Computer Architecture
Single CPU

23

What Does a CPU Look Like?

:._—

Wi

_sz

%E,,.,

24

What Does it Mean?

o — o ——— o — o — o — — o — = —

2MB 13 Cache

b

b

Systern Request Interface; Crozsbar

)
¥

&

¥

\ | HyperTransport 3.0

Memory Controllers

7 g

4 Gb/alink

5.33 GB/s/link

25

What is in a Core?

From/to L3 cache

Fetch/Decode
3 s Datacache
¥ L ¥ 64 KB
Instruction
cache -
4 KB _§ e
Integer exec.
'E Integer i i
Level 1TLE =5 *| Future -
32 entries ~ 8 - »~ Hle —| Addr. generati
E g unit |
Level 2 TLB E ol 5
512 entries " .H A -
% 3 7
Bmﬁﬁfm' 1 & & FPUstack ™13 ciries | | FPU
Z w| map FFU registers
? rename [sched ™
Precode s 12 entries 120
FFU i
cache o~ ched luwd entries
12 entries
- $

From'to L2 cache

b 4 5

Load! Store :qucuc units

[1

[

s
-t
<-

ra<

I}

[

Level 2
cache

512KB

| 12TLB

26

Von Neumann Architecture

Undivided memory that stores both program and data
(‘stored program’) + processing unit that executes the
instructions, operating on the data

e |Instruction decode: determine operation and
operands

e Get operands from memory
e Perform operation
o Write results back

e Continue with next instruction

27

Contemporary Architecture

Multiple operations simultaneously “in flight”
Operands can be in memory, cache, register

Results may need to be coordinated with other
processing elements

Operations can be performed speculatively

28

Scientific Computing

« Some algorithms are “CPU-bound”

— the speed of the processor is the most important factor

« Some algorithms are “memory-bound”

— bus speed, cache size become important

“Memory-bound” becomes ever more prominent...

Simple “GHz” comparison does not tell the whole story!

29

Modern Floating Point Units

Traditionally: one instruction at a time

Modern CPUs: Multiple floating point units, for
instance 1 Mul + 1 Add, or 1 FMA (“Fused multiply-
add”)

T +— ar + b

Peak performance is several ops/clock cycle
(currently up to 4); usually very hard to obtain

Other operations not as optimized: a division
requires 10 to 20 clock cycles

30

Pipelining

A single instruction takes several clock cycles to
complete

Subdivide an instruction:

— Instruction decode

— Operand exponent align

— Actual operation

— Normalize

Pipeline: separate piece of hardware for each
subdivision

Compare to assembly line

31

Pipelining

Example: addition of 2 fp numbers 35x10-1 + .6 x 102

”

has the following subdivision (“components”,
“segments”)

stages”,

e Decoding the instruction, including finding the
locations of the operands

« Copying the operands into registers (‘data fetch’).
« Aligning the exponents: 35x10~! + .06 x 10~1

e Executing the addition of the mantissas: .41

« Normalizing the result: 41 x 10!

e Storing the result

Pipelining

Every component designed to finish in 1 clock cycle:
the whole instruction takes 6 cycles

If each has its own hardware, one can execute two
operations in less than 12 cycles:

« Execute the decode stage for the first operation;

e Do the data fetch for the first operation, and at the
same time the decode for the second.

« Execute the third stage for the first operation and
the second stage of the second operation
simultaneously.

33

Pipelining
Analysis:

« First addition takes 6 clock cycles
« Second addition finishes a mere 1 cycle later

This idea can be extended to more than two operations:
the first operation still takes the same amount of time as
before, but after that one more result will be produced
each cycle.

Executing n operations on a s-segment pipeline takes
(s + n— 1) cycles, as opposed to (ns) in the classical case.

This requires independent operations... One solution:
multiple pipes 34

Pipelining
With pipelining, peak CPU performance =
(clock speed)
X

(number of independent floating point units)

The measure of floating point performance is ‘floating
point operations per second’, abbreviated “flops”.

‘gigaflops’ = multiples of 10 flops

35

Pipelining Beyond Arithmetic

The whole CPU is pipelined, leading to “Instruction
Level Parallelism” (ILP)

Facilitated by

« multiple issue (independent instructions can be
started at the same time)

e branch prediction and speculative execution
« out-of-order execution

36

Memory Hierarchies

« Memory is too slow to keep up with the processor
— 100-1000 cycles latency before data arrives

— Data stream maybe 1/4 fp number/cycle; processor
wants 2 or 3

— “Memory wall”

« At considerable cost it’s possible to build faster
memory

e Cache is small amount of fast memory

37

Memory Hierarchies

« Memory is divided into different levels:
— Registers
— Caches
— Main Memory

« Memory is accessed through the hierarchy

— registers where possible
— ... then the caches
— ... then main memory

38

Memory Hierarchies

Latency from next Bandwidth Size (bytes)

level (cycles) (bytes/cycle)
A A
3 not a I|m|tat|0n registers 192
15 32 L1 cache 64K
not
7 L2 h
> documented cache >12K
230-3
60 4.5 L3 cache M
2G v

main memory

AMD Opteron

39

Latency and Bandwidth

« The two most important terms related to performance for
memory subsystems and for networks:

 Latency

— How long does it take to retrieve a word of memory?

— Units are generally nanoseconds (milliseconds for
network latency) or clock periods (CP)

— Sometimes addresses are predictable: compiler will
schedule the fetch. Predictable code is good!

« Bandwidth

— What data rate can be sustained once the message is
started?

— Units are B/sec (MB/sec, GB/sec, etc.)

40

Latency and Bandwidth

« The time that a message takes from start to finish
combines latency and bandwidth:

T(n) =a+ fn

« (|atency
« [inverse of bandwidth (the time per byte)

41

Implications of Latency and
Bandwidth: Little’s law

Memory loads can depend on each other: loading
the result of a previous operation

Two such loads have to be separated by at least the
memory latency

In order not to waste bandwidth, at least latency
many items have to be under way at all times, and
they have to be independent

Multiply by bandwidth:

Little’s law: Concurrency = Bandwidth x Latency

42

PS: Latency Hiding and GPUs

e Finding parallelism is sometimes called "latency
hiding’: load data early to hide latency

« GPUs do latency hiding by spawning many
threads

e Requires fast context switch

43

Registers

Highest bandwidth, lowest latency memory that a
modern processor can access; built into the CPU

Often a scarce resource and not random access

Processors instructions operate on registers directly
— have assembly language names names like:

e eax, ebx, ecx, etc.
— sample instruction:

e addl %eax, %edx
Separate instructions and registers for floating-point
operations

44

Data Caches

Between the CPU Registers and main memory

L1 Cache: Data cache closest to registers

L2 Cache: Secondary data cache, stores both data and
instructions

— Data from L2 has to go through L1 to registers
— L2is 10 to 100 times larger than L1

— Some systems have an L3 cache, ~10x larger than L2

Cache line

45

Cache Line

e The smallest unit of data transferred between main

memory and the caches (or between levels of cache;
every cache has its own line size)

* N sequentially-stored, multi-byte words (usually N=8
or 16).

 If you request one word on a cache line, you get the
whole line

— Make sure to use the other items, you’ve paid for them in
bandwidth

— Sequential access good, “strided” access ok, random access
bad

46

Main Memory

e Cheapest form of RAM

e Also the slowest

— lowest bandwidth

— highest latency
« Unfortunately most of our data lives out here

47

Cache and Register Access

« Access is transparent to the programmer
— data is in a register or in cache or in memory
— Loaded from the highest level where it’s found

— processor/cache controller/MMU hides cache access from the
programmer

 ...but you can influence it:

— Access X (that puts it in L1), access 100k of data, access X
again: it will probably be gone from cache

— If you use an element twice, don’t wait too long

— If you loop over data, try to take chunks of less than cache
Size

— In C declare register variable, only suggestion

48

Register Use

« y[i] can be kept in
register
« Declaration is only

suggestion to the
compiler

e Compiler can usually
figure this out itself

for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
y[i] = y[i]+a[i][J]1*=x[]];
}
}

register double s;
for (i=0; i<m; 1i++) {
s = 0.;
for (j=0; j<n; Jj++) {
s = s+a[i]l [J]*x[]];
}
y[i] = s;
}

49

Hits, Misses, Thrashing

o Cache hit

— location referenced is found in the cache

e Cache miss

— location referenced is not found in cache

— triggers access to the next higher cache or memory

e Cache thrashing

— Two data elements can be mapped to the same cache line:
loading the second “evicts” the first

— Now what if this code is in a loop? “thrashing”: really bad for
performance

50

Cache Mapping

e Because each memory level is smaller than the next-
closer level, data must be mapped

e Types of mapping
— Direct
— Set associative

— Fully associative

51

Direct Mapped Cache

A block from main memory can go in exactly one place in the cache.
This is called direct mapped because there is direct mapping from

any block address in memory to a single location in the cache.

Typically modulo calculation (e.g. keep 16 last bits of memory address)

cache

/

main/éwory

52

The Problem with Direct Mapping

double a[8192] b[8192], ° E>'<ample: cache size 64K, needs 16
for (i=0; i<n; i++) { bits to address

1 = bl
} e = « a[0] and b[0] mapped to the same

cache location

e Cachelineis 4 words

o Thrashing:

b[0]..b[3] loaded to cache, to register

a[0]..a[3] loaded, gets new value, kicks
b[0]..b[3] out of cache

b[1] requested, so b[0]..b[3] loaded again
a[1] requested, loaded, kicks b[0..3] out

again
53

Fully Associative Caches

A block from main memory can be placed in any location in the
cache. This is called fully associative because a block in main

memory may be associated with any entry in the cache. Requires
lookup table.

cache

main memory

54

Fully Associative Caches

 |deal situation

« Any memory location can be associated with any cache
line

e Cost prohibitive

55

Set Associative Caches

In a n-way set associative cache a block from main memory can go
into n (n at least 2) locations in the cache.

2-way set-associative cache

main memory

56

Set Associative Caches

e Direct-mapped caches are 1-way set-associative caches

e For a k-way set-associative cache, each memory region
can be associated with k cache lines

« Fully associative is k-way with k the number of cache
lines

57

Translation Look-Aside Buffer (TLB)

Translates between logical space that each program has
and actual memory addresses

Memory organized in ‘small pages’, a few Kbyte in size

Memory requests go through the TLB, normally very
fast

Pages that are not tracked through the TLB can be
found through the ‘page table’: much slower

-> Jumping between more pages than the TLB can track
has a performance penalty

This illustrates the need for spatial locality

58

Prefetch

« Hardware tries to detect if you load regularly spaced
data:

— “prefetch stream”

— This can sometimes be programmed in software,
often only in-line assembly

59

Data reuse

e Performance is limited by data transfer rate
« High performance if data items are used multiple times
« Examples:

— vector addition x=x.+y.: 1op, 3 mem accesses

— inner product s=s+x.*y.: 20p, 2 mem access (s in
register; also no writes)

60

Data reuse: matrix-matrix product

o Matrix-matrix product: 2n3 ops, 2n? data

s =0;

}
c[i1][]] =
}

}

for (1=0; i<n;
for (j=0; j<n; j++) {

i++) |

for (£=0; k<n; k++) {
s = s+a[i] [k]*b[k][]]-

Sy

Is there any data reuse in
this algorithm?

61

Data reuse: matrix-matrix product

Matrix-matrix product: 2n3 ops, 2n? data

— Data reuse is O(n): every data item is used O(n)
times

If it can be programmed right, this can overcome the

bandwidth/cpu speed gap

Again only theoretically: naive implementations are
inefficient... so do not code this yourself: use BLAS
(MKL, Atlas, etc.)

(This is the important kernel in the Linpack benchmark:
cf. Top500)

62

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

50
® —
40
e Best code (K. Goto)
30
25
20 {
15
10
5 Triple loop
0 4— e T T : — - .
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

63

Locality

e Programming for high performance is based on spatial
and temporal locality

e Temporal locality:
— Group references to one item close together:

« Spatial locality:
— Group references to nearby memory items together

64

Temporal Locality

« Use an item, use it again before it is flushed from
register or cache:
— Use item,
— Use small number of other data

— Use item again

65

Temporal locality: example

for (loop=0; loop<1l0; loop++) {
for (i=0; i<N; i++) {
.= ... x[1]
}
}

for (i=0; i<N; i++) {
for (loop=0; loop<1l0; loop++) ({
.= ... x[1]
}
}

Original loop:
long time between uses of x,

Rearrangement:
X is reused

66

Spatial Locality

e Use items close together

e Cache lines: if the cache line is already loaded, other
elements are ‘for free’

e TLB: don’t jump more than 512 words too many times

67

lllustration: Cache Size

for (i=0; i<NRUNS; i++)
for (j=0; j<size; j++)
array[jl 2.3*%array[j]+1.2;

Cache miss fraction

12

10

o)

'

15

cycles per op

—
i

0

dataset size

If the data fits in L1 cache, the transfer is very fast
If there is more data, transfer speed from L2 dominates

68

lllustration: Cache size

for (i=0; i<NRUNS; i++) {
blockstart = 0;
for (b=0; b<size/llsize; b++)
for (3j=0; j<llsize; j++)
array[blockstart+j] = 2.3*array[blockstart+j]+1.2;

Data can sometimes be arranged to fit in cache:
Cache blocking

69

lllustration: Cache line utilization

for (i=0,n=0;
array[n] =

i<L1WORDS; i++,n+=stride)
2.3*array[n]+1.2;

Same amount of data,
but increasing stride

Increasing stride: more
cachelines loaded,
slower execution

cache line utilization
£ w

W

100

fotal kcycle‘s‘

70

Power Consumption

Scale all geometrical features by s (s < 1):
— dynamic power consumption P is scaled to s2P
— circuit delay T is scaled to sT
— operating frequency F is changed to F/s

— Energy consumption is scaled by s3, and this gives us
the space to put more components on a chip

However, miniaturization of features is coming to a
standstill due to laws of physics

Increasing frequency would raise heat production

-> “Power wall”

71

Power Consumption

10,000 Sun's Surface
&-\ ﬂ
g 1,000 Rocket Nozzle
S—
s ‘#
= ;
Nuclear Reactor
P
T :&
8 L Pentium®
[}
0 8086 Hot Plate
o 10 #004 8085 —_—
% 8008 286 386
o || 8080 486
‘70 ‘80 ‘00 ‘00 ‘10

72

Multicore Architectures

IH

« “Power wall” (clock frequency cannot be increased)

o Limits of Instruction Level Parallelism (ILP)
— compiler limitations
— limited amount of intrinsically available parallelism

— branch prediction

« Solution: divide chip into multiple processing “cores”:

— 2 cores at lower frequency can have same throughput as 1
core at higher frequency (breaks power wall)

— discovered ILP replaced by explicit task parallelism,
managed by programmer

73

Multicore Architectures

Registers Registers Registers
L1 cache L1 cache L1 cache
L2 cache L2 cache

Memory Memory

Single core Dual core

Multi-core chips

« What is a processor? Instead, talk of “socket” and
“core”

e Cores have separate L1, shared L2 cache
— Hybrid shared/distributed model

« Cache coherency problem: conflicting access to
duplicated cache lines

Need to study parallel architecture and
programming...

75

