Parallel programming

125

Programming the memory models

« Shared memory: all processors share the same address
space

— OpenMP: directives-based programming
— PGAS languages (UPC, Titanium, X10)

e Distributed memory: every processor has its own
address space

— MPI: Message Passing Interface

126

ldeal vs Practice

e Shared memory (or SMP: Symmetric MultiProcessor) is
easy to program (OpenMP) but hard to build
— bus-based systems can become saturated

— large, fast (high bandwidth, low latency) crossbars are
expensive

— cache-coherency is hard to maintain at scale

127

ldeal vs Practice

o Distributed memory is easy to build (bunch of PCs,
ethernet) but hard to program (MPI)
— You have to spell it all out

— interconnects have higher latency, so data is not immediately
there

— makes parallel algorithm development and programming
harder

128

Programmer’s view vs Hard reality

 |tis possible for distributed hardware to act like shared
« Middle layer: programmatic, OS, hardware support

« New machines: SGI UV, Cray Gemini

129

Shared memory programming in
OpenMP

Parallel Task | Parallel Task 1l Parallel Task Il
o~
Master Thread

Parallel Task | Parallel Task || Parallel Task Il

Master Thread

1

e Shared memory.

« Various issues: critical regions, binding, thread
overhead

130

Thread programming

Threads have shared address space (unlike processes)
Great for parallel processing on shared memory
Ex: quad-core => use 4 threads (8 with HT)

OpenMP declares parallel tasks, the threads execute
them in some order (shared memory essential!)

Obvious example: loop iterations can be parallel

131

OpenMP programming

« “pragma”-based: directives to the compiler

#pragma omp parallel default(none) \
shared(n,x,y) private (i)
{
#pragma omp for
for (1i=0; i<n; i++)
x[1] += yl[i]l;
} /*-— End of parallel region —--*/

'Somp parallel default (none) &
'Somp shared(n,x,y) private (i)
'Somp do

do 1 =1, n

x(i) = x(i) + y(i)

end do
'Somp end do
'Somp end parallel

clauses

132

OpenMP programming

« Handling of private and shared data

! Somp
! Somp
I Somp

I Somp
! Somp

shared (n,x) private
do reduction (+:sum)
do 1i =1, n

sum = sum + x(1)
end do
end do
end parallel
print *,sum

Variable SUM is a
shared variable

133

Now that threads have come up...

Your typical core can handle one thread (two with HT)
"Context switching’ is expensive
GPU handles many threads with ease, in fact relies on it

=> GPU is even more SIMD than you already realized

134

On to Distributed Memory

135

Parallel algorithms vs
parallel programming

* Example: two arrays x and y; n processors;
p; stores x.and y.

o Algorithm:y.:=y+x.

« Global description:
— Processors 0..n-2 send their x element to the right
— Processors 1..n-1 receive an x element from the left

— Add the received number to their y element

136

Local implementations

« One implementation:

— If my number >0: receive a x element, add it to my y element

— If my number <n-1: send my x element to the right

e Other implementation

— If my number <n-1: send my x element to the right

— If my number >0: receive a x element, add it to my y element

137

« One implementation:

— If my number >0: receive a x element, add it to my y element

— If my number <n-1: send my x element to the right

‘

\\\
S
~

global timeline

Pi
‘ | local timelines
> L

138

« Other implementation

— If my number <n-1: send my x element to the right

— If my number >0: receive a x element, add it to my y element

| local timelines

J—V’ global timeline
>

139

Better implementation

— If my number odd: receive then send

— If my number even: send then receive

Po Pi+1 Pn-1

| local timelines

[> " J > " ‘ global timeline
> >

140

Blocking operations

« Send & recv operations are blocking: a send does not
finished until the message is actually received

« Parallel operation becomes sequentialized; in a ring
even loads to deadlock

141

Non-Blocking operations

« Non-blocking send & recv:

— Give a buffer to the system to send from / recv into
— Continue with next instruction

— Check for completion later

142

MPI: message passing

Message Passing
Interface: library for
explicit
communication

Point-to-point and
collective
communication

Blocking semantics,
buffering

Looks harder than it is

if (myid == 0)
{
printf ("WE have %d processors\n", numprocs) ;
for (i=1;i<numprocs;i++)
{
sprintf (buff, "Hello %d", 1i);
MPI_Send(buff, 128, MPI_CHAR,
i, 0, MPI_COMM WORLD) ;
}
for (i=1;i<numprocs;i++)
{
MPI Recv (buff, 128, MPI CHAR,
i, 0, MPI_COMM WORLD, &stat);
printf ("$s\n", buff);
}
}
else
{
MPI Recv(buff, 128, MPI CHAR,

0, 0, MPI COMM WORLD, &stat);
sprintf (idstr, " Processor %d ", myid) ;
strcat (buff, idstr);
strcat (buff, "reporting for duty\n");

MPI_Send (buff, 128, MPI_CHAR, 0, 0, MPI COMM WORLD) ;

143

Basic Anatomy of a Server/Desktop/
Laptop/Cluster-node

node node
motherboard motherboard
CPU CPU
Switch
Memory 3 E Memory
I:L‘Adapter -t
g /

®* Processors

* Memory

* Interconnect Network
144

RAID

Was: Redundant Array of Inexpensive Disks
Now: Redundant Array of Independent Disks
Multiple disk drives working together to:

— increase capacity of a single logical volume
— increase performance
— improve reliability/add fault tolerance

1 Server with RAIDed disks can provide disk access to
multiple nodes with NFS

145

Parallel Filesystems

« Use multiple servers together to aggregate disks
— utilizes RAIDed disks
— improved performance
— even higher capacities
— may use high-performance network
e Vendors/Products
— CFS/Lustre
— IBM/GPFS
— IBRIX/IBRIXFusion
— RedHat/GFS

146

Summary

« Why so much parallel talk?

— Every computer is a parallel computer now
— Good serial computing skills central to good parallel
computing
— Cluster and MPP nodes are largely like desktops and laptops
e Processing units: CPUs, FPUs, GPUs

« Memory hierarchies: Registers, Caches, Main memory

e Internal Interconnect: Buses and Switch-based networks

— Clusters and MPPs built via fancy connections.

147

