Boundary value problems

Consider —u"(x) = f(x, u, u) for x € [a, b] where u(a) = u,,
u(b) = up in 1D

and

— U (X) — 1y (%) = F(X) for x € Q = [0, 1] with u(X) = up on 6Q
in 2D.



Approximation of 2nd order derivatives
Taylor series (write h for dx):

hl + UW(X) + u (4) (X)

u(x 4+ h) = u(x)+ u'(x)h + v (x )2

and

u(x —h) = u(x) — ' (x)h+ ' (X)i _ u/”(x) + J 4)(x)

Add: .
u(x + h) 4+ u(x — h) = 2u(x) + u"(x)h2 + u(L‘)(X)f—2 +
” (x + ) — 2u(x) + u(x — h) X
" u(x+ h) —2u(x)+u(x—nh ) h
u'(x) = 3 —u (XE+...

Numerical scheme:

_u(x+ h) —2u(x) + u(x — h)

= = £(x, u(x). u(x))

(2nd order PDEs are very common!)



This leads to linear algebra

et h) 22009 U ) _ gty ), ()

Equally spaced points on [0, 1]: xx = kh where h =1/n, then

—Uky1 + 22Uk — U1 = W f(xk,uk,up) fork=1,...,n—1

Written as matrix equation:



Matrix properties

v

Very sparse, banded

v

Symmetric (only because 2nd order problem)

v

Sign pattern: positive diagonal, nonpositive off-diagonal
(true for many second order methods)

v

Positive definite (just like the continuous problem)



Sparse matrix in 2D case

Sparse matrices so far were tridiagonal: only in 1D case.
Two-dimensional: —u, — uy,, = f on unit square [0, 1]
Difference equation:

4u(x,y) —u(x+h,y) —u(x—h,y) —u(x,y + h) —u(x,y — h) = h*f(x, y)
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Sparse matrix from 2D equation

4 -1 0| -1 0
-1 4 1 -1
-1
0] -1 4 ] -1
-1 ] 4 -1 -1
-1 -1 4 -1 -1
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Sparse matrix storage

Matrix above has many zeros: n? elements but only O(n)
nonzeros. Big waste of space to store this as square array.

Matrix is called ‘sparse’ if there are enough zeros to make
specialized storage feasible.
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Compressed Row Storage

10 0 0 0 -2
3900 O
0787 0

A= 308 7 5
0809 9
0400 2

1

= W oo wOo

(1)

Compressed Row Storage (CRS): store all nonzeros by row, their

column indices, pointers to where the columns start (1-based

indexing):
val | 10 | -2 913|7(8|7[3---9]13 2 -1
colind | 1| 5|1|2|6|2|3|4|1--- 6 5| 6
rowptr [ 1[3]6[9][13[17]20]




Sparse matrix operations

Most common operation: matrix-vector product

for (row=0; row<nrows; row++) {
s = 0;
for (icol=ptr[row]; icol<ptr[row+1]; icol++) {
int col = ind[icoll;
s += alaptr] * x[coll;
aptr++;
}

ylrow] = s;

Operations with changes to the nonzero structure are much harder!

Indirect addressing of x gives low spatial and temporal locality.



The graph view of things

Poisson eq:
dug — Uk—1 — Uk41 — Uk—n — Uk+n = Tk

Consider a graph where {uy}x are the edges
and (u;, uj) is an edge iff a;; # 0.

This is the (adjacency) graph of a sparse matrix.



Graph theory of sparse matrices
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Initial Boundary value problem

Heat conduction in a rod T(x,t) for x € [a, b], t > 0:

2

5 T(x, t) = q(x, t)

QT(X, t) — as

ot

v

Initial condition: T(x,0) = To(x)
Boundary conditions: T(a, t) = T,(t), T(b,t) = Tp(t)
Material property: « > 0 is thermal diffusivity

v

v

v

Forcing function: q(x, t) is externally applied heating.

The equation u”(x) = f above is the steady state.



Discretization

Space discretization: xp = a, x, = b, Xj11 = x; + Ax
Time discretiation: tp = 0, txyr1 = tx + At
Let Tj" approximate T (x;, tx)

Space:
0 T(xj-1,t) =2T(x, t) + T(xj11, t)
5 1 (5 t) —a A = q(x;, t)

Explicit time stepping:

k+1 k k k k
Ul _aTj—l_2Tj +Tj+1:qg<

At Ax2 J

Implicit time stepping:

k+1 Tk k+1 o rk+1 k+1
T T o

At Ax? J




Computational form: explicit

alt
Ax2
This has an explicit form:

T = TF 4 —=5(Tfy = 2Tf + Tf) + Atqgf

At
T+ = </+Z 2) KT+ Atg*



Computational form: implicit

k1 QAL k+1 k+1 k41 K K

This has an impI|C|t form:

At
(/ _ ‘ZX2K> TH = T 4 Atg*

Needs to solve a linear system in every time step



Stability of explicit scheme

Let g = 0; assume Tjk = Bke'®; for stability we require |3] < 1:

k+1 Ky oAt K K
T = T ST 2T Ty
= Bk—H'G'MXj — Bk i€x; + (ZA;- (Bkeiij'_1 o 26keiﬁx_,- + Bkeiﬂx_,'_u)
At 1
=8 = 1+ Z 2[ ( /EAx+e—EAx)_1]

alAt
= 14 ZE(cos(ﬂAx) -1)



pk+1 B alt
G 1 +2AX2

To get |5 < 1t

(cos(¢Ax) — 1)

> 298%(cos(¢Ax) — 1) < 0: automatic
> 298%(cos(¢Ax) — 1) > —2: needs 2981 < 1, that is

A 2
At < 25
2a

big restriction on size of time steps



Stability of implicit scheme

alt

k+1 k+1 k+1 k+1y k
T G 2T ThY < T
k1 it QDL ot gy ookdd ity | pkddifgay kil
= " e Ax2(’8 e 20T 4 pF T ™) = BRe
At
=81 = 1+22X2(17cos(€Ax))
5 = 1
1429851 — cos(¢Ax))

Noting that 1 — cos(¢Ax) > 0, the condition |3| < 1 always satisfied:
method always stable.



