Solving linear systems: direct methods

Two different approaches

Solve Ax = b
Direct methods:
» Deterministic

» Exact up to machine precision

» Expensive (in time and space)
Iterative methods:

» Only approximate
» Cheaper in space and (possibly) time

» Convergence not guaranteed

Really bad example of direct method

Cramer's rule
write |A| for determinant, then

ail a2 ... ay-1 b1 ayy1 ... an

ani b2 ... an /‘A‘
Xi = . :)

anl b, ... amn

Time complexity O(n!)

Gaussian elimination

Example

6 -2 2 16

12 -8 6|x=| 26

3 -13 3 —19
6 -2 2 | 16 6 -2 2 | 16 6 -2 2 16
2 -8 6 | 26|—1|0 -4 2 | -6|—[0 —4 2 —6
3 -13 3 | -19 0o -12 2 | =27 0 0 -4 -9

Solve x3, then xo, then x;

6, —4, —4 are the 'pivots’

Pivoting

If a pivot is zero, exchange that row and another.

(there is always a row with a nonzero pivot if the matrix is
nonsingular)

best choice is the largest possible pivot

in fact, that's a good choice even if the pivot is not zero

Roundoff control

Consider

with solution x = (1,1)*

Ordinary elimination:

Roundoff 2

If € < €mach, then 2 —1/e=—1/eand 1 —1/e = —1/¢, so

1l-x

J— :0
1
1—2 €

5
|
I
J_l
RS
|

Roundoff 3

Pivot first:

() =()= (2= (%)

If € very small:

X1 = :].7 X2:2—X1:1

LU factorization

Same example again:

6 -2 2
A=1[12 -8 6
3 -13 3

2nd row minus 2x first; 3rd row minus 1/2x first;
equivalent to

00
LiAx=1L1b, L= -2 1 0
01

LU 2

Next step: LoL1Ax = LyL1b with
0
L, = 1

O O =

0
0
-3 1

Define U = LyL1A, then A= L7151 U
‘LU factorization’

LU 3

Observe:
1 0 0 1
L= -2 10 Lit=1 2
-1/2 0 1 1/2
Likewise
1 0 O 10
=10 1 O =101
0 -3 1 0 3
Even more remarkable:
1 0O
L'yt=(2 10
1/2 3 1

Can be computed in place! (pivoting?)

Solve LU system

Ax = b — LUx = b solve in two steps:

Ly =b,and Ux =y

Forward sweep:

1
fr1 1
l31 f3 1
Enl €n2

1= bla

Y2

1 Yn

y2 = by —lo1ys,. ..

by
by

Solve LU 2

Backward sweep:

uix Uiz ... Uip X1 1
Upp ... U X2 Y2
0 Upn Xn Yn

—1 -1
Xn = Upy Yn, Xp—1= un—ln—l(y”_l - un—lan)v s

Graph theory of sparse elimination

-1
ajj — ajj — ajkayy Ak

1

i
k< —> kol
: e

Fill-in

Fill-in: index (i, j) where ajj = 0 but ¢;; # 0 or u;; # 0.

Fill-in is a function of ordering

After factorization the matrix is dense.
Can this be permuted?

= ¥

LU of a sparse matrix

4 -1 0 -1
-1 4 -1 0 0 -1
|
- |
-1 0 ... S
0 -1 0 -1 4 -1
4 -1 0 L1
4-1 -1 0 :-4/4 -1
= - ! -
—-1/4 ... G 4-%F -1

STSRIITERpI
SETERRI

Remaining matrix has a dense leading block

Fill-in during LU

2D BVP: Q is n x n, gives matrix of size N = n?, with
bandwidth n.

Matrix storage O(N)
LU storage O(N3/?)

LU factorization work O(N?)

