
Parallel programming

125

Programming the memory models

• Shared memory: all processors share the same address
space
– OpenMP: direc1ves-based programming
– PGAS languages (UPC, Titanium, X10)

• Distributed memory: every processor has its own
address space
– MPI: Message Passing Interface

126

Ideal vs Prac1ce

• Shared memory (or SMP: Symmetric Mul1Processor) is
easy to program (OpenMP) but hard to build
– bus-based systems can become saturated
– large, fast (high bandwidth, low latency) crossbars are

expensive
– cache-coherency is hard to maintain at scale

127

Ideal vs Prac1ce

• Distributed memory is easy to build (bunch of PCs,
ethernet) but hard to program (MPI)
– You have to spell it all out
– interconnects have higher latency, so data is not immediately

there
– makes parallel algorithm development and programming

harder

128

Programmer’s view vs Hard reality

• It is possible for distributed hardware to act like shared
• Middle layer: programma1c, OS, hardware support
• New machines: SGI UV, Cray Gemini

129

Shared memory programming in
OpenMP

• Shared memory.
• Various issues: cri1cal regions, binding, thread

overhead

130

Thread programming

• Threads have shared address space (unlike processes)
• Great for parallel processing on shared memory
• Ex: quad-core => use 4 threads (8 with HT)
• OpenMP declares parallel tasks, the threads execute

them in some order (shared memory essen1al!)
• Obvious example: loop itera1ons can be parallel

131

OpenMP programming
• “pragma”-based: direc1ves to the compiler

132

OpenMP programming

• Handling of private and shared data

133

Now that threads have come up…

• Your typical core can handle one thread (two with HT)
• `Context switching’ is expensive
• GPU handles many threads with ease, in fact relies on it
• => GPU is even more SIMD than you already realized

134

On to Distributed Memory

135

Parallel algorithms vs  
parallel programming

• Example: two arrays x and y; n processors;  
pi stores xi and yi

• Algorithm: yi := yi+xi-1

• Global descrip1on:
– Processors 0..n-2 send their x element to the right
– Processors 1..n-1 receive an x element from the lez
– Add the received number to their y element

136

Local implementa1ons

• One implementa1on:
– If my number >0: receive a x element, add it to my y element
– If my number <n-1: send my x element to the right

• Other implementa1on
– If my number <n-1: send my x element to the right
– If my number >0: receive a x element, add it to my y element

137

• One implementa1on:
– If my number >0: receive a x element, add it to my y element
– If my number <n-1: send my x element to the right

138

• Other implementa1on
– If my number <n-1: send my x element to the right
– If my number >0: receive a x element, add it to my y element

139

• BeAer implementa1on
– If my number odd: receive then send
– If my number even: send then receive

140

Blocking opera1ons

• Send & recv opera1ons are blocking: a send does not
finished un1l the message is actually received

• Parallel opera1on becomes sequen1alized; in a ring
even loads to deadlock

141

Non-Blocking opera1ons
• Non-blocking send & recv:

– Give a buffer to the system to send from / recv into
– Con1nue with next instruc1on
– Check for comple1on later

142

MPI: message passing
• Message Passing

Interface: library for
explicit
communica1on

• Point-to-point and
collec1ve
communica1on

• Blocking seman1cs,
buffering

• Looks harder than it is

143

 if(myid == 0)
 {
 printf("WE have %d processors\n", numprocs);
 for(i=1;i<numprocs;i++)
 {
 sprintf(buff, "Hello %d", i);
 MPI_Send(buff, 128, MPI_CHAR,
 i, 0, MPI_COMM_WORLD);
 }
 for(i=1;i<numprocs;i++)
 {
 MPI_Recv(buff, 128, MPI_CHAR,
 i, 0, MPI_COMM_WORLD, &stat);
 printf("%s\n", buff);
 }
 }
 else
 {
 MPI_Recv(buff, 128, MPI_CHAR,
 0, 0, MPI_COMM_WORLD, &stat);
 sprintf(idstr, " Processor %d ", myid);
 strcat(buff, idstr);
 strcat(buff, "reporting for duty\n");
 MPI_Send(buff, 128, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
 }

Basic Anatomy of a Server/Desktop/
Laptop/Cluster-node

 CPU

 Memory

motherboard

 CPU

 Memory

motherboard

Switch

Adapter

• Interconnect Network

• Memory

nodenode

144

RAID

• Was: Redundant Array of Inexpensive Disks
• Now: Redundant Array of Independent Disks
• Mul1ple disk drives working together to:

– increase capacity of a single logical volume
– increase performance
– improve reliability/add fault tolerance

• 1 Server with RAIDed disks can provide disk access to
mul1ple nodes with NFS

145

Parallel Filesystems
• Use mul1ple servers together to aggregate disks

– u1lizes RAIDed disks
– improved performance
– even higher capaci1es
– may use high-performance network

• Vendors/Products
– CFS/Lustre
– IBM/GPFS
– IBRIX/IBRIXFusion
– RedHat/GFS
– ...

146

Summary

• Why so much parallel talk?
– Every computer is a parallel computer now
– Good serial compu1ng skills central to good parallel

compu1ng
– Cluster and MPP nodes are largely like desktops and laptops

• Processing units: CPUs, FPUs, GPUs
• Memory hierarchies: Registers, Caches, Main memory
• Internal Interconnect: Buses and Switch-based networks

– Clusters and MPPs built via fancy connec1ons.

147

