
Parallel programming
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Programming the memory models

• Shared memory: all processors share the same address 
space 
– OpenMP: direc1ves-based programming 
– PGAS languages (UPC, Titanium, X10) 

• Distributed memory: every processor has its own 
address space 
– MPI: Message Passing Interface
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Ideal vs Prac1ce

• Shared memory (or SMP: Symmetric Mul1Processor) is 
easy to program (OpenMP) but hard to build 
– bus-based systems can become saturated 
– large, fast (high bandwidth, low latency) crossbars are 

expensive 
– cache-coherency is hard to maintain at scale
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Ideal vs Prac1ce

• Distributed memory is easy to build (bunch of PCs, 
ethernet) but hard to program (MPI)   
– You have to spell it all out 
– interconnects have higher latency, so data is not immediately 

there 
– makes parallel algorithm development and programming 

harder
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Programmer’s view vs Hard reality

• It is possible for distributed hardware to act like shared 
• Middle layer: programma1c, OS, hardware support 
• New machines: SGI UV, Cray Gemini
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Shared memory programming in 
OpenMP 

• Shared memory. 
• Various issues: cri1cal regions, binding, thread 

overhead
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Thread programming

• Threads have shared address space (unlike processes) 
• Great for parallel processing on shared memory 
• Ex: quad-core => use 4 threads (8 with HT) 
• OpenMP declares parallel tasks, the threads execute 

them in some order (shared memory essen1al!) 
• Obvious example: loop itera1ons can be parallel
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OpenMP programming
• “pragma”-based: direc1ves to the compiler
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OpenMP programming

• Handling of private and shared data
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Now that threads have come up…

• Your typical core can handle one thread (two with HT) 
• `Context switching’ is expensive 
• GPU handles many threads with ease, in fact relies on it 
• => GPU is even more SIMD than you already realized
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On to Distributed Memory
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Parallel algorithms vs  
parallel programming

• Example: two arrays x and y; n processors;  
pi stores xi and yi 

• Algorithm: yi := yi+xi-1 

• Global descrip1on: 
– Processors 0..n-2 send their x element to the right 
– Processors 1..n-1 receive an x element from the lez 
– Add the received number to their y element
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Local implementa1ons

• One implementa1on: 
– If my number >0: receive a x element, add it to my y element 
– If my number <n-1: send my x element to the right 

• Other implementa1on 
– If my number <n-1: send my x element to the right 
– If my number >0: receive a x element, add it to my y element
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• One implementa1on: 
– If my number >0: receive a x element, add it to my y element 
– If my number <n-1: send my x element to the right
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• Other implementa1on 
– If my number <n-1: send my x element to the right 
– If my number >0: receive a x element, add it to my y element
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• BeAer implementa1on 
– If my number odd: receive then send 
– If my number even: send then receive
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Blocking opera1ons

• Send & recv opera1ons are blocking: a send does not 
finished un1l the message is actually received 

• Parallel opera1on becomes sequen1alized; in a ring 
even loads to deadlock
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Non-Blocking opera1ons
• Non-blocking send & recv: 

– Give a buffer to the system to send from / recv into 
– Con1nue with next instruc1on 
– Check for comple1on later
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MPI: message passing
• Message Passing 

Interface: library for 
explicit 
communica1on 

• Point-to-point and 
collec1ve 
communica1on 

• Blocking seman1cs, 
buffering 

• Looks harder than it is
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 if(myid == 0) 
  { 
    printf("WE have %d processors\n", numprocs); 
    for(i=1;i<numprocs;i++) 
    { 
      sprintf(buff, "Hello %d", i); 
      MPI_Send(buff, 128, MPI_CHAR,  
              i, 0, MPI_COMM_WORLD); 
    } 
    for(i=1;i<numprocs;i++) 
    { 
      MPI_Recv(buff, 128, MPI_CHAR,  
               i, 0, MPI_COMM_WORLD, &stat); 
      printf("%s\n", buff); 
    } 
  } 
  else 
  { 
    MPI_Recv(buff, 128, MPI_CHAR,  
             0, 0, MPI_COMM_WORLD, &stat); 
    sprintf(idstr, " Processor %d ", myid); 
    strcat(buff, idstr); 
    strcat(buff, "reporting for duty\n"); 
    MPI_Send(buff, 128, MPI_CHAR, 0, 0, MPI_COMM_WORLD); 
  }



Basic Anatomy of a Server/Desktop/
Laptop/Cluster-node

 CPU

 Memory

motherboard

 CPU

 Memory

motherboard

Switch

Adapter

• Interconnect Network  

• Memory  

nodenode
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RAID

• Was: Redundant Array of Inexpensive Disks 
• Now: Redundant Array of Independent Disks 
• Mul1ple disk drives working together to: 

– increase capacity of a single logical volume 
– increase performance 
– improve reliability/add fault tolerance 

• 1 Server with RAIDed disks can provide disk access to 
mul1ple nodes with NFS
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Parallel Filesystems
• Use mul1ple servers together to aggregate disks 

– u1lizes RAIDed disks 
– improved performance 
– even higher capaci1es 
– may use high-performance network 

• Vendors/Products 
– CFS/Lustre 
– IBM/GPFS 
– IBRIX/IBRIXFusion 
– RedHat/GFS 
– ...
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Summary

• Why so much parallel talk? 
– Every computer is a parallel computer now 
– Good serial compu1ng skills central to good parallel 

compu1ng 
– Cluster and MPP nodes are largely like desktops and laptops 

• Processing units: CPUs, FPUs, GPUs 
• Memory hierarchies: Registers, Caches, Main memory 
• Internal Interconnect: Buses and Switch-based networks 

– Clusters and MPPs built via fancy connec1ons.
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