Solving linear systems: direct methods

Two different approaches

Solve Ax = b

Direct methods:

- Deterministic
- Exact up to machine precision
- Expensive (in time and space)

Iterative methods:

- Only approximate
- Cheaper in space and (possibly) time
- Convergence not guaranteed

Really bad example of direct method

Cramer's rule write |A| for determinant, then

$$x_{i} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i-1} & b_{1} & a_{1i+1} & \dots & a_{1n} \\ a_{21} & & \dots & & b_{2} & & \dots & a_{2n} \\ \vdots & & & & \vdots & & & \vdots \\ a_{n1} & & \dots & & b_{n} & & \dots & a_{nn} \end{vmatrix} / |A|$$

Time complexity O(n!)

Gaussian elimination

Example

$$\begin{pmatrix} 6 & -2 & 2 \\ 12 & -8 & 6 \\ 3 & -13 & 3 \end{pmatrix} x = \begin{pmatrix} 16 \\ 26 \\ -19 \end{pmatrix}$$

$$\begin{bmatrix} 6 & -2 & 2 & | & 16 \\ 12 & -8 & 6 & | & 26 \\ 3 & -13 & 3 & | & -19 \end{bmatrix} \longrightarrow \begin{bmatrix} 6 & -2 & 2 & | & 16 \\ 0 & -4 & 2 & | & -6 \\ 0 & -12 & 2 & | & -27 \end{bmatrix} \longrightarrow \begin{bmatrix} 6 & -2 & 2 & | & 16 \\ 0 & -4 & 2 & | & -6 \\ 0 & 0 & -4 & | & -9 \end{bmatrix}$$

Solve x_3 , then x_2 , then x_1

$$6, -4, -4$$
 are the 'pivots'

Pivoting

If a pivot is zero, exchange that row and another. (there is always a row with a nonzero pivot if the matrix is nonsingular) best choice is the largest possible pivot in fact, that's a good choice even if the pivot is not zero

Roundoff control

Consider

$$\begin{pmatrix} \epsilon & 1 \\ 1 & 1 \end{pmatrix} x = \begin{pmatrix} 1 + \epsilon \\ 2 \end{pmatrix}$$

with solution $x = (1,1)^t$

Ordinary elimination:

$$\begin{pmatrix} \epsilon & 1 \\ 0 & (1 - \frac{1}{\epsilon}) \end{pmatrix} x = \begin{pmatrix} 1 \\ 2 - \frac{1}{\epsilon} \end{pmatrix}$$
$$\Rightarrow x_2 = \frac{2 - \frac{1}{\epsilon}}{1 - \frac{1}{\epsilon}} \Rightarrow x_1 = \frac{1 - x_2}{\epsilon}$$

Roundoff 2

If
$$\epsilon<\epsilon_{\mathrm{mach}}$$
, then $2-1/\epsilon=-1/\epsilon$ and $1-1/\epsilon=-1/\epsilon$, so
$$x_2=\frac{2-\frac{1}{\epsilon}}{1-\frac{1}{\epsilon}}=1, \Rightarrow x_1=\frac{1-x_2}{\epsilon}=0$$

Roundoff 3

Pivot first:

$$\begin{pmatrix} 1 & 1 \\ \epsilon & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 1 - \epsilon \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 - 2\epsilon \end{pmatrix}$$

If ϵ very small:

$$x_1 = \frac{1 - 2\epsilon}{1 - \epsilon} = 1,$$
 $x_2 = 2 - x_1 = 1$

LU factorization

Same example again:

$$A = \begin{pmatrix} 6 & -2 & 2 \\ 12 & -8 & 6 \\ 3 & -13 & 3 \end{pmatrix}$$

2nd row minus $2\times$ first; 3rd row minus $1/2\times$ first; equivalent to

$$L_1Ax = L_1b,$$
 $L_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1/2 & 0 & 1 \end{pmatrix}$

LU 2

Next step: $L_2L_1Ax = L_2L_1b$ with

$$L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix}$$

Define $U = L_2L_1A$, then $A = L_1^{-1}L_2^{-1}U$ 'LU factorization' Observe:

$$L_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1/2 & 0 & 1 \end{pmatrix} \qquad L_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$$

Likewise

$$L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \qquad L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

Even more remarkable:

$$L_1^{-1}L_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1/2 & 3 & 1 \end{pmatrix}$$

Can be computed in place! (pivoting?)

Solve LU system

$$Ax = b \longrightarrow LUx = b$$
 solve in two steps:
 $Ly = b$, and $Ux = y$

Forward sweep:

$$\begin{pmatrix} 1 & & \emptyset \\ \ell_{21} & 1 & & \\ \ell_{31} & \ell_{32} & 1 & \\ \vdots & & \ddots & \\ \ell_{n1} & \ell_{n2} & & \cdots & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$y_1 = b_1, \quad y_2 = b_2 - \ell_{21} y_1, \dots$$

Solve LU 2

Backward sweep:

$$\begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ & u_{22} & \dots & u_{2n} \\ & & \ddots & \vdots \\ \emptyset & & u_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$x_n = u_{nn}^{-1} y_n, \quad x_{n-1} = u_{n-1,n-1}^{-1} (y_{n-1} - u_{n-1,n} x_n), \dots$$

Graph theory of sparse elimination

Fill-in

Fill-in: index (i,j) where $a_{ij} = 0$ but $\ell_{ij} \neq 0$ or $u_{ij} \neq 0$.

Fill-in is a function of ordering

After factorization the matrix is dense. Can this be permuted?

LU of a sparse matrix

$$\begin{pmatrix} 4 & -1 & 0 & \dots & | & -1 & \\ -1 & 4 & -1 & 0 & \dots & | & 0 & -1 & \\ & \ddots & \ddots & \ddots & | & \ddots & \\ & -\overline{1} & \overline{0} & \overline{\dots} & | & \overline{4} & \overline{-1} & -1 \\ 0 & -1 & 0 & \dots & | & -1 & 4 & -1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 4 & -1 & 0 & \dots & | & -1 & \\ \hline & 4 & \overline{4} & -1 & 0 & \dots & | & -1/4 & -1 \\ & \ddots & \ddots & \ddots & | & \ddots & \\ \hline & -\overline{1/4} & \dots & | & \overline{4} & \overline{4} & \overline{1} & -1 \\ & -1 & 0 & \dots & | & -1 & 4 & -1 \end{pmatrix}$$

Remaining matrix has a dense leading block

Fill-in during LU

2D BVP: Ω is $n \times n$, gives matrix of size $N = n^2$, with bandwidth n.

Matrix storage O(N)

LU storage $O(N^{3/2})$

LU factorization work $O(N^2)$