Directive Based
GPU Programming

Orian Louant

INFO0939 - Dec. 14 2021

The zoo of programming model for accelerators

Central Processing Unit (CPU) Graphics Processing Unit (GPU)

« latency-optimized « throughput-optimized

* general-purpose « specialized

« wide range of distinct tasks sequentially « highly parallel computing

Low-Level Languages High-Level Frameworks Directive Based Models
« Cuda (NVIDIA) Kokkos « OpenMP

« HIP (AMD) - Raja « OpenACC
 OpenCL (neutral) « Alpaka

SyCL (DPC++)

Programming with directives

OpenMP OpenACC

« general-purpose parallel programming model » oriented towards accelerators

« the programmer explicitly spread the « the programmer tells to the compiler which
execution of loops, code regions, and tasks loops can be parallelized and let the compiler
across team(s) of threads do the mapping to the target architecture

#fpragma omp construct [clauses] ffpragma acc construct [clauses]
structured-block structured-block

!$omp construct [clauses] !$acc construct [clauses]
code-block code-block

!$omp end construct !$acc end construct

OpenMP support for accelerator

» introduced with OpenMP 4.0,
significantly extended in versions 4.5
and 5.0

« GPUs are the most common type of
accelerator

* OpenMP is not limited to GPUs, you can
use it to target any kind of accelerators

(NEC SX-Aurora TSUBASA, FPGAs, \ /
ASICs, ...)

* makes it easier to target multiple
heterogeneous architectures using the
same code base

-

OpenMP execution model

Host

Where the execution starts. In
almost all cases, this is the CPU

\ / ‘ Device

Multiple accelerator/coprocessor of

\/ the same type for offloading

Host Multithreading

As a starting point to our journey to the world of
GPU programming with directives, we will use a
very simple kernel: saxpy

 parallel:create a team of threads that will
start executing in parallel

- for/do: distribute the iteration of the loop
within the team of threads

#fpragma omp parallel for

for (int 1 = 0; 1 < n; ++1) 3
y[i] = a * x[i] + y[i];

£

!$omp parallel do
do 1 = 1,n
y(i) = a * x(i) + y(i)
end do
!$omp end parallel do

Offloading execution

The target directive instructs the compiler to generate

. #fpragma omp target parallel for
a target task that will execute the enclosed block of code on a Hone (e S = @2 4 < 8 aafl) 9

device y[i] = a * x[1i] + y[i];
§
ffpragma omp target é !$omp target parallel do
structured-block ffpragma omp target do 1= 1,n . .
y(i) = a » x(i) + y(1)
IS end do
> '$omp end target parallel do
©
'$omp target
code-block @
i

!$omp end target

Gather devices information

The omp_get_num_devices routine
returns the number of target devices

Devices are assigned an ID from 0 to
ndevice-1. You can select the device to
use for a target region by using the
device clause

The omp_1s_initial _device routine
returns true if the current task is executing
on the host device (CPU). It returns false
if this is not the case

int on_host;
int ndev = omp_get_num_devices();

printf("Number of devices: %d\n", ndev);

for (int 1 = 0; 1 < ndev; i++) 1
#fpragma omp target device(i) map(from:on_host)

1

on_host = omp_is_initial_device();

§

printf("Is initial device when on device %d: %d\n",
i, on_host);

§

printf("Is initial device when on host: %d\n",
omp_is_initial_device());

Data in the device memory

Variable and arrays are present in the host (CPU) memory but not in the device memory
« in order to use a variable/array on the device, we need to have the data present in the device memory

« if we want to use data computed on the device, we need to update the data present in the host
memory

Type Description
ffpragma omp target map(type:list) alloc allocate memory on the device
structured-block .
to allocate memory on the device and copy
the original values from the host to the
device
! t t type:list :
$(§2§e-ﬁf§§k map(type:1list) from allocate memory on the device and copy
'$omp end target the values from the device to the host

tofrom combination of to and from type

Data in the device memory

double a
double *b

1234 ;
(double*x)malloc(sizeof(double)*n);

« in C/C++, when moving array to and from

the GPU, you need to §peC|fy the number #prasma omp target map(tofrom:a) \
of elements to be copied map (to:b[0:n])

1
» thisis not required in Fortran // Code using a and b on the GPU

§

You can also copy part of an array: real (kind=real64)

cooa
real (kind=real64), allocatable :: b(:)

ffpragma omp target map(to:b[10:4]) allocate(b(n))

!$omp target map(to:b[10:13]) '$omp target map(tofrom:a) map(to:b)

! Code using a and b on the GPU

.) '$omp end target
Note: in C/C++ the syntax is [start:length]

and [start:end] in Fortran

Moving data to and from the device

- map(to:x): because we only read the array Scalar variables that do not appear in a map
on the device clause default to firstprivate. As a
consequence we don’t need to map the variable
« map(tofrom:y): because we read and a to the device

modify the array on the device

f#fpragma omp target parallel for map(to:x[0:n]) map(tofrom:y[0:n])
for (int 1 = 0; 1 < n; ++1) 3

y[i] = a * x[i] + y[i];
£

'$omp target parallel do map(to:x) map(tofrom:y)
do i = 1,n
y(i) = a » x(i) + y(1)
end do
'$omp end target parallel do

Compilers

Clang (NVIDIA)

clang -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda
-Xopenmp-target=nvptxé64-nvidia-cuda -march=<sm_XY> <source>

Clang (AMD)

clang -fopenmp -fopenmp-target=amdgcn-amd-amdhsa
-Xopenmp-target=amdgcn-amd-amdhsa —-march=gfx<XXX> <source>

NVIDIA HPC SDK (NVIDIA only)

nvc/nviortran —-mp=gpu -Minfo=mp -gpu=<ccXY> <source>

GCC (NVIDIA, ok performance with recent version)

gcc/gfortran —fopenmp -foffload=nvptx-none <source>

A look to the hardware

A GPU is composed of multiple units each
with their own registers, local memory and
scheduler

« streaming multiprocessors (NVIDIA)
« compute units (AMD)

On a GPU, the work is scheduled in blocks
that are executed on these units

« thread blocks (NVIDIA)
« workgroups (AMD)

-

4
v
Thread

scheduler

}

~

"

}

Local
Memory

Registers

Block scheduler

¢ $

Thread Thread
scheduler scheduler

$ $

J

} }

Local Local
Memory Memory
Registers Registers

v

Device memory

A look to the hardware

The threads in a block are further divided in
bundles that execute in lockstep: they run
the same instructions, and follow the same
control-flow path (SIMD fashion)

« 32 threads: warps (NVIDIA)
64 workitems: wavefront (AMD)

These bundles of threads execute on the
vector units of the GPU

}

Thread
scheduler

-~

4
v

~

Block scheduler

}

Thread
scheduler

}

"

)

A
v

Local
Memory

Registers

L eeoo
Local
Memory
Registers
v

Device memory

}

Thread
scheduler

}

}

Local
Memory

Registers

A look to the hardware

#fpragma omp target parallel for

for (int 1 = 0; 1 < n; ++1) 1
y[i] = a * x[i] + y[i];

§

We create only one team of threads that will
use only one of the available units of our
GPU

We need a way to create multiple teams so
that we use the full potential of the
hardware

4
v

-

Thread

scheduler

}

~

"

}

Local
Memory

Registers

Block scheduler

}

Thread
scheduler

}

J

L eeoo
Local
Memory
Registers
v

Device memory

}

Thread
scheduler

}

}

Local
Memory

Registers

The team construct: motivation

Let’s consider some limitations of the hardware:

* no synchronization or memory fences possible between the streaming multiprocessors/compute units

« unlike CPUs where there is cache coherency between the cores, there is no such coherence between
the streaming multiprocessors/compute units of a GPU

These limitations of the hardware have consequence if you consider “normal” OpenMP:

« creation of a parallel region, work-sharing tasks, ...

« barriers, critical regions, locks and atomics can be applied to a team of threads

In order to keep these characteristics on the devices an additional level was added, the team construct:

« multiple teams are spawned and each of these teams has a master threads

« the master thread can spawn a team of threads with a parallel construct
« threads in different teams cannot synchronize with each other but threads within a team can

Creating teams and distribute work

When a teams construct

is reached, a league of
teams is created and
the initial thread in each
team executes

the teams region

When a distribute
construct is reached,
the iterations of one or
more loops will be
distributed to the teams

#fpragma omp target
#fpragma omp teams

Liig g i

team O team 1 team 2 team 3

#fpragma omp target

{#fpragma omp teams distribute
for (int 1 = 0; 1 < 1000; i++)

iy Nl i

0 to 249 25010499 500to749 750 to 999

#fpragma omp teams
structured-block

!$omp teams
structured-block
!$omp end teams

{#fpragma omp distribute
for-loops

!$omp distribute
do-loops
!$omp end distribute

Get teams information

The number of teams can be controlled by the num_teams clause and the number of threads with the
thread limit clauses

f#fpragma omp teams num_teams(nteams) \ '$omp teams num_teams(nteams) &
thread _limit(nthreads) ' $omp& thread limits(nthreads)

In addition, OpenMP provide runtime functions:

« omp_get _num_teams () returns the number of teams
 omp_get team_num() returns the team number of the calling threads (0 to nteams-1)
 omp_get thread_limit () returns the maximum number of threads

Saxpy with teams distribute

- target: create a target « team distribute: create « parallel for/do:
task that will be executed multiple teams of threads distribute the iterations to
on the GPU and distribute the loop the threads of the teams

iterations to these teams

ffpragma omp target teams distribute parallel for \
map(to:x[0:n]) map(tofrom:y[0:n])

for (int 1 = 0; 1 < n; ++1) 3

} y[i] = a * x[i] + y[i];

!$omp target teams distribute parallel do map(to:x) map(tofrom:y)
do i = 1,n
y(i) = a * x(i) + y(1i)
end do
'$omp end target teams distribute parallel do

Jacobi 2D - host version

point we want
1 to compute

N+1 N N N N
U; ; = — (U: .-|-u._ -+ ust -|—u.._ .)
LJ 4 (t+1,] t=1.J Lj+1 LJ 1) additional points
needed
while (err > tol && iter < iter _max) 3%
err = 0.0;
f#fpragma omp parallel for reduction(max:err)
for (int § =1; j < n-1; j++) %
for (int 1 =1; 1 < m-1; i++) 3
unew[j*m + i] = 0.25 * (uold[j*m + (i+1)] + uold[j*m + (i-1)]
+ uold[(j-1)*m + i] + uold[(F+1)*m + i]);
err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
£
£

// Swap values, uold <- unew

Jacobi 2D - device version

point we want
1 to compute

N+l _ — (N 4N 4N N
Uj = 4 (ul+1J T U1 T U1 T ul,f—l) additional points
needed
while (err > tol && iter < iter _max) 3%
err = 0.0;
f#fpragma omp teams distribute parallel for reduction(max:err) \
map(tofrom:uold[@:n*m]) map(from:unew[O:n*m])
for (int § =1; j < n-1; j++) %
for (int 1 =1; 1 < m-1; i++) 3
unew[j*m + i] = 0.25 * (uold[j*m + (i+1)] + uold[j*m + (i-1)]
+ uold[(j-1)*m + i] + uold[(F+1)*m + i]);
err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
$
$

// Swap values, uold <- unew

Jacobi 2D

if we run the multithreaded version of the
Jacobi code on a CPU, we get a good speedup
up to 8 threads and close to 21x speedup
when we use the entire socket (AMD EPYC
7542, 32 cores)

if we run on the GPU we see a small speedup
on AMD compared to the serial execution but
18x slower compared to the 32 threads run

on NVIDIA, the performance is even worse,
with a 0.41x speedup compared to the serial
run

Number of Time Speedup
threads (s)
1 28.433 1.00
4 7140 3.98
8 3.718 7.64
16 2117 13.43
32 1.376 20.66
AMD MI100 () 24.835 114
NVIDIA V100 (2 69.690 0.41

(2) ROCm 4.2
(3) NVHPC SDK 21.2

Jacobi 2D

In order to understand to poor performance of
the GPU version, we will do a quick profiling

We can use nvprof (NVIDIA) or the
LIBOMPTARGET _KERNEL TRACE environment variable
(AMD).

__tgt rtl data_alloc: 64us
__tgt rtl data_alloc: 53us
__tgt_rtl _data_submit_async: 33674us
__tgt rtl data_alloc: 3us
__tgt_rtl _data_submit_async: 135us
__tgt rtl _run_target_team_region: 4879us
__tgt _rtl data_retrieve_async: 93us
__tgt_rtl data_retrieve_async: 32358us
__tgt _rtl data_retrieve_async: 32632us
__tgt_rtl_synchronize: Qus
__tgt rtl data_delete: 4us
__tgt rtl data_delete: 26us

__tgt rtl data_delete: 17us

Number of Time Speedup
threads (s)

1 28.433 1.00

4 7140 3.98

8 3.718 7.64

16 2117 13.43

32 1.376 20.66
AMD MI100 () 24.835 114
NVIDIA V100 (2 69.690 0.41

(1) ROCm 4.2

(2) NVHPC SDK 21.2

Efficient movement of data

From the result of a quick profiling of the Jacobi
code on the GPU, we see that

« moving data to and from the device at every
iteration is inefficient

« Dbetter solution is to copy the data to the
device and keep it on the device between
iterations

For that we can use a structured data region that
Map variables to a device data environment for
the extent of the region

ffpragma omp target data map(type:list)
structured-block

'$omp target data map(type:list)
structured-block
'$omp end target data

Jacobi 2D with a structured data region

In order to improve the movement of data, we create a data region that covers the entire while loop so
that we don’t copy data to and from the GPU between iterations

f#fpragma omp target data map(tofrom:uold[O:n*m]) map(alloc:unew[@:n*m])
while (err > tol && iter < iter_max) 3
err = 0.0;

f#fpragma omp teams distribute parallel for reduction(max:err)
for (int j = 1; j < n-1; j++) 1
for (int i = 1; i < m-1; i++) §

unew[j*m + i] = 0.25 * (uold[j*m + (i+41)] + uold[j*m + (1-1)]
+ uold[(j-1)*m + i] + uold[(J+1)*m + i]);
err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
$
$

// swap values, uold <- unew
t // end of the data region

Unstructured data

f#fpragma omp target enter data map(type:list)
- for data regions that span multiple
lexical scopes (functions or files) you f#fpragma omp target update to|from(list)
can use an unstructured data region
#fpragma omp target exit data map(type:list)
- data movement or allocation to the
device is done with the enter data
directive

« data movement or deallocation from
the device is done with the exit '$omp target enter data map(type:list)
data directive
'$omp target update to|from(list)
« update of data in the middle of an
unstructured data region, you can use '$omp end target exit data map(type:list)
the target update directive (from the
host)

The update directive

ffpragma omp target data map(tofrom:al[0:n])

]
// do something with a on the device
* you can update data in the middle of a #fpragma omp target update from(a[0:n])
data region, you can use the target // do something with a on the host
update directive with clauses #pragma omp target update to(a[0:n])
// do something with a on the device
- from: data on the host is updated §
with data from the device
- to:data on the device is Updated !$Omp target data map(tofrom:a)
with the data from the host ! do something with a on the device

'$omp target update from(a)

! do something with a on the host

'$omp target update to(a)

! do something with a on the device
'$omp end target data

» this directive can be used in the
middle of a structured or unstructured
data region

Jacobi 2D with unstructured data directives

ffpragma omp target enter data map(to:uold[0:n*m]) map(alloc:unew[@:n*m])

while (err > tol && iter < iter_max) 3
err = 0.0;

f#fpragma omp teams distribute parallel for reduction(max:err)
for (int j = 1; j < n-1; j++) 4
for (int i = 1; i < m-1; i++) §

unewl[j*m + i] = 0.25 * (uold[j*m + (i41)] + uold[j*m + (1-1)]
+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);
err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
$
$

// swap values, uold <- unew

§

f#fpragma omp target exit data map(from:uold[O:n*m]) map(delete:unew[0:n*m])

Jacobi 2D with a data region

Now that we have removed unnecessary data
movement we see

* a huge improvement compared to the first
version without data movement optimization

- still, we only achieved a 6x speedup on the
GPU compared to the serial CPU version of the
code

Number of Time Speedup
threads (s)

1 28.433 1.00

4 7140 3.98

8 3.718 7.64

16 2117 13.43

32 1.376 20.66
AMD MIT100 (1) 24.835 114
(2) 4.740 6.00

NVIDIA V100 (1) 69.690 0.41
(2) 5.949 4.78

(1) with no data movement optimization
(2) with data movement optimization

Enabling more parallelism

By only parallelizing the outer loop, distribute the iterations of the outer loop to the teams
we do not fully exploit the parallelism « distribute the iterations of the inner loop to the threads
of the hardware

f#fpragma omp target data map(tofrom:uold[O:n*m]) map(alloc:unew[0:nxm])
while (err > tol && iter < iter_max) 3
err = 0.0;

f#fpragma omp teams distribute reduction(max:err)
for (int 7 = 1; j < n-1; j++) %
f#fpragma omp parallel for reduction(max:err)
for (int 1 =1; 1 < m-1; i++) 3
unew[j*m + i] = 0.25 * (uold[j*m + (i41)] + uold[j*m + (1-1)]
+ uold[(j-1)+*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
$
$

// swap values, uold <- unew
t // end of the data region

Enabling more parallelism

By distributing both loops, the first across teams
and the second across threads we increase
parallelism.

« for CPUs it's not recommended to use more
threads than the available cores/hardware
threads on the system

« for GPUs, in order to hide memory latency, you
need to use more threads than what the
hardware is capable of executing at the same
time

« Increasing the parallelism leads to a 5x
speedup compared to the version where we
only parallelize the outer loop

Number of Time Speedup
threads (s)

1 28.433 1.00

4 7140 3.98

8 3.718 7.64

16 2117 13.43

32 1.376 20.66
AMD MI100 (1) 4.740 6.00
(2) 0.963 29.52
NVIDIA V100 (1) 5.949 4.78
(2) 3.983 713

(1) parallelization of the outer loop

(2) outer loop across teams and inner

loop across threads

Enabling more parallelism with loop collapsing

Another way to increase the parallelism is to collapse the loop nest. For a for or distribute construct, if
a collapse clause is present and more the one loop is associated with the construct, then the iteration of
all associated loops are collapsed into one larger iteration space

f#fpragma omp target data map(tofrom:uold[O:n*m]) map(alloc:unew[@:n*m])
while (err > tol && iter < iter_max) 3
err = 0.0;

f#fpragma omp target teams distribute parallel for collapse(2) reduction(max:err)
for (int 7 = 1; j < n-1; j++) 1%
for (int 1 =1; 1 < m-1; i++) 3
unew[j*m + i] = 0.25 * (uold[j*m + (i+41)] + uold[j*m + (1-1)]
+ uold[(j-1)+*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + 1i]));
$
$

// swap values, uold <- unew
t // end of the data region

Loop collapsing

Collapsing the loops is an other way to increase
parallelism on the GPU

« small deterioration of the performance on the
MI100

 significant improvement on NVIDIA hardware

* by collapsing the loops, we give the compiler

the ability to use every loop iterations and
possibly more freedom for optimization

Number of

Time

threads (s) Speedup

1 28.433 1.00

4 7140 3.98

8 3.718 7.64

16 2117 13.43

32 1.376 20.66

AMD MI100 (1) 0.963 20.52
(2) 1.066 26.67
NVIDIA V100 (1) 3.983 713
(2) 1.013 28.07

(1) outer loop across teams and inner

loop across threads

(2) collapsing the two loops

Coalescent memory access

Coalescent memory access

thread O
thread 1
thread 2
thread 3

l memory block l

Uncoalescent memory access

thread O
thread 1
thread 2
thread 3

Coalesced memory access refers
to combining multiple memory accesses
into a single transaction

when a thread access the GPU global
memory it always access a the
memory in chunks

if other threads access the same
chunk at the same time then the
chunk can be reused

the most efficient access is when
threads read or write contiguous
memory locations

strided memory access is not optimal
as more memory transactions are
reqired to read/write the same
amount of data

AoS and SoA

Array of Structures: cache friendly

struct point 3}
float x;
float y;
float z;

[

struct point points[n];

[T T T7T 771

Structure of arrays: coalescent access

struct points_list 3
float x[n];
float y[n];
float z[n];

}I

Wrapping-up

OpenMP allows you to target GPUs with a few directives added to your code. While adding these
directives is relatively easy:

Transferring data between the host and the device is an expensive process

« data transfer may be the main bottleneck when running on a accelerator is not handled carefully

« only transfer data required on the device

» try to keep the data on the device as long as possible

« use structured data region (target data) or unstructured data region (target enter/exit data)

You need sufficient parallelism in order to achieve good performance

* need to expose more parallelism that for CPUs
« can be achieved by distributing loops across teams and across threads
« for tightly nested loop collapsing is also an option

