
Boundary value problems

Consider �u
00(x) = f (x , u, u0) for x 2 [a, b] where u(a) = ua,

u(b) = ub in 1D

and

�uxx(x̄)� uyy (x̄) = f (x̄) for x 2 ⌦ = [0, 1]2 with u(x̄) = u0 on �⌦
in 2D.



Approximation of 2nd order derivatives

Taylor series (write h for �x):

u(x + h) = u(x) + u0(x)h+ u00(x)
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and

u(x � h) = u(x)� u0(x)h+ u00(x)
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Add:

u(x + h) + u(x � h) = 2u(x) + u00(x)h2 + u(4)(x)
h4
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+ · · ·

so

u00(x) =
u(x + h)� 2u(x) + u(x � h)

h2
� u(4)(x)

h4
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Numerical scheme:

�u(x + h)� 2u(x) + u(x � h)
h2

= f (x , u(x), u0(x))

(2nd order PDEs are very common!)



This leads to linear algebra

�u(x + h)� 2u(x) + u(x � h)

h2
= f (x , u(x), u0(x))

Equally spaced points on [0, 1]: xk = kh where h = 1/n, then

�uk+1 + 2uk � uk�1 = h
2
f (xk , uk , u

0
k) for k = 1, . . . , n � 1

Written as matrix equation:
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Matrix properties

I Very sparse, banded

I Symmetric (only because 2nd order problem)

I Sign pattern: positive diagonal, nonpositive o↵-diagonal
(true for many second order methods)

I Positive definite (just like the continuous problem)



Sparse matrix in 2D case

Sparse matrices so far were tridiagonal: only in 1D case.

Two-dimensional: �uxx � uyy = f on unit square [0, 1]2

Di↵erence equation:

4u(x , y)�u(x+h, y)�u(x�h, y)�u(x , y +h)�u(x , y �h) = h
2
f (x , y)

This is a graph!



Sparse matrix from 2D equation
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Sparse matrix storage

Matrix above has many zeros: n2 elements but only O(n)
nonzeros. Big waste of space to store this as square array.

Matrix is called ‘sparse’ if there are enough zeros to make
specialized storage feasible.



Compressed Row Storage

A =

0
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10 0 0 0 �2 0
3 9 0 0 0 3
0 7 8 7 0 0
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Compressed Row Storage (CRS): store all nonzeros by row, their
column indices, pointers to where the columns start (1-based
indexing):

val 10 -2 3 9 3 7 8 7 3 · · · 9 13 4 2 -1
col ind 1 5 1 2 6 2 3 4 1 · · · 5 6 2 5 6

row ptr 1 3 6 9 13 17 20 .



Sparse matrix operations

Most common operation: matrix-vector product

for (row=0; row<nrows; row++) {

s = 0;

for (icol=ptr[row]; icol<ptr[row+1]; icol++) {

int col = ind[icol];

s += a[aptr] * x[col];

aptr++;

}

y[row] = s;

}

Operations with changes to the nonzero structure are much harder!

Indirect addressing of x gives low spatial and temporal locality.



The graph view of things

Poisson eq:

4uk � uk�1 � uk+1 � uk�n � uk+n = fk

Consider a graph where {uk}k are the edges
and (ui , uj) is an edge i↵ aij 6= 0.

This is the (adjacency) graph of a sparse matrix.



Graph theory of sparse matrices



Initial Boundary value problem

Heat conduction in a rod T (x , t) for x 2 [a, b], t > 0:
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T (x , t) = q(x , t)

I Initial condition: T (x , 0) = T0(x)

I Boundary conditions: T (a, t) = Ta(t), T (b, t) = Tb(t)

I Material property: ↵ > 0 is thermal di↵usivity

I Forcing function: q(x , t) is externally applied heating.

The equation u
00(x) = f above is the steady state.



Discretization

Space discretization: x0 = a, xn = b, xj+1 = xj +�x

Time discretiation: t0 = 0, tk+1 = tk +�t

Let T k
j approximate T (xj , tk)

Space:
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Computational form: explicit
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This has an explicit form:

T
e
k+1 =

✓
I +

↵�t

�x2

◆
KT
e
k +�tq

e
k



Computational form: implicit
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Needs to solve a linear system in every time step



Stability of explicit scheme

Let q ⌘ 0; assume T
k
j = �k

e
i`xj ; for stability we require |�| < 1:
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To get |�| < 1:

I 2↵�t
�x2 (cos(`�x)� 1) < 0: automatic
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�x2 (cos(`�x)� 1) > �2: needs 2↵�t
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big restriction on size of time steps



Stability of implicit scheme
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Noting that 1� cos(`�x) > 0, the condition |�| < 1 always satisfied:

method always stable.


