
Computer Architecture
Single CPU

23

What Does a CPU Look Like?

24

What Does it Mean?

25

What is in a Core?

26

Von Neumann Architecture

• Instruc1on decode: determine opera1on and
operands

• Get operands from memory
• Perform opera1on
• Write results back
• Con1nue with next instruc1on

Undivided memory that stores both program and data
(‘stored program’) + processing unit that executes the
instruc1ons, opera1ng on the data

27

Contemporary Architecture

• Mul1ple opera1ons simultaneously “in flight”
• Operands can be in memory, cache, register
• Results may need to be coordinated with other

processing elements
• Opera1ons can be performed specula1vely

28

Scien1fic Compu1ng

• Some algorithms are “CPU-bound”
– the speed of the processor is the most important factor

• Some algorithms are “memory-bound”
– bus speed, cache size become important

“Memory-bound” becomes ever more prominent...
Simple “GHz” comparison does not tell the whole story!

29

Modern Floa1ng Point Units

• Tradi1onally: one instruc1on at a 1me
• Modern CPUs: Mul1ple floa1ng point units, for

instance 1 Mul + 1 Add, or 1 FMA (“Fused mul1ply-
add”)

• Peak performance is several ops/clock cycle
(currently up to 4); usually very hard to obtain

• Other opera1ons not as op1mized: a division
requires 10 to 20 clock cycles

1.2. Modern floating point units

• Instruction decode: the processor inspects the instruction to determine the operation and the
operands.

• Memory fetch: if necessary, data is brought from memory into a register.
• Execution: the operation is executed, reading data from registers and writing it back to a register.
• Write-back: for store operations, the register contents is written back to memory.

Complicating this story, contemporary CPUs operate on several instructions simultaneously, which are
said to be ‘in flight’, meaning that they are in various stages of completion. This is the basic idea of the
superscalar CPU architecture, and is also referred to as Instruction Level Parallelism (ILP). Thus, while
each instruction can take several clock cycles to complete, a processor can complete one instruction per
cycle in favourable circumstances; in some cases more than one instruction can be finished per cycle.

The main statistic that is quoted about CPUs is their Gigahertz rating, implying that the speed of the pro-
cessor is the main determining factor of a computer’s performance. While speed obviously correlates with
performance, the story is more complicated. Some algorithms are cpu-bound , and the speed of the proces-
sor is indeed the most important factor; other algorithms are memory-bound , and aspects such as bus speed
and cache size, to be discussed later, become important.

In scientific computing, this second category is in fact quite prominent, so in this chapter we will devote
plenty of attention to the process that moves data from memory to the processor, and we will devote rela-
tively little attention to the actual processor.

1.2 Modern floating point units

Many modern processors are capable of doing multiple operations simultaneously, and this holds in partic-
ular for the arithmetic part. For instance, often there are separate addition and multiplication units; if the
compiler can find addition and multiplication operations that are independent, it can schedule them so as to
be executed simultaneously, thereby doubling the performance of the processor. In some cases, a processor
will have multiple addition or multiplication units.

Another way to increase performance is to have a ‘fused multiply-add’ unit, which can execute the in-
struction x ax + b in the same amount of time as a separate addition or multiplication. Together with
pipelining (see below), this means that a processor has an asymptotic speed of several floating point opera-
tions per clock cycle.

Processor floating point units max operations per cycle
Intel Pentium4 2 add or 2 mul 2
Intel Woodcrest, AMD Barcelona 2 add + 2 mul 4
IBM POWER4, POWER5, POWER6 2 FMA 4
IBM BG/L, BG/P 1 SIMD FMA 4
SPARC IV 1 add + 1 mul 2
Itanium2 2 FMA 4

Table 1.1: Floating point capabilities of several current processor architectures

Victor Eijkhout 9

30

Pipelining

• A single instruc1on takes several clock cycles to
complete

• Subdivide an instruc1on:
– Instruc1on decode
– Operand exponent align
– Actual opera1on
– Normalize

• Pipeline: separate piece of hardware for each
subdivision

• Compare to assembly line

31

Pipelining

• Decoding the instruc1on, including finding the
loca1ons of the operands

• Copying the operands into registers (‘data fetch’).
• Aligning the exponents:
• Execu1ng the addi1on of the man1ssas:
• Normalizing the result:
• Storing the result

32

Example: addi1on of 2 fp numbers
has the following subdivision (“components”, “stages”,
“segments”)

1. Sequential Computing

Incidentally, there are few algorithms in which division operations are a limiting factor. Correspondingly,
the division operation is not nearly as much optimized in a modern CPU as the additions and multiplications
are. Division operations can take 10 or 20 clock cycles, while a CPU can have multiple addition and/or
multiplication units that (asymptotically) can produce a result per cycle.

1.2.1 Pipelining

The floating point add and multiply units of a processor are pipelined, which has the effect that a stream of
independent operations can be performed at an asymptotic speed of one result per clock cycle.

The idea behind a pipeline is as follows. Assume that an operation consists of multiple simpler opera-
tions, and that for each suboperation there is separate hardware in the processor. For instance, an addition
instruction can have the following components:

• Decoding the instruction, including finding the locations of the operands.
• Copying the operands into registers (‘data fetch’).
• Aligning the exponents; the addition .35⇥10�1 + .6⇥10�2 becomes .35⇥10�1 + .06⇥10�1.
• Executing the addition of the mantissas, in this case giving .41.
• Normalizing the result, in this example to .41 ⇥ 10�1. (Normalization in this example does not

do anything. Check for yourself that in .3⇥ 100 + .8⇥ 100 and .35⇥ 10�3 + (�.34)⇥ 10�3

there is a non-trivial adjustment.)
• Storing the result.

These parts are often called the ‘stages’ or ‘segments’ of the pipeline.

If every component is designed to finish in 1 clock cycle, the whole instruction takes 6 cycles. However, if
each has its own hardware, we can execute two operations in less than 12 cycles:

• Execute the decode stage for the first operation;
• Do the data fetch for the first operation, and at the same time the decode for the second.
• Execute the third stage for the first operation and the second stage of the second operation simul-

taneously.
• Et cetera.

You see that the first operation still takes 6 clock cycles, but the second one is finished a mere 1 cycle later.
This idea can be extended to more than two operations: the first operation still takes the same amount of
time as before, but after that one more result will be produced each cycle. Formally, executing n operations
on a s-segment pipeline takes s + n� 1 cycles, as opposed to ns in the classical case.
Exercise 1.1. Let us compare the speed of a classical floating point unit, and a pipelined one.

If the pipeline has s stages, what is the asymptotic speedup? That is, with T0(n) the
time for n operations on a classical CPU, and Ts(n) the time for n operations on an
s-segment pipeline, what is limn!1(T0(n)/Ts(n))?
Next you can wonder how long it takes to get close to the asymptotic behaviour. Define
Ss(n) as the speedup achieved on n operations. The quantity n1/2 is defined as the
value of n such that Ss(n) is half the asymptotic speedup. Give an expression for n1/2.

Since a vector processor works on a number of instructions simultaneously, these instructions have to
be independent. The operation 8i : ai bi + ci has independent additions; the operation 8i : ai+1

10 Introduction to High Performance Scientific Computing

1. Sequential Computing

Incidentally, there are few algorithms in which division operations are a limiting factor. Correspondingly,
the division operation is not nearly as much optimized in a modern CPU as the additions and multiplications
are. Division operations can take 10 or 20 clock cycles, while a CPU can have multiple addition and/or
multiplication units that (asymptotically) can produce a result per cycle.

1.2.1 Pipelining

The floating point add and multiply units of a processor are pipelined, which has the effect that a stream of
independent operations can be performed at an asymptotic speed of one result per clock cycle.

The idea behind a pipeline is as follows. Assume that an operation consists of multiple simpler opera-
tions, and that for each suboperation there is separate hardware in the processor. For instance, an addition
instruction can have the following components:

• Decoding the instruction, including finding the locations of the operands.
• Copying the operands into registers (‘data fetch’).
• Aligning the exponents; the addition .35⇥10�1 + .6⇥10�2 becomes .35⇥10�1 + .06⇥10�1.
• Executing the addition of the mantissas, in this case giving .41.
• Normalizing the result, in this example to .41 ⇥ 10�1. (Normalization in this example does not

do anything. Check for yourself that in .3⇥ 100 + .8⇥ 100 and .35⇥ 10�3 + (�.34)⇥ 10�3

there is a non-trivial adjustment.)
• Storing the result.

These parts are often called the ‘stages’ or ‘segments’ of the pipeline.

If every component is designed to finish in 1 clock cycle, the whole instruction takes 6 cycles. However, if
each has its own hardware, we can execute two operations in less than 12 cycles:

• Execute the decode stage for the first operation;
• Do the data fetch for the first operation, and at the same time the decode for the second.
• Execute the third stage for the first operation and the second stage of the second operation simul-

taneously.
• Et cetera.

You see that the first operation still takes 6 clock cycles, but the second one is finished a mere 1 cycle later.
This idea can be extended to more than two operations: the first operation still takes the same amount of
time as before, but after that one more result will be produced each cycle. Formally, executing n operations
on a s-segment pipeline takes s + n� 1 cycles, as opposed to ns in the classical case.
Exercise 1.1. Let us compare the speed of a classical floating point unit, and a pipelined one.

If the pipeline has s stages, what is the asymptotic speedup? That is, with T0(n) the
time for n operations on a classical CPU, and Ts(n) the time for n operations on an
s-segment pipeline, what is limn!1(T0(n)/Ts(n))?
Next you can wonder how long it takes to get close to the asymptotic behaviour. Define
Ss(n) as the speedup achieved on n operations. The quantity n1/2 is defined as the
value of n such that Ss(n) is half the asymptotic speedup. Give an expression for n1/2.

Since a vector processor works on a number of instructions simultaneously, these instructions have to
be independent. The operation 8i : ai bi + ci has independent additions; the operation 8i : ai+1

10 Introduction to High Performance Scientific Computing

1. Sequential Computing

Incidentally, there are few algorithms in which division operations are a limiting factor. Correspondingly,
the division operation is not nearly as much optimized in a modern CPU as the additions and multiplications
are. Division operations can take 10 or 20 clock cycles, while a CPU can have multiple addition and/or
multiplication units that (asymptotically) can produce a result per cycle.

1.2.1 Pipelining

The floating point add and multiply units of a processor are pipelined, which has the effect that a stream of
independent operations can be performed at an asymptotic speed of one result per clock cycle.

The idea behind a pipeline is as follows. Assume that an operation consists of multiple simpler opera-
tions, and that for each suboperation there is separate hardware in the processor. For instance, an addition
instruction can have the following components:

• Decoding the instruction, including finding the locations of the operands.
• Copying the operands into registers (‘data fetch’).
• Aligning the exponents; the addition .35⇥10�1 + .6⇥10�2 becomes .35⇥10�1 + .06⇥10�1.
• Executing the addition of the mantissas, in this case giving .41.
• Normalizing the result, in this example to .41 ⇥ 10�1. (Normalization in this example does not

do anything. Check for yourself that in .3⇥ 100 + .8⇥ 100 and .35⇥ 10�3 + (�.34)⇥ 10�3

there is a non-trivial adjustment.)
• Storing the result.

These parts are often called the ‘stages’ or ‘segments’ of the pipeline.

If every component is designed to finish in 1 clock cycle, the whole instruction takes 6 cycles. However, if
each has its own hardware, we can execute two operations in less than 12 cycles:

• Execute the decode stage for the first operation;
• Do the data fetch for the first operation, and at the same time the decode for the second.
• Execute the third stage for the first operation and the second stage of the second operation simul-

taneously.
• Et cetera.

You see that the first operation still takes 6 clock cycles, but the second one is finished a mere 1 cycle later.
This idea can be extended to more than two operations: the first operation still takes the same amount of
time as before, but after that one more result will be produced each cycle. Formally, executing n operations
on a s-segment pipeline takes s + n� 1 cycles, as opposed to ns in the classical case.
Exercise 1.1. Let us compare the speed of a classical floating point unit, and a pipelined one.

If the pipeline has s stages, what is the asymptotic speedup? That is, with T0(n) the
time for n operations on a classical CPU, and Ts(n) the time for n operations on an
s-segment pipeline, what is limn!1(T0(n)/Ts(n))?
Next you can wonder how long it takes to get close to the asymptotic behaviour. Define
Ss(n) as the speedup achieved on n operations. The quantity n1/2 is defined as the
value of n such that Ss(n) is half the asymptotic speedup. Give an expression for n1/2.

Since a vector processor works on a number of instructions simultaneously, these instructions have to
be independent. The operation 8i : ai bi + ci has independent additions; the operation 8i : ai+1

10 Introduction to High Performance Scientific Computing

1. Sequential Computing

Incidentally, there are few algorithms in which division operations are a limiting factor. Correspondingly,
the division operation is not nearly as much optimized in a modern CPU as the additions and multiplications
are. Division operations can take 10 or 20 clock cycles, while a CPU can have multiple addition and/or
multiplication units that (asymptotically) can produce a result per cycle.

1.2.1 Pipelining

The floating point add and multiply units of a processor are pipelined, which has the effect that a stream of
independent operations can be performed at an asymptotic speed of one result per clock cycle.

The idea behind a pipeline is as follows. Assume that an operation consists of multiple simpler opera-
tions, and that for each suboperation there is separate hardware in the processor. For instance, an addition
instruction can have the following components:

• Decoding the instruction, including finding the locations of the operands.
• Copying the operands into registers (‘data fetch’).
• Aligning the exponents; the addition .35⇥10�1 + .6⇥10�2 becomes .35⇥10�1 + .06⇥10�1.
• Executing the addition of the mantissas, in this case giving .41.
• Normalizing the result, in this example to .41 ⇥ 10�1. (Normalization in this example does not

do anything. Check for yourself that in .3⇥ 100 + .8⇥ 100 and .35⇥ 10�3 + (�.34)⇥ 10�3

there is a non-trivial adjustment.)
• Storing the result.

These parts are often called the ‘stages’ or ‘segments’ of the pipeline.

If every component is designed to finish in 1 clock cycle, the whole instruction takes 6 cycles. However, if
each has its own hardware, we can execute two operations in less than 12 cycles:

• Execute the decode stage for the first operation;
• Do the data fetch for the first operation, and at the same time the decode for the second.
• Execute the third stage for the first operation and the second stage of the second operation simul-

taneously.
• Et cetera.

You see that the first operation still takes 6 clock cycles, but the second one is finished a mere 1 cycle later.
This idea can be extended to more than two operations: the first operation still takes the same amount of
time as before, but after that one more result will be produced each cycle. Formally, executing n operations
on a s-segment pipeline takes s + n� 1 cycles, as opposed to ns in the classical case.
Exercise 1.1. Let us compare the speed of a classical floating point unit, and a pipelined one.

If the pipeline has s stages, what is the asymptotic speedup? That is, with T0(n) the
time for n operations on a classical CPU, and Ts(n) the time for n operations on an
s-segment pipeline, what is limn!1(T0(n)/Ts(n))?
Next you can wonder how long it takes to get close to the asymptotic behaviour. Define
Ss(n) as the speedup achieved on n operations. The quantity n1/2 is defined as the
value of n such that Ss(n) is half the asymptotic speedup. Give an expression for n1/2.

Since a vector processor works on a number of instructions simultaneously, these instructions have to
be independent. The operation 8i : ai bi + ci has independent additions; the operation 8i : ai+1

10 Introduction to High Performance Scientific Computing

Pipelining

33

Every component designed to finish in 1 clock cycle:
the whole instruc1on takes 6 cycles
If each has its own hardware, one can execute two
opera1ons in less than 12 cycles:
• Execute the decode stage for the first opera1on;
• Do the data fetch for the first opera1on, and at the

same 1me the decode for the second.
• Execute the third stage for the first opera1on and

the second stage of the second opera1on
simultaneously.

• ...

Pipelining

34

Analysis:
• First addi1on takes 6 clock cycles
• Second addi1on finishes a mere 1 cycle later

This idea can be extended to more than two opera1ons:
the first opera1on s1ll takes the same amount of 1me as
before, but azer that one more result will be produced
each cycle.

Execu1ng n opera1ons on a s-segment pipeline takes
(s + n − 1) cycles, as opposed to (ns) in the classical case.

This requires independent opera1ons... One solu1on:
mul1ple pipes

Pipelining

35

With pipelining, peak CPU performance =

(clock speed)
x

(number of independent floa1ng point units)

The measure of floa1ng point performance is ‘floa1ng
point opera1ons per second’, abbreviated “flops”.

‘gigaflops’ = mul1ples of flops

1. Sequential Computing

(You may wonder why we are mentioning some fairly old computers here: true pipeline supercomputers
hardly exist anymore. In the US, the Cray X1 was the last of that line, and in Japan only NEC still makes
them. However, the functional units of a CPU these days are pipelined, so the notion is still important.)
Exercise 1.4. The operation

for (i) {
x[i+1] = a[i]*x[i] + b[i];

}

can not be handled by a pipeline because there is a dependency between input of one
iteration of the operation and the output of the previous. However, you can transform
the loop into one that is mathematically equivalent, and potentially more efficient to
compute. Derive an expression that computes x[i+2] from x[i] without involving
x[i+1]. This is known as recursive doubling . Assume you have plenty of temporary
storage. You can now perform the calculation by

• Doing some preliminary calculations;
• computing x[i],x[i+2],x[i+4],..., and from these,
• compute the missing terms x[i+1],x[i+3],....

Analyze the efficiency of this scheme by giving formulas for T0(n) and Ts(n). Can you
think of an argument why the preliminary calculations may be of lesser importance in
some circumstances?

1.2.2 Peak performance

Thanks to pipelining, for modern CPUs there is a simple relation between the clock speed and the peak
performance . Since each floating point unit can produce one result per cycle asymptotically, the peak per-
formance is the clock speed times the number of independent floating point units. The measure of floating
point performance is ‘floating point operations per second’, abbreviated flops . Considering the speed of
computers these days, you will mostly hear floating point performance being expressed in ‘gigaflops’: mul-
tiples of 109 flops.

1.2.3 Pipelining beyond arithmetic: instruction-level parallelism

In fact, nowadays, the whole CPU is pipelined. Not only floating point operations, but any sort of instruction
will be put in the instruction pipeline as soon as possible. Note that this pipeline is no longer limited to iden-
tical instructions: the notion of pipeline is now generalized to any stream of partially executed instructions
that are simultaneously “in flight”.

This concept is also known as Instruction Level Parallelism (ILP), and it is facilitated by various mecha-
nisms:

• multiple-issue: instructions that are independent can be started at the same time;
• pipelining: already mentioned, arithmetic units can deal with multiple operations in various

stages of completion;
• branch prediction and speculative execution: a compiler can ‘guess’ whether a conditional in-

struction will evaluate to true, and execute those instructions accordingly;

12 Introduction to High Performance Scientific Computing

Pipelining Beyond Arithme1c

36

The whole CPU is pipelined, leading to “Instruc(on
Level Parallelism” (ILP)

Facilitated by
• mul1ple issue (independent instruc1ons can be

started at the same 1me)
• branch predic1on and specula1ve execu1on
• out-of-order execu1on

• Memory is too slow to keep up with the processor
– 100-1000 cycles latency before data arrives
– Data stream maybe 1/4 fp number/cycle; processor

wants 2 or 3
– “Memory wall”

• At considerable cost it’s possible to build faster
memory

• Cache is small amount of fast memory

37

Memory Hierarchies

• Memory is divided into different levels:
– Registers
– Caches
– Main Memory

• Memory is accessed through the hierarchy
– registers where possible
– ... then the caches
– ... then main memory

38

Memory Hierarchies

39

Memory Hierarchies1.3. Memory Hierarchies

Figure 1.3: Memory hierarchy of an AMD Xeon, characterized by speed and size.

Data needed in some operation gets copied into the various caches on its way to the processor. If, some
instructions later, a data item is needed again, it is first searched for in the L1 cache; if it is not found there,
it is searched for in the L2 cache; if it is not found there, it is loaded from main memory. Finding data in
cache is called a cache hit , and not finding it a cache miss .

Figure 1.3 illustrates the basic facts of caches, in this case for the AMD Opteron chip: the closer caches are
to the floating point units, the faster, but also the smaller they are. Some points about this figure.

• Loading data from registers is so fast that it does not constitute a limitation on algorithm exe-
cution speed. On the other hand, there are few registers. The Opteron5 has 16 general purpose
registers, 8 media and floating point registers, and 16 SIMD registers.

• The L1 cache is small, but sustains a bandwidth of 32 bytes, that is 4 double precision number,
per cycle. This is enough to load two operands each for two operations, but note that the Opteron
can actually perform 4 operations per cycle. Thus, to achieve peak speed, certain operands need
to stay in register. The latency from L1 cache is around 3 cycles.

• The bandwidth from L2 and L3 cache is not documented and hard to measure due to cache
policies (see below). Latencies are around 15 cycles for L2 and 50 for L3.

• Main memory access has a latency of more than 100 cycles, and a bandwidth of 4.5 bytes per cy-
cle, which is about 1/7th of the L1 bandwidth. However, this bandwidth is shared by the 4 cores
of the opteron chip, so effectively the bandwidth is a quarter of this number. In a machine like
Ranger, which has 4 chips per node, some bandwidth is spent on maintaining cache coherence
(see section 1.4) reducing the bandwidth for each chip again by half.

On level 1, there are separate caches for instructions and data; the L2 and L3 cache contain both data and
instructions.

You see that the larger caches are increasingly unable to supply data to the processors fast enough. For this

5. Specifically the server chip used in the Ranger supercomputer; desktop versions may have different specifications.

Victor Eijkhout 19

AMD Opteron

• The two most important terms related to performance for
memory subsystems and for networks:

• Latency
– How long does it take to retrieve a word of memory?
– Units are generally nanoseconds (milliseconds for

network latency) or clock periods (CP)
– Some1mes addresses are predictable: compiler will

schedule the fetch. Predictable code is good!
• Bandwidth
– What data rate can be sustained once the message is

started?
– Units are B/sec (MB/sec, GB/sec, etc.)

40

Latency and Bandwidth

• The 1me that a message takes from start to finish
combines latency and bandwidth:

• latency
• inverse of bandwidth (the 1me per byte)

1.3. Memory Hierarchies

1.3.2 Latency and Bandwidth

Above, we mentioned in very general terms that accessing data in registers is almost instantaneous, whereas
loading data from memory into the registers, a necessary step before any operation, incurs a substantial
delay. We will now make this story slightly more precise.

There are two important concepts to describe the movement of data: latency and bandwidth . The assump-
tion here is that requesting an item of data incurs an initial delay; if this item was the first in a stream of
data, usually a consecutive range of memory addresses, the remainder of the stream will arrive with no
further delay at a regular amount per time period.
Latency is the delay between the processor issuing a request for a memory item, and the item actually

arriving. We can distinguish between various latencies, such as the transfer from memory to
cache, cache to register, or summarize them all into the latency between memory and processor.
Latency is measured in (nano) seconds, or clock periods.
If a processor executes instructions in the order they are found in the assembly code, then execu-
tion will often stall while data is being fetched from memory; this is also called memory stall .
For this reason, a low latency is very important. In practice, many processors have ‘out-of-order
execution’ of instructions, allowing them to perform other operations while waiting for the re-
quested data. Programmers can take this into account, and code in a way that achieves latency
hiding . Graphics Processing Units (GPUs) (see section 2.9) can switch very quickly between
threads in order to achieve latency hiding.

Bandwidth is the rate at which data arrives at its destination, after the initial latency is overcome. Band-
width is measured in bytes (kilobyes, megabytes, gigabyes) per second or per clock cycle. The
bandwidth between two memory levels is usually the product of the cycle speed of the channel
(the bus speed) and the bus width : the number of bits that can be sent simultaneously in every
cycle of the bus clock.

The concepts of latency and bandwidth are often combined in a formula for the time that a message takes
from start to finish:

T (n) = ↵ + �n

where ↵ is the latency and � is the inverse of the bandwidth: the time per byte.

Typically, the further away from the processor one gets, the longer the latency is, and the lower the band-
width. These two factors make it important to program in such a way that, if at all possible, the processor
uses data from cache or register, rather than from main memory. To illustrate that this is a serious matter,
consider a vector addition

for (i)
a[i] = b[i]+c[i]

Each iteration performs one floating point operation, which modern CPUs can do in one clock cycle by
using pipelines. However, each iteration needs two numbers loaded and one written, for a total of 24 bytes4

of memory traffic. Typical memory bandwidth figures (see for instance figure 1.3) are nowhere near 24

4. Actually, a[i] is loaded before it can be written, so there are 4 memory access, with a total of 32 bytes, per iteration.

Victor Eijkhout 15

41

Latency and Bandwidth

1.3. Memory Hierarchies

1.3.2 Latency and Bandwidth

Above, we mentioned in very general terms that accessing data in registers is almost instantaneous, whereas
loading data from memory into the registers, a necessary step before any operation, incurs a substantial
delay. We will now make this story slightly more precise.

There are two important concepts to describe the movement of data: latency and bandwidth . The assump-
tion here is that requesting an item of data incurs an initial delay; if this item was the first in a stream of
data, usually a consecutive range of memory addresses, the remainder of the stream will arrive with no
further delay at a regular amount per time period.
Latency is the delay between the processor issuing a request for a memory item, and the item actually

arriving. We can distinguish between various latencies, such as the transfer from memory to
cache, cache to register, or summarize them all into the latency between memory and processor.
Latency is measured in (nano) seconds, or clock periods.
If a processor executes instructions in the order they are found in the assembly code, then execu-
tion will often stall while data is being fetched from memory; this is also called memory stall .
For this reason, a low latency is very important. In practice, many processors have ‘out-of-order
execution’ of instructions, allowing them to perform other operations while waiting for the re-
quested data. Programmers can take this into account, and code in a way that achieves latency
hiding . Graphics Processing Units (GPUs) (see section 2.9) can switch very quickly between
threads in order to achieve latency hiding.

Bandwidth is the rate at which data arrives at its destination, after the initial latency is overcome. Band-
width is measured in bytes (kilobyes, megabytes, gigabyes) per second or per clock cycle. The
bandwidth between two memory levels is usually the product of the cycle speed of the channel
(the bus speed) and the bus width : the number of bits that can be sent simultaneously in every
cycle of the bus clock.

The concepts of latency and bandwidth are often combined in a formula for the time that a message takes
from start to finish:

T (n) = ↵ + �n

where ↵ is the latency and � is the inverse of the bandwidth: the time per byte.

Typically, the further away from the processor one gets, the longer the latency is, and the lower the band-
width. These two factors make it important to program in such a way that, if at all possible, the processor
uses data from cache or register, rather than from main memory. To illustrate that this is a serious matter,
consider a vector addition

for (i)
a[i] = b[i]+c[i]

Each iteration performs one floating point operation, which modern CPUs can do in one clock cycle by
using pipelines. However, each iteration needs two numbers loaded and one written, for a total of 24 bytes4

of memory traffic. Typical memory bandwidth figures (see for instance figure 1.3) are nowhere near 24

4. Actually, a[i] is loaded before it can be written, so there are 4 memory access, with a total of 32 bytes, per iteration.

Victor Eijkhout 15

1.3. Memory Hierarchies

1.3.2 Latency and Bandwidth

Above, we mentioned in very general terms that accessing data in registers is almost instantaneous, whereas
loading data from memory into the registers, a necessary step before any operation, incurs a substantial
delay. We will now make this story slightly more precise.

There are two important concepts to describe the movement of data: latency and bandwidth . The assump-
tion here is that requesting an item of data incurs an initial delay; if this item was the first in a stream of
data, usually a consecutive range of memory addresses, the remainder of the stream will arrive with no
further delay at a regular amount per time period.
Latency is the delay between the processor issuing a request for a memory item, and the item actually

arriving. We can distinguish between various latencies, such as the transfer from memory to
cache, cache to register, or summarize them all into the latency between memory and processor.
Latency is measured in (nano) seconds, or clock periods.
If a processor executes instructions in the order they are found in the assembly code, then execu-
tion will often stall while data is being fetched from memory; this is also called memory stall .
For this reason, a low latency is very important. In practice, many processors have ‘out-of-order
execution’ of instructions, allowing them to perform other operations while waiting for the re-
quested data. Programmers can take this into account, and code in a way that achieves latency
hiding . Graphics Processing Units (GPUs) (see section 2.9) can switch very quickly between
threads in order to achieve latency hiding.

Bandwidth is the rate at which data arrives at its destination, after the initial latency is overcome. Band-
width is measured in bytes (kilobyes, megabytes, gigabyes) per second or per clock cycle. The
bandwidth between two memory levels is usually the product of the cycle speed of the channel
(the bus speed) and the bus width : the number of bits that can be sent simultaneously in every
cycle of the bus clock.

The concepts of latency and bandwidth are often combined in a formula for the time that a message takes
from start to finish:

T (n) = ↵ + �n

where ↵ is the latency and � is the inverse of the bandwidth: the time per byte.

Typically, the further away from the processor one gets, the longer the latency is, and the lower the band-
width. These two factors make it important to program in such a way that, if at all possible, the processor
uses data from cache or register, rather than from main memory. To illustrate that this is a serious matter,
consider a vector addition

for (i)
a[i] = b[i]+c[i]

Each iteration performs one floating point operation, which modern CPUs can do in one clock cycle by
using pipelines. However, each iteration needs two numbers loaded and one written, for a total of 24 bytes4

of memory traffic. Typical memory bandwidth figures (see for instance figure 1.3) are nowhere near 24

4. Actually, a[i] is loaded before it can be written, so there are 4 memory access, with a total of 32 bytes, per iteration.

Victor Eijkhout 15

Implica1ons of Latency and
Bandwidth: LiAle’s law

• Memory loads can depend on each other: loading
the result of a previous opera1on

• Two such loads have to be separated by at least the
memory latency

• In order not to waste bandwidth, at least latency
many items have to be under way at all 1mes, and
they have to be independent

• Mul1ply by bandwidth:

LiAle’s law: Concurrency = Bandwidth x Latency

42

• Finding parallelism is some1mes called `latency
hiding’: load data early to hide latency

• GPUs do latency hiding by spawning many
threads

• Requires fast context switch

43

PS: Latency Hiding and GPUs

Registers

• Highest bandwidth, lowest latency memory that a
modern processor can access; built into the CPU

• Ozen a scarce resource and not random access
• Processors instruc1ons operate on registers directly
– have assembly language names names like:
• eax, ebx, ecx, etc.

– sample instruc1on:
• addl %eax, %edx

• Separate instruc1ons and registers for floa1ng-point
opera1ons

44

• Between the CPU Registers and main memory

• L1 Cache: Data cache closest to registers
• L2 Cache: Secondary data cache, stores both data and

instruc1ons
– Data from L2 has to go through L1 to registers
– L2 is 10 to 100 1mes larger than L1
– Some systems have an L3 cache, ~10x larger than L2

• Cache line

45

Data Caches

• The smallest unit of data transferred between main
memory and the caches (or between levels of cache;
every cache has its own line size)

• N sequen1ally-stored, mul1-byte words (usually N=8
or 16).

• If you request one word on a cache line, you get the
whole line
– Make sure to use the other items, you’ve paid for them in

bandwidth
– Sequen1al access good, “strided” access ok, random access

bad
46

Cache Line

Main Memory

• Cheapest form of RAM
• Also the slowest

– lowest bandwidth
– highest latency

• Unfortunately most of our data lives out here

47

Cache and Register Access

• Access is transparent to the programmer
– data is in a register or in cache or in memory
– Loaded from the highest level where it’s found
– processor/cache controller/MMU hides cache access from the

programmer

• …but you can influence it:
– Access x (that puts it in L1), access 100k of data, access x

again: it will probably be gone from cache
– If you use an element twice, don’t wait too long
– If you loop over data, try to take chunks of less than cache

size
– In C declare register variable, only sugges1on

48

Register Use

• y[i] can be kept in
register

• Declara1on is only
sugges1on to the
compiler

• Compiler can usually
figure this out itself

for (i=0; i<m; i++) {
 for (j=0; j<n; j++) {
 y[i] = y[i]+a[i][j]*x[j];
 }
}

register double s;
for (i=0; i<m; i++) {
 s = 0.;
 for (j=0; j<n; j++) {
 s = s+a[i][j]*x[j];
 }
 y[i] = s;
}

49

• Cache hit
– loca1on referenced is found in the cache

• Cache miss
– loca1on referenced is not found in cache
– triggers access to the next higher cache or memory

• Cache thrashing
– Two data elements can be mapped to the same cache line:

loading the second “evicts” the first
– Now what if this code is in a loop? “thrashing”: really bad for

performance

Hits, Misses, Thrashing

50

Cache Mapping

• Because each memory level is smaller than the next-
closer level, data must be mapped

• Types of mapping
– Direct
– Set associa1ve
– Fully associa1ve

51

A block from main memory can go in exactly one place in the cache.
This is called direct mapped because there is direct mapping from
any block address in memory to a single loca1on in the cache.

Typically modulo calcula1on (e.g. keep 16 last bits of memory address)
cache

main memory

52

Direct Mapped Cache

• Example: cache size 64K, needs 16
bits to address

• a[0] and b[0] mapped to the same
cache loca1on

• Cache line is 4 words
• Thrashing:

– b[0]..b[3] loaded to cache, to register

– a[0]..a[3] loaded, gets new value, kicks
b[0]..b[3] out of cache

– b[1] requested, so b[0]..b[3] loaded again

– a[1] requested, loaded, kicks b[0..3] out
again

double a[8192],b[8192];
for (i=0; i<n; i++) {
 a[i] = b[i]
}

53

The Problem with Direct Mapping

A block from main memory can be placed in any loca1on in the
cache. This is called fully associa1ve because a block in main
memory may be associated with any entry in the cache. Requires
lookup table.

cache

main memory

54

Fully Associa1ve Caches

Fully Associa1ve Caches

• Ideal situa1on
• Any memory loca1on can be associated with any cache

line
• Cost prohibi1ve

55

In a n-way set associa1ve cache a block from main memory can go
into n (n at least 2) loca1ons in the cache.

2-way set-associa1ve cache

main memory

56

Set Associa1ve Caches

Set Associa1ve Caches

• Direct-mapped caches are 1-way set-associa1ve caches
• For a k-way set-associa1ve cache, each memory region

can be associated with k cache lines
• Fully associa1ve is k-way with k the number of cache

lines

57

Transla1on Look-Aside Buffer (TLB)
• Translates between logical space that each program has

and actual memory addresses
• Memory organized in ‘small pages’, a few Kbyte in size
• Memory requests go through the TLB, normally very

fast
• Pages that are not tracked through the TLB can be

found through the ‘page table’: much slower
• -> Jumping between more pages than the TLB can track

has a performance penalty
• This illustrates the need for spa1al locality

58

Prefetch

• Hardware tries to detect if you load regularly spaced
data:
– “prefetch stream”
– This can some1mes be programmed in sozware,

ozen only in-line assembly

59

Data reuse

• Performance is limited by data transfer rate
• High performance if data items are used mul1ple 1mes
• Examples:

– vector addi1on xi=xi+yi: 1op, 3 mem accesses

– inner product s=s+xi*yi: 2op, 2 mem access (s in
register; also no writes)

60

Data reuse: matrix-matrix product

• Matrix-matrix product: 2n3 ops, 2n2 data

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 s = 0;
 for (k=0; k<n; k++) {
 s = s+a[i][k]*b[k][j];
 }
 c[i][j] = s;
 }
}

Is there any data reuse in
this algorithm?

61

Data reuse: matrix-matrix product

• Matrix-matrix product: 2n3 ops, 2n2 data
– Data reuse is O(n): every data item is used O(n)

Cmes
• If it can be programmed right, this can overcome the

bandwidth/cpu speed gap
• Again only theore1cally: naïve implementa1ons are

inefficient... so do not code this yourself: use BLAS
(MKL, Atlas, etc.)

• (This is the important kernel in the Linpack benchmark:
cf. Top500)

62

63

1.6. Programming strategies for high performance

Figure 1.15: Performance of naive and optimized implementations of the Discrete Fourier Transform

Figure 1.16: Performance of naive and optimized implementations of the matrix-matrix product

• Compilers are not able to extract anywhere close to optimal performance9.
• There are autotuning projects for automatic generation of implementations that are tuned to the

architecture. This approach can be moderately to very successful. Some of the best known of
these projects are Atlas [133] for Blas kernels, and Spiral [112] for transforms.

1.6.10 Cache aware programming

Unlike registers and main memory, both of which can be addressed in (assembly) code, use of caches
is implicit. There is no way a programmer can load data explicitly to a certain cache, even in assembly
language.

9. Presenting a compiler with the reference implementation may still lead to high performance, since some compilers are
trained to recognize this operation. They will then forego translation and simply replace it by an optimized variant.

Victor Eijkhout 45

Locality

• Programming for high performance is based on spa1al
and temporal locality

• Temporal locality:
– Group references to one item close together:

• Spa1al locality:
– Group references to nearby memory items together

64

Temporal Locality

• Use an item, use it again before it is flushed from
register or cache:
– Use item,
– Use small number of other data
– Use item again

65

Temporal locality: example

Original loop:
long 1me between uses of x,

Rearrangement:
x is reused

66

for (loop=0; loop<10; loop++) {
 for (i=0; i<N; i++) {
 ... = ... x[i] ...
 }
}

for (i=0; i<N; i++) {
 for (loop=0; loop<10; loop++) {
 ... = ... x[i] ...
 }
}

Spa1al Locality

• Use items close together
• Cache lines: if the cache line is already loaded, other

elements are ‘for free’
• TLB: don’t jump more than 512 words too many 1mes

67

Illustra1on: Cache Size

for (i=0; i<NRUNS; i++)
 for (j=0; j<size; j++)
 array[j] = 2.3*array[j]+1.2;

• If the data fits in L1 cache, the transfer is very fast
• If there is more data, transfer speed from L2 dominates

68

Illustra1on: Cache size

 for (i=0; i<NRUNS; i++) {
 blockstart = 0;
 for (b=0; b<size/l1size; b++)
 for (j=0; j<l1size; j++)
 array[blockstart+j] = 2.3*array[blockstart+j]+1.2;
 }

• Data can some1mes be arranged to fit in cache:
• Cache blocking

69

Illustra1on: Cache line u1liza1on
 for (i=0,n=0; i<L1WORDS; i++,n+=stride)
 array[n] = 2.3*array[n]+1.2;

• Same amount of data,
but increasing stride

• Increasing stride: more
cachelines loaded,
slower execu1on

70

Power Consump1on

• Scale all geometrical features by s (s < 1):
– dynamic power consump1on P is scaled to s2P
– circuit delay T is scaled to sT
– opera1ng frequency F is changed to F/s
– Energy consump1on is scaled by s3, and this gives us

the space to put more components on a chip
• However, miniaturiza1on of features is coming to a

stands1ll due to laws of physics
• Increasing frequency would raise heat produc1on
• -> “Power wall”

71

Power Consump1on

72

1.7. Power consumption

The net result is that the dynamic power consumption P is scaled to s2P , circuit delay T is scaled to sT ,
and operating frequency F is changed to F/s.Correspondingly, the energy consumption is scaled by s3,
and this gives us the space to put more components on a chip.

At the time of this writing (circa 2010), miniaturization of components has almost come to a standstill,
because further lowering of the voltage would give prohibitive leakage. Conversely, the frequency can not
be scaled up since this would raise the heat production of the chip too far. Figure 1.17 gives a dramatic

Figure 1.17: Projected heat dissipation of a CPU if trends had continued – this graph courtesy Pat Helsinger

illustration of the heat that a chip would give off, if single-processor trends had continued.

One conclusion is that computer design is running into a power wall , where the sophistication of a single
core can not be increased any further (so we can for instance no longer increase ILP and pipeline depth)
and the only way to increase pwerformance is to increase the amount of explicitly visible parallelism. This
development has led to the current generation of multicore processors; see section 1.4. It is also the reason
GPUs with their simplified processor design and hence lower energy consumption are attractive; the same
holds for Field-Programmable Gate Arrays (FPGAs).

The total power consumption of a parallel computer is determined by the consumption per processor and
the number of processors in the full machine. At present, this is commonly several Megawatts. By the
above reasoning, the increase in power needed from increasing the number of processors can no longer be
offset by more power-effective processors, so power is becoming the overriding consideration as parallel
computers move from the petascale (attained in 2008 by the IBM Roadrunner) to a projected exascale.

Victor Eijkhout 47

Mul1core Architectures

• “Power wall” (clock frequency cannot be increased)
• Limits of Instruc1on Level Parallelism (ILP)
– compiler limita1ons
– limited amount of intrinsically available parallelism
– branch predic1on

• Solu1on: divide chip into mul1ple processing “cores”:
– 2 cores at lower frequency can have same throughput as 1

core at higher frequency (breaks power wall)
– discovered ILP replaced by explicit task parallelism,

managed by programmer

73

Mul1core Architectures

74

1. Sequential Computing

Figure 1.2: Cache hiearchy in a single-core and dual-core chip

With a cache, the assembly code stays the same, but the actual behaviour of the memory system now
becomes:

• load x from memory into cache, and from cache into register; operate on it;
• do the intervening instructions;
• request x from memory, but since it is still in the cache, load it from the cache into register;

operate on it.

Since loading from cache is faster than loading from main memoory, the computation will now be faster.
Caches are fairly small, so values can not be kept there indefinitely. We will see the implications of this in
the following discussion.

There is an important difference between cache memory and registers: while data is moved into register by
explicit assembly instructions, the move from main memory to cache is entirely done by hardware. Thus
cache use and reuse is outside of direct programmer control. Later, especially in sections 1.5.2 and 1.6,
you will see how it is possible to influence cache use indirectly.

1.3.4.2 Cache levels, speed and size

The caches are called ‘level 1’ and ‘level 2’ (or, for short, L1 and L2) cache; some processors can have an
L3 cache. The L1 and L2 caches are part of the die , the processor chip, although for the L2 cache that is
a recent development; the L3 cache is off-chip. The L1 cache is small, typically around 16Kbyte. Level 2
(and, when present, level 3) cache is more plentiful, up to several megabytes, but it is also slower. Unlike
main memory, which is expandable, caches are fixed in size. If a version of a processor chip exists with a
larger cache, it is usually considerably more expensive. In multicore chips, the cores typically have some
private cache, while there is also shared cache on the processor chip.

18 Introduction to High Performance Scientific Computing

Single core Dual core

Mul1-core chips

• What is a processor? Instead, talk of “socket” and
“core”

• Cores have separate L1, shared L2 cache
– Hybrid shared/distributed model

• Cache coherency problem: conflic1ng access to
duplicated cache lines

75

Need to study parallel architecture and
programming...

