (s)

1 0.535418

2 0.421140

4 0.554419

8 0.597622

The speedup from 1 thread to 2 threads is bad

When going to 4 and 8 threads the time spend in the

parallel region is worse than with 1 thread

101/105

False Sharing

False sharing is when threads impact the performance of each other while modifying

independent variables sharing the same cache line

If one core writes, the cache line

holding the memory line is

invalidated on other cores.

Even though another core is not

using that data, the second core will

need to reload the line before it can

access its own data again.

102/105

False Sharing: Solution

Solution: introduce a padding.

double local_sum[LINESIZE*omp_get_max_threads()];
double sum = 0.0;

#pragma omp parallel shared(sum)
{

int tid = omp_get_thread_num();
local_sum[LINESIZE*tid] = 0.0;

#pragma omp omp for
for (int i = 0; i < n; ++i)

local_sum[LINESIZE*tid] += 0.5 * x[i] + y[i];

#pragma omp atomic
sum += local_sum[LINESIZE*tid];

}

103/105

False Sharing: Solution

Timing for different padding on a CPU with a cache line size of 64 bytes.

Threads Time (s) Time (s) Time (s)

padding = 4 padding = 8 padding = 16

1 0.535418 0.535418 0.535418

2 0.601417 0.270089 0.270843

4 0.441149 0.152651 0.149363

104/105

False sharing

When threads access global or dynamically allocated shared data structures there

is a potential source of false sharing

False sharing may be difficult to spot. For example, when threads access

completely different global variables that happen to be relatively close together in

memory.

Use thread-local copies of data when possible. The thread-local copy can be read

and frequently modified and only when complete, be copied back to the global

data structure

105/105

	Introduction
	Going Parallel
	Synchronization
	OpenMP and NUMA
	False Sharing

