
Debugging and profiling

Matteo Cicuttin

October 19, 2021

Grab the code in the repository
https://gitlab.onelab.info/mcicuttin/snippets/info0939

Debugging & Profiling

The two activities are related to two questions:

I Debugging: Why my code does not work as expected?

I Profiling: Does my code perform well on a given architecture?

Organization of this class:

I Tips to avoid the need to debug

I Review of some concepts

I Debugging (hands-on)

I Profiling (hands-on)

About this class

I’ll give you mostly a high-level overview of concepts & tools.
Details are too many. Only way to master them:

I study architectures

I countless sleepless debugging nights

I getting used to reason in non-conventional ways

Let’s try to keep this class as interactive as possible!

Introduction

Avoiding debug

Rule #1 of debug:

Minimize the chance to end up debugging your code.

Said otherwise: Programmers do fail and C is dangerous: do
your best to circumvent the most common failure modes or
minimize their impact.

I Adopt an appropriate coding style

I Identify bad code patterns and habits and avoid them

I Use correctly the compiler

I Use ‘assert()‘

I Strive for a “correct by design” approach, not “correct
because it passes some tests”

I ...

More generally, care about the quality of your code: cheap things
end up being very expensive.

Coding style

Code: not something that somehow works, but the end product of
a careful design process.

I Break down your problem in smaller subproblems, write
corresponding functions. Functions should be small and fit on
your screen.

I Use relevant and appropriate names for functions and
variables (=⇒ self-documenting code).

I Separate state from algorithms that modify your state.

Good coding style is good for you and for the others:

I For you: easier to track down problems in small, clearly
separated modules.

I For the others: you won’t earn much respect if you waste the
time of your colleagues by writing unreadable code.

Bad patterns and habits

I Declaring variables without initializing them.

I Not checking return values of open(), malloc() and related
calls.

I Long functions, functions with too many parameters

I Premature optimization

I Inconsistent naming and conventions

I Too many comments (=⇒ code not clear & comment rot)

I Add your own ...

Use correctly the compiler

The compiler has many facilities that can help you:

I Warnings: compiler warnings should be treated as errors.
They are “just” warnings not because they are not important,
but because there could be some legitimate use case of the
problematic code.

I Increase warning level with -Wall, -Wextra (GCC),
-Weverything (Clang) and -pedantic.

I In C++, exploit the typesystem to guarantee at compile-time
that your program satisfies the properties you want (Take a
look to Boost.Units).

I Use static analysis tools, as scan-build from the LLVM suite.

Use assert()

The macro assert() is used to assert that some condition must
be true at a specific point.

I It is used in the debug builds.

I In release builds is disabled via -DNDEBUG.

I DO NOT use it to validate user input (if you do, you’ll get
zero in your project): assert() has to do with the logic of
your program!

With assert() you should check

I Preconditions

I Invariants

I Postconditions

Example usage of assert() on an integer division program

Specification: given two integers x ≥ 0 and y > 0, provide a
program that returns their integer division quo = x/y and
rem = x%y .

I Idea: subtract x from y while the remainder is greater than y .

I Let’s see some code.

The precondition, invariant, postcondition and bound function I
chose actually allow to formally prove the correctness and the
termination of the program under the Hoare logic.

I assert() helps you to reason about your program and to
document it.

I If you are interested in formal program verification, take a
look at the classical book Verification of Sequential and
Concurrent Programs by Apt, de Boer & Olderog.

Example usage of assert() on an integer division program

Specification: given two integers x ≥ 0 and y > 0, provide a
program that returns their integer division quo = x/y and
rem = x%y .

I Idea: subtract x from y while the remainder is greater than y .

I Let’s see some code.

The precondition, invariant, postcondition and bound function I
chose actually allow to formally prove the correctness and the
termination of the program under the Hoare logic.

I assert() helps you to reason about your program and to
document it.

I If you are interested in formal program verification, take a
look at the classical book Verification of Sequential and
Concurrent Programs by Apt, de Boer & Olderog.

Some basics

Memory & pointers

4

Ad
dr
es

s

T* myptr

0
1
2
3
4
5

Memory is a box with many sequentially num-
bered places. The number of a place is called
address.

Pointers are unsigned integer variables that
store addresses.

I Pointers ARE NOT vectors

I Pointers ARE NOT arrays

I Pointers ARE NOT structs

T *myptr tells you that there is a T at the
address stored in myptr.

Beware of pointer arithmetic: myptr+1 means
that the address is increased by sizeof(T).

A very approximate process’ memory model

Code

Heap

Stack

Kernel

U
se

r m
od

e
ad

dr
es

s
sp

ac
e

In timesharing operating systems all processes
see a linear address space with 4 main seg-
ments:

I Code: fixed-size, contains your program.

I Heap: grows dynamically based on
malloc() and free().

I Stack: FIFO data structure, grows
downwards on function calls and variable
declarations.

I Kernel: area reserved to the operating
system

Code segment

Your CPU fetches and executes instructions from this part of
memory. The Instruction Pointer or Program Counter keeps
track of the currently executing instruction.

push rbp
mov rbp, rsp
mov dword ptr [rbp - 4], edi
mov dword ptr [rbp - 8], esi
mov eax, dword ptr [rbp - 4]
add eax, dword ptr [rbp - 8]
pop rbp
ret

IP
CPU

Stack segment

The stack is a FIFO structure. The details change
slightly between architectures, but in general it
serves three main purposes

I Passing function parameters

I Saving the IP on function calls

I Storing local variables

Important concept: stack frame

Heap segment

Heap essentially contains the memory you get from malloc().

I If there’s enough memory on the heap, malloc() gives you a
pointer to a slice of the size you asked.

I If there’s not enough memory, malloc() asks the OS to
increase the program break. If the OS has no memory,
malloc() fails.

I free() marks some memory on the heap as free.

I After a while, the memory could get fragmented.

Debugging

Debug tools

We will take a look to gdb (a debugger)

I Backtrace (bt)

I Stepping (step, next, continue)

I Printing (p)

I Breakpoints (break)

I Moving between frames (frame)

and to AddressSanitizer (code instrumentation)

I General understanding of its output

We will focus on memory-related problems.

Profiling

Profiling

Profiling is about

I measuring your program (=⇒ tools & instrumentation)

I determining if your program running at maximum resource
utilization (=⇒ architecture knowledge)

Both points are needed for optimization

If you do not measure or you don’t know your architecture,
you can not (decide to) optimize.

When you say you’ve optimized your program, be ready to give
convincing arguments.

Profiling tools

I Quick look at gprof: where your program spends time

I Quick look at cachegrind: does your code use the cache
correctly?

I Code instrumentation & the importance of knowing the
architecture and choosing the right metric

