
Introduction to a
High-PerformanceComputing Environment

Orian Louant

INFO0939 - October 11, 2022

NIC5Overview

2/52

The Login Node

The login node is the machine to which you are connected when connecting to
NIC5 (or any cluster).

HPC clusters are shared environment: you are not alone, other users use the
resources at the same time as you

this is particularly true for the login node

The login node is intended for small tasks (in terms of resource usage)

edit files prepare your job, submit your job, ...

compile and debug your code with a limited number of threads/processes
(1-4)

3/52

NIC5Compute nodes

4/52

Basics of Slurm

Resource Sharing on a Supercomputer

Contrary to the login node, you cannot access the compute node directly

resource sharing on a supercomputer is often organized by a piece of
software called a resource manager or job scheduler

the scheduler is responsible for the allocation of the compute node

users submit jobs, which are scheduled and allocated resources by the
resource manager.

The CÉCI clusters use Slurm as resource manager and job scheduler

6/52

SlurmOverview

Slurm is responsible for

register user request for computational resources and put the job in the
queue
when resources are available, launch (an) eligible pending job(s)
monitor the running jobs and check if they don’t use more resources than
allocated

The basic Slurm commands are the following

sinfo : view information about Slurm nodes and partitions
squeue : view information about jobs located in the Slurm scheduling queue
sbatch : submit a batch script to Slurm
scancel : Cancel a job

7/52

sinfo

View information about Slurm nodes and partitions.

Here we have two partitions, batch and debug with maximum allowed run time of
2 days and 6 hours respectively. These two partitions are available for computing
(up).

$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
batch* up 2-00:00:00 41 mix nic5-w[001-002,...]
batch* up 2-00:00:00 28 alloc nic5-w[003-008,...]
hmem up 2-00:00:00 3 idle nic5-w[071-073]
bio up 62-00:00:0 1 mix nic5-w074

8/52

sinfo

The first line corresponds to the nodes in the batch partition that are in a mix
state. This means that all the resources available on the node listed in the last
column are not fully allocated.

$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
batch* up 2-00:00:00 41 mix nic5-w[001-002,...]
batch* up 2-00:00:00 28 alloc nic5-w[003-008,...]
hmem up 2-00:00:00 3 idle nic5-w[071-073]
bio up 62-00:00:0 1 mix nic5-w074

8/52

sinfo

The second line corresponds to the nodes in the batch partition that are in a
alloc state. This means that all the resources available on the node listed in the
last column are allocated.

$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
batch* up 2-00:00:00 41 mix nic5-w[001-002,...]
batch* up 2-00:00:00 28 alloc nic5-w[003-008,...]
hmem up 2-00:00:00 3 idle nic5-w[071-073]
bio up 62-00:00:0 1 mix nic5-w074

8/52

sinfo

The third line corresponds to the nodes in the hmem and bio partitions. You will
not use these partitions.

$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
batch* up 2-00:00:00 41 mix nic5-w[001-002,...]
batch* up 2-00:00:00 28 alloc nic5-w[003-008,...]
hmem up 2-00:00:00 3 idle nic5-w[071-073]
bio up 62-00:00:0 1 mix nic5-w074

8/52

squeue

The squeue command allows you to view information about jobs that are
currently running or waiting in the queue.

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1549050 batch Ti aslassi PD 0:00 4 (Resources)
1549113 batch SigX1.5 dtanner PD 0:00 1 (Priority)
...
1539952 batch blast_te rdugauqu R 1-05:11:32 1 nic5-w036
1547140 batch CHL_APF meulders R 1-03:23:31 13 nic5-w[016,030, ...]

9/52

squeue

This job is in a pending state (PD). This means that the job is waiting for the
scheduler to grant permission to start. The reason why this job is waiting is the
lack of resources .

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1549050 batch Ti aslassi PD 0:00 4 (Resources)
1549113 batch SigX1.5 dtanner PD 0:00 1 (Priority)
...
1539952 batch blast_te rdugauqu R 1-05:11:32 1 nic5-w036
1547140 batch CHL_APF meulders R 1-03:23:31 13 nic5-w[016,030, ...]

9/52

squeue

This job is in a pending state (PD) too. The reason why this job is waiting is that
the priority of the user is too low. The scheduler runs jobs with higher priority
first.

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1549050 batch Ti aslassi PD 0:00 4 (Resources)
1549113 batch SigX1.5 dtanner PD 0:00 1 (Priority)
...
1539952 batch blast_te rdugauqu R 1-05:11:32 1 nic5-w036
1547140 batch CHL_APF meulders R 1-03:23:31 13 nic5-w[016,030, ...]

9/52

squeue

This job is running (R) for 1 day, 5 hours and 11 minutes. It has been allocated 1
compute node (nic5-w036)

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1549050 batch Ti aslassi PD 0:00 4 (Resources)
1549113 batch SigX1.5 dtanner PD 0:00 1 (Priority)
...
1539952 batch blast_te rdugauqu R 1-05:11:32 1 nic5-w036
1547140 batch CHL_APF meulders R 1-03:23:31 13 nic5-w[016,030, ...]

9/52

squeue

This job is running (R) for 1 day, 3 hours and 23 minutes. It has been allocated 13
compute nodes

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1549050 batch Ti aslassi PD 0:00 4 (Resources)
1549113 batch SigX1.5 dtanner PD 0:00 1 (Priority)
...
1539952 batch blast_te rdugauqu R 1-05:11:32 1 nic5-w036
1547140 batch CHL_APF meulders R 1-03:23:31 13 nic5-w[016,030, ...]

9/52

squeue

You can use squeue with the --me option to only see your jobs

$ squeue --me
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

1549033 batch job1 user PD 0:00 6 (Priority)
1549034 batch job2 user PD 0:00 12 (Priority)
1549035 batch job3 user PD 0:00 4 (Priority)
1549036 batch job4 user PD 0:00 10 (Priority)

You can use squeue with a combination of the --me --start options to have an
estimate of when your job is scheduled to start

$ squeue --me --start
JOBID PARTITION NAME USER ST START_TIME NODES SCHEDNODES

1549033 batch job1 user PD 2021-09-27T13:07:37 7 nic5-w[001,...

10/52

sbatch

The sbatch command allows you to submit a batch script to Slurm. This script is
a file with specific commands to Slurm as well as commands to execute on the
compute nodes.

$ sbatch your_job_script.sh
Submitted batch job 1549033

Upon successful submission of the job to the queue, sbatch will return the ID that
is assigned to your job. The job ID is an important piece of information as it allows
you to alter your job. For example, to cancel a job

$ scancel 1549033

You don’t need to write down the IDs of your jobs. You can get them at any time
with squeue

11/52

sbatch

In a submission script, lines prefixed with #SBATCH and followed by a command
are understood by Slurm as resource requests.

--time Limit on the run time of the job

--ntasks Maximum of number tasks (MPI ranks)

--cpus-per-task Number of processors per task (threads)

--mem-per-cpu Minimum memory required per allocated CPU

--partition Request a specific partition for the resource allocation

12/52

sbatch

Important note about the Slurm terminology:

a CPU is a core, not a CPU socket

a task is an independent process, if you request more than one task, these
tasks can be located on different compute nodes

You can control the way the tasks are distributed on the node using a combination
of the --nodes and --ntasks-per-node

13/52

Typical Script for anOpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00 # dd-hh:mm:ss
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load GCCcore/10.2.0

cd $SLURM_SUBMIT_DIR

./your_program

14/52

Typical Script for anOpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00 # dd-hh:mm:ss
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load GCCcore/10.2.0

cd $SLURM_SUBMIT_DIR

./your_program

You have to start your script with this line

14/52

Typical Script for anOpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00 # dd-hh:mm:ss
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load GCCcore/10.2.0

cd $SLURM_SUBMIT_DIR

./your_program

Maximum run time: 1 hour

14/52

Typical Script for anOpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00 # dd-hh:mm:ss
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load GCCcore/10.2.0

cd $SLURM_SUBMIT_DIR

./your_program

Only one task (one process)

14/52

Typical Script for anOpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00 # dd-hh:mm:ss
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load GCCcore/10.2.0

cd $SLURM_SUBMIT_DIR

./your_program

Number of cpus/cores (OpenMP threads)

14/52

Typical Script for anOpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00 # dd-hh:mm:ss
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load GCCcore/10.2.0

cd $SLURM_SUBMIT_DIR

./your_program

Memory per cpu/core

14/52

Typical Script for anOpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00 # dd-hh:mm:ss
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load GCCcore/10.2.0

cd $SLURM_SUBMIT_DIR

./your_program

Slurm partition for the job

14/52

Typical Script for anOpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00 # dd-hh:mm:ss
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load GCCcore/10.2.0

cd $SLURM_SUBMIT_DIR

./your_program

Set the number of OpenMP threads

14/52

Typical Script for anOpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00 # dd-hh:mm:ss
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load GCCcore/10.2.0

cd $SLURM_SUBMIT_DIR

./your_program Run your program

14/52

Typical Script for aMPI+OpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00
#SBATCH --ntasks=8
#SBATCH --cpus-per-task=8
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load OpenMPI/4.0.5-GCC-10.2.0

cd $SLURM_SUBMIT_DIR

mpirun ./your_mpi_program

15/52

Typical Script for aMPI+OpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00
#SBATCH --ntasks=8
#SBATCH --cpus-per-task=8
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load OpenMPI/4.0.5-GCC-10.2.0

cd $SLURM_SUBMIT_DIR

mpirun ./your_mpi_program

8 tasks (MPI processes)

15/52

Typical Script for aMPI+OpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00
#SBATCH --ntasks=8
#SBATCH --cpus-per-task=8
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load OpenMPI/4.0.5-GCC-10.2.0

cd $SLURM_SUBMIT_DIR

mpirun ./your_mpi_program

Set the number of OpenMP
threads per MPI process

15/52

Typical Script for aMPI+OpenMPProgram

#!/bin/bash -l
#SBATCH --time=0-01:00:00
#SBATCH --ntasks=8
#SBATCH --cpus-per-task=8
#SBATCH --mem-per-cpu=1024 # megabytes
#SBATCH --partition=batch

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load releases/2020b
module load OpenMPI/4.0.5-GCC-10.2.0

cd $SLURM_SUBMIT_DIR

mpirun ./your_mpi_program Run your program with mpirun

15/52

EnvironmentModules

Access to Softwares : Modules

Preinstalled software can be listed, enabled or disabled through the use of the
module command. In the framework of this course, we are mainly interested in
compilers.

module avail : list available software

module load : set up the environment to use the software

module list : list currently loaded software

module purge : clears the environment

17/52

Modules: Releases

On the CÉCI clusters, the modules are organized in releases. These releases are
superset of modules. The default release is releases/2019b

This release is not ideal (older compiler not fully aware of the NIC5 CPU features).
It’s recommended to switch to the 2020b release.

module load releases/2020b

and even to make it permanent with

echo -e "module load releases/2020b" >> .bashrc

18/52

Modules

The main module of interest for us is the GCC compiler

$ module av gcc/ GCC/
------------------- Releases (2020b) -------------------

GCC/10.2.0
$ module load GCC/10.2.0
$ module list
Currently Loaded Modules:
... 3) releases/2020b 5) zlib/1.2.11-GCCcore-10.2.0 7) GCC/10.2.0
... 4) GCCcore/10.2.0 6) binutils/2.35-GCCcore-10.2.0

19/52

Modules

We look for the GCC module using the module av command. The result of the
command tells us that there is a module named GCC/10.2.0 available.

$ module av gcc/ GCC/
------------------- Releases (2020b) -------------------

GCC/10.2.0
$ module load GCC/10.2.0
$ module list
Currently Loaded Modules:
... 3) releases/2020b 5) zlib/1.2.11-GCCcore-10.2.0 7) GCC/10.2.0
... 4) GCCcore/10.2.0 6) binutils/2.35-GCCcore-10.2.0

19/52

Modules

We load the GCC/10.2.0 module with the module load command.

$ module av gcc/ GCC/
------------------- Releases (2020b) -------------------

GCC/10.2.0
$ module load GCC/10.2.0
$ module list
Currently Loaded Modules:
... 3) releases/2020b 5) zlib/1.2.11-GCCcore-10.2.0 7) GCC/10.2.0
... 4) GCCcore/10.2.0 6) binutils/2.35-GCCcore-10.2.0

19/52

Modules

Using the module list command we can see the GCC module is now loaded as
well as its dependencies

$ module av gcc/ GCC/
------------------- Releases (2020b) -------------------

GCC/10.2.0
$ module load GCC/10.2.0
$ module list
Currently Loaded Modules:
... 3) releases/2020b 5) zlib/1.2.11-GCCcore-10.2.0 7) GCC/10.2.0
... 4) GCCcore/10.2.0 6) binutils/2.35-GCCcore-10.2.0

19/52

Copying Files to and FromNIC5

Copying to and from aWindowsComputer

MobaXTerm comes with a built-in SFTP client

it’s accessible from the ”SFTP” tab on the left of the MobaXTerm window

you can drag and drop file to the SFTP panel to copy files from your
computer to cluster

you can drag and drop file from the SFTP panel to copy files from the cluster
to your computer

21/52

Copying to and from a Linux/MacOS computer

Copying files to and from the cluster from an UNIX-like OS can be done with the
scp command.

to copy file to the cluster the first argument to the command is the path to
the file on your computer

the second argument starts with nic5: to indicate a remote machine
followed by the destination path

scp ~/INFO0939/project1.c nic5:~/src/

Copying files from the cluster is the other way around

scp nic5:~/src/project1.c ~/INFO0939/

22/52

Copying to and from a Linux/MacOS computer

Copying directories to and from the cluster from an UNIX-like OS can be done with
the scp command with -r option.

For example

scp -r ~/INFO0939 nic5:

copy the INFO0939 directory from your computer to NIC5.

23/52

Introduction to UNIX

WhyTalk About UNIX?

Almost all supercomputers in the world use Linux as their operating system,
the CECI clusters are no exception

A Linux operating system is based on the Linux kernel which is the central
part of the operating system managing the operations of the computer and
the hardware

Linux, which stands for (Linux Is Not UniX) is a UNIX-like operating: the
filesystem, environment and commands are very similar to UNIX

25/52

The command shell

When you log into a CÉCI cluster, you connect to a login node and have
access to a shell

A shell is a program that takes commands from the keyboard and gives
them to the operating system

The following is an overview of the commands that may be useful for your work on
the CÉCI clusters.

26/52

The current directory

At login, your current directory (the folder where you are currently working) is
your home directory.

You can print the absolute path (with respect to the root of the filesystem) of your
current directory pwd command.

$ pwd
/home/user

27/52

List Files and Directories

To list the files and folders in a directory, you can use the ls command.

$ ls
file1 file2 dir1 dir2 dir3

28/52

Listing Files and Folders

Files and folders starting with a dot (.) are hidden.

To list the files and folders, including the ones that are hidden, use ls with
the option -a (all).

$ ls -a
. .hidden_dir dir1 dir3 file2
.. .hidden_file dir2 file1

29/52

Listing Files and Folders

Files and folders starting with a dot (.) are hidden.

To list the files and folders, including the ones that are hidden, use ls with
the option -a (all).

$ ls -a
. .hidden_file file1 folder1 folder3
.. .hidden_folder file2 folder2

Notice the . and ..? These are the current and parent directories.

29/52

Listing Files and Folders

Alternatively, you can use ll which gives a more readable output.

$ ll
-rw-r--r-- 1 user group 0B Sep 23 20:17 file2
-rw-r--r-- 1 user group 0B Sep 23 20:17 file1
drwxr-xr-x 2 user group 64B Sep 23 20:17 dir3
drwxr-xr-x 2 user group 64B Sep 23 20:17 dir2
drwxr-xr-x 2 user group 64B Sep 23 20:17 dir1

30/52

The current directory

The hidden . represents the current directory

It may be used to run a program or a script located in the current directory

$ myscript
-bash: myscript: command not found

Here, the OS is looking in all the executable paths (directories which are supposed
to contain executables) and did not find myscript .

31/52

The current directory

The hidden . represents the current directory

It may be used to run a program or a script located in the current directory

$./myscript
Hello, I'm a script!

By using ./ we specify that the script is in the current directory.

31/52

Changing directory

/home/user

dir1

subdir

dir2

To change the current directory use the cd command fol-
lowed by the name of the directory

$ pwd
/home/user
$ cd dir1
$ pwd

/home/user/dir1

32/52

Changing directory

/home/user

dir1

subdir

dir2

To go to the parent directory (the directory in which your
working directory is located) you can use ..

$ pwd
/home/user/dir1
$ cd ..
$ pwd

/home/user

32/52

Changing directory

/home/user

dir1

subdir

dir2

To change to your home directory, you can use ~ . The ~

can also be used to specify a path relative to your home
directory.

$ cd ~
$ pwd

/home/user
$ cd ~/dir1/
$ pwd

/home/user/dir1

32/52

Changing directory

/home/user

dir1

subdir

dir2

Moving multiple levels down the filesystem hierarchy is
possible by separating the directory names by /

$ pwd
/home/user
$ cd dir1/subdir
$ pwd

/home/user/dir1/subdir

32/52

Changing directory

/home/user

dir1

subdir

dir2

Moving multiple levels up the filesystem hierarchy is pos-
sible by using multiple .. separated by /

$ pwd
/home/user/dir1/subdir
$ cd ../..
$ pwd

/home/user/

32/52

Changing directory

/home/user

dir1

subdir

dir2

Moving to a directory located up the filesystem hierarchy
is possible by using .. , the name of the directory and /

as the separator

$ pwd
/home/user/dir1/
$ cd ../dir2
$ pwd

/home/user/dir2

32/52

Create Directories

/home/user

↓

/home/user

dir

To create a directory use the mkdir command fol-
lowed by the name of the new directory

$ mkdir dir

33/52

Create Directories

/home/user

↓

/home/user

new

dir

nest

You can create multiple-nested directories in one
command with the -p option. Use / as the delim-
iter of the name of the directories

$ mkdir -p new/dir/nest

33/52

Create Directories

/home/user

dir

↓

/home/user

dir

newdir

If the directory already exists there is no need for
the -p option

$ mkdir dir/newdir

33/52

Create Files

/home/user

↓

/home/user

newfile.txt

To create a file use the touch command fol-
lowed by the name of the new file

$ touch newfile.txt

34/52

Create Files

/home/user

dir

↓

/home/user

dir

newfile.txt

To create a file in a directory use the touch

command followed by the name of the directory
and the name of the new file separated by /

$ touch dir/newfile.txt

34/52

Copying Files

/home/user

dir

file.txt

↓

/home/user

dir

file.txt

file_cpy.txt

To copy a file, use the cp command followed by
the path to the file to copy and the path to where
you want the copy to be located

$ cp dir/file.txt file_cpy.txt

35/52

Copying Files

/home/user

dir

file.txt

↓

/home/user

dir

file.txt

file_cpy.txt

The same operation can be done from dir direc-
tory. In this case, we use .. to indicate that we
want to copy the file to the parent directory

$ cd dir
$ cp file.txt ../file_cpy.txt

35/52

Copying Files

/home/user

dir

subdir

file.txt

↓

/home/user

dir

subdir

file.txt

file_cpy.txt

We use .. multiple times to copy the file to a
location multiple levels up in the filesystem hier-
archy

$ cd dir/subdir
$ cp file.txt ../../file_cpy.txt

35/52

Copying Directories

/home/user

dir

file.txt

When we try to copy a directory, we get an error
message looking like this

$ cp dir dir_cpy
cp: omitting directory 'dir'

36/52

Copying Directories

/home/user

dir

file.txt

↓

/home/user

dir

file.txt

dir_cpy

file.txt

To copy a directory, we need to use the recursive
option -r

$ cp -r dir dir_cpy

36/52

Moving Files

/home/user

dir

file.txt

↓

/home/user

dir

file.txt

Moving a file is done using the mv followed by the
path to the file to move and the path to the new
location of the file

$ mv dir/file.txt file.txt

37/52

Moving Files

/home/user

dir1

file.txt

dir2

↓

/home/user

dir1

dir2

file.txt

Moving a file is done using the mv followed by the
path to the file to move and the path to the new
location of the file

$ mv dir1/file.txt dir2/file.txt

37/52

Renaming Files and Directories

/home/user

file.txt

↓

/home/user

file_renamed.txt

The mv command can also be used to rename files

$ mv file.txt file_renamed.txt

38/52

Renaming Files and Directories

/home/user

dir

↓

/home/user

dir_renamed

The mv command can also be used to rename di-
rectories

$ mv dir dir_renamed

38/52

Absolute and Relative Path

A path to a directory or a file can be specified either by using an absolute path or a
relative path.

An absolute path is defined as specifying the location of a file or directory
from the root directory: starting with a /

A Relative path is defined as the path related to the present working
directory: it never starts with a /

39/52

Absolute and Relative Path

/home/user

dir1

subdir1

dir2

Here we use the absolute path to move to the
subdir1 directory

$ pwd
/home/user
$ cd /home/user/dir1/subdir1
$ pwd

/home/user/dir1/subdir1

40/52

Absolute and Relative Path

/home/user

dir1

subdir1

dir2

The same operation can be done by using a rela-
tive path

$ pwd
/home/user/
$ cd dir1/subdir1
$ pwd

/home/user/dir1/subdir1

40/52

Absolute and Relative Path

/home/user

dir1

subdir1

dir2

To move to the dir2 directory using a relative
path, we can use .. to move up in the hierar-
chy before selecting dir2

$ pwd
/home/user/dir1/subdir1
$ cd ../../dir2
$ pwd

/home/user/dir2

40/52

Get the Content of Files

The cat command allows you to view the content of a file

$ cat file.txt
This is the content of the file
This is the second line of the file

41/52

Get the Content of Files

The cat command also allows to view the content of multiple files in one
command

$ cat file1.txt file2.txt
This is the content of the file1.txt
This is the content of the file2.txt

42/52

Get the Content of Files

Sometimes, the content of the file is too large fit in the terminal windows. In this
case, the less command comes in handy.

$ less file.txt

Then you can use the ↓ and ↑ keys to navigate. Press q to quit.

43/52

Wildcards

A wildcard is a symbol or a set of symbols that stands in for other characters. It
can be used to substitute for any other character or characters in a string

? matches a single character. For example, a??c will match any string with
a length of 4, starting with a and ending with c.

* matches any character or set of characters. For example, a*c will match
any string with of any length, starting with a and ending with c.

[val] matches characters enclosed in square brackets. For example,
a[d-f]c will match ”adc”, ”aec” and ”afc” but not ”agc”.

44/52

Wildcards

To list the files starting with any character or set of characters you can use the *

wildcard

$ ls
file.in file.out
$ ls *.in

file.in

45/52

Wildcards

If we have four files all starting with ”file”, two files ending with a digit and two files
ending with a letter.

We can selectively list the files ending with a letter using a wildcard

$ ls
file1 file2 filea fileb
$ ls file[a-z]

filea fileb

46/52

Wildcards

If we have four files all starting with ”file”, two files ending with a digit and two files
ending with a letter.

We can selectively list the files ending with a digit using a wildcard

$ ls
file1 file2 filea fileb
$ ls file[0-9]

file1 file2

46/52

Wildcards

To list the files with the letter ”i” as the second letter, we can use the ? wildcard

$ ls
file.txt video.mp4 test.out test.in
$ ls ?i*

file.txt video.mp4

47/52

Wildcards

To list the files an extension of size 3 we can combine the ? and * wildcards

$ ls
file.txt video.mp4 test.out test.in
$ ls *.???

file.txt video.mp4 test.out

47/52

UNIX Philosophy

An important design philosophy of UNIX was minimalism and modularity. Linux
systems follow the same principles.

To achieve this goal, the programs are designed so that

Each program do one thing well

Expect the output of every program to become the input to another

48/52

Redirecting to a file

The output of programs can be redirected to a file using the > operator

$ ls > file.txt
$ cat file.txt
file1 file2 dir1 dir2 dir3

If the file does not exist, it will be created

If the file already exists the old content will be discarded and replaced by
the new one

49/52

Redirecting to a file

To redirect the output of a program to the end of a file, we can use the >> operator

$ ls >> file.txt
$ cat file.txt

Old content of file.txt
file1 file2 dir1 dir2 dir3

If the file does not exist, it will be created

If the file already exists the new content will be added at the end of it

50/52

Pipes

A pipe transfers the standard output of a program to another program.

For example, if the number of files in a directory is huge, you may be interested in
redirecting the output of ls to less . To do so, use the | operator.

$ ls | less

51/52

Pipes

Let’s determine the number of frames in the LaTeX document used to create these
slides.

$ cat unix-intro.tex | grep begin{frame} | wc -l
25

We use cat to get the content of the file

Then grep is used to find all instances of begin{frame}

Finally we use wc with the -l option to count the number of lines

52/52

	Basics of Slurm
	Environment Modules
	Copying Files to and From NIC5
	Introduction to UNIX

