
OpenMP
Shared-Memory Parallel Programming

Part. II

Orian Louant
orian.louant@uliege.be

October 6, 2020

Last Time

The parallel construct creates a team of threads and starts parallel
execution.

The for construct specifies that the iterations of a loop should be
distributed among the threads in the team.

Data-sharing attribute clauses apply to the parallel and for
constructs and allow a to control the data-sharing attributes of variables
referenced in these constructs.

55/122

Synchronization

Synchronization

Synchronization ensures that two or more threads do not simultaneously
execute some part of the program.

Synchronization may be needed for various reasons:

makes sure that a particular operation is only executed one time
to avoid conflicts when accessing shared data
ensure the order in which tasks are executed

57/122

Barrier

A barrier directive is a synchronization point at which the threads in a
parallel region will wait until all other threads in that section reach the same
point.

When a first thread reaches the barrier, it waits
When a second thread reaches the barrier, it does the same thing and so
on
When the last thread reaches the barrier, all the threads resume
execution

58/122

Barrier

#pragma omp parallel private(tid, neighb)
{
tid = omp_get_thread_num();
neighb = tid - 1;

if (tid == 0)
neighb = omp_get_num_threads() - 1;

a[tid] = a[tid] * 3.5;

#pragma omp barrier

b[tid] = a[neighb] + c;
}

59/122

Barrier

#pragma omp parallel private(tid, neighb)
{
tid = omp_get_thread_num();
neighb = tid - 1;

if (tid == 0)
neighb = omp_get_num_threads() - 1;

a[tid] = a[tid] * 3.5;

#pragma omp barrier

b[tid] = a[neighb] + c;
}

ensures that the neighbour value of a
is set to the correct value

59/122

Implicit Barrier

Some constructs in OpenMP have an implicit barrier. This is the case for the
parallel and for constructs.

#pragma omp parallel
{
#pragma omp for
for (int i = 0; i < n; ++i) {

// ...

}

// ...

}

Implicit barrier, wait for all the threads to finish their iterations

Implicit barrier, wait for all the threads to join

60/122

Master Directive
A master construct specifies a block of code that should be executed only
by the master thread of the team.

#pragma omp master
structured-block

61/122

Hello World, Master Edition

#pragma omp parallel
{
printf("Hello, I'm thread %d\n",

omp_get_thread_num());

#pragma omp master
{
printf("There is %d threads in the team\n",

omp_get_num_threads());
}

}

62/122

Hello World, Master Edition

#pragma omp parallel
{
printf("Hello, I'm thread %d\n",

omp_get_thread_num());

#pragma omp master
{
printf("There is %d threads in the team\n",

omp_get_num_threads());
}

}

only the master thread print the number of threads in the team

62/122

Hello World, Master Edition

$ gcc -fopenmp -o example omp_helloworld_master.c
$ OMP_NUM_THREADS=4 ./example
Hello, I'm thread 3
Hello, I'm thread 0
There is 4 threads in the team
Hello, I'm thread 2
Hello, I'm thread 1

63/122

Single Directive
A single directive is executed by only one of the threads in the team (not
necessarily the master thread). There is an implicit barrier at the end.

#pragma omp single
structured-block

64/122

Hello World, Single Edition

#pragma omp parallel shared(nthreads) private(tid)
{
#pragma omp single
{
nthreads = omp_get_num_threads();

}

tid = omp_get_thread_num();

printf("Hello, I'm thread %d of %d.\n", tid, nthreads);
}

65/122

Hello World, Single Edition

#pragma omp parallel shared(nthreads) private(tid)
{
#pragma omp single
{
nthreads = omp_get_num_threads();

}

tid = omp_get_thread_num();

printf("Hello, I'm thread %d of %d.\n", tid, nthreads);
}

only one thread get the number of threads in the team

65/122

Hello World, Single Edition

$ gcc -fopenmp -o example omp_helloworld_single.c
$ OMP_NUM_THREADS=4 ./example
Hello, I'm thread 0 of 4.
Hello, I'm thread 3 of 4.
Hello, I'm thread 1 of 4.
Hello, I'm thread 2 of 4.

66/122

Critical Section
A critical section restricts execution of the associated structured block
to one thread at a time.

#pragma omp critical
structured-block

67/122

Critical Section
#pragma omp parallel shared(sum) private(tid, local_sum)
{
tid = omp_get_thread_num();
local_sum = 0;

#pragma omp for
for (int i = 0; i < n; ++i)

local_sum += a[i];

#pragma omp critical
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

printf("Sum after parallel region: %d.\n", sum);
68/122

Critical Section
#pragma omp parallel shared(sum) private(tid, local_sum)
{
tid = omp_get_thread_num();
local_sum = 0;

#pragma omp for
for (int i = 0; i < n; ++i)

local_sum += a[i];

#pragma omp critical
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

printf("Sum after parallel region: %d.\n", sum);

Critical section to update the global sum.
Without the critical section,
there is a potential data race here

68/122

Critical Section

$ gcc -fopenmp -o example omp_critical.c
$ OMP_NUM_THREADS=4 ./example
Thread 0: local sum = 300, sum = 300.
Thread 3: local sum = 2175, sum = 2475.
Thread 1: local sum = 925, sum = 3400.
Thread 2: local sum = 1550, sum = 4950.
Sum after parallel region: 4950.

69/122

Named Critical Section

#pragma omp critical (name)
structured-block

Optional name clause

A thread waits at the beginning of a critical section until no other thread
is executing a critical section with the same name
All unnamed critical directives map to the same name
Critical section names are global to the program

70/122

Named Critical Section

#pragma omp critical (sum)
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

#pragma omp critical (max)
{
max = MAX(max, local_max);
printf("Thread %d: local max = %d, max = %d.\n",

tid, local_max, max);
}

71/122

Named Critical Section

#pragma omp critical (sum)
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

#pragma omp critical (max)
{
max = MAX(max, local_max);
printf("Thread %d: local max = %d, max = %d.\n",

tid, local_max, max);
}

First critical section for the global sum

71/122

Named Critical Section

#pragma omp critical (sum)
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

#pragma omp critical (max)
{
max = MAX(max, local_max);
printf("Thread %d: local max = %d, max = %d.\n",

tid, local_max, max);
}

First critical section for the global sum

Second critical section for the global maximum.
A thread can be in the first section while an other
is in the second one

71/122

Named Critical Section

$ gcc -fopenmp -o example omp_critical_named.c
$ OMP_NUM_THREADS=4 ./example
Thread 3: local sum = 2175, sum = 2175.
Thread 2: local sum = 1550, sum = 3725.
Thread 0: local sum = 300, sum = 4025.
Thread 1: local sum = 925, sum = 4950.
Thread 3: local max = 99, max = 99.
Thread 2: local max = 74, max = 99.
Thread 0: local max = 24, max = 99.
Thread 1: local max = 49, max = 99.
Sum after parallel region: 4950.
Max after parallel region: 99.

72/122

The nowait Clause

//...

#pragma omp for
for (int i = 0; i < n; ++i) {

local_sum += a[i];
}

#pragma omp critical
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

// ...

There is an implicit barrier here

73/122

The nowait Clause

//...

#pragma omp for
for (int i = 0; i < n; ++i) {

local_sum += a[i];
}

#pragma omp critical
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

// ...

There is no need to wait for the other threads to finish
the iterations to execute the critical section

73/122

The nowait Clause

//...

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

local_sum += a[i];
}

#pragma omp critical
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

// ...

We add a nowait clause to the directive

The implicit barrier at the end of the loop is lifted

73/122

The nowait Clause

The nowait clause applied to a for construct remove the implicit barrier at
the end of the construct.

#pragma omp for nowait
structured-block

The nowait clause can also be applied to a single directive.

#pragma omp single nowait
structured-block

74/122

The nowait Clause

The nowait clause can also be convenient when two loops are independent.

#pragma omp parallel
{
#pragma omp for nowait
for (int i = 0; i < n; ++i) {

d[i] = a[i] + b[i];
}

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

e[i] = a[i] + c[i];
}

}

75/122

The nowait Clause

The nowait clause can also be convenient when two loops are independent.

#pragma omp parallel
{
#pragma omp for nowait
for (int i = 0; i < n; ++i) {

d[i] = a[i] + b[i];
}

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

e[i] = a[i] + c[i];
}

}

No barrier at the end of the loop

The threads start the iterations of this loop as
soon as they finish their work in the first loop

75/122

The nowait Clause

The nowait clause can also be convenient when two loops are independent.

#pragma omp parallel
{
#pragma omp for nowait
for (int i = 0; i < n; ++i) {

d[i] = a[i] + b[i];
}

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

e[i] = a[i] + c[i];
}

} Implicit barrier at the end of the parallel region

75/122

Reduction

The reduction clause avoid data races when summing or combining values.
This clause can be applied to the parallel and for constructs

reduction(op:list)

op is an operator:
Arithmetic reductions: + ∗ − max min
Logical operator reductions: & && | ||

76/122

Reduction

The sum and maximum example using critical region can be rewritten with
reduction clauses instead

#pragma omp parallel for reduction(+:sum) reduction(max:max)
for (int i = 0; i < n; ++i) {

sum += a[i];
max = MAX(max, a[i]);

}

printf("Sum after parallel region: %d.\n", sum);
printf("Max after parallel region: %d.\n", max);

77/122

Reduction

$ gcc -fopenmp -o example omp_reduction.c
$ OMP_NUM_THREADS=4 ./example
Sum after parallel region: 4950.
Max after parallel region: 99.

78/122

Atomic operation

An atomic operation is an operation that will always be executed without any
other thread being able to read or change state that is read or changed during
the operation.

#pragma omp atomic [atomic-clause]
expression-statement

79/122

Atomic operation

#pragma omp atomic atomic-clause
expression-statement

The value of atomic-clause can be one of the following: read, write,
update and capture. If no atomic-clause is specified, the default
value is update.

80/122

Atomic operation: Read and Write

The read clause allows for the atomic read of x.

#pragma omp atomic read
v = x;

The write clause allows for the atomic write of x. Here, expr is an
expression with scalar type, i.e. the result of the expression is a scalar.

#pragma omp atomic write
x = expr;

81/122

Atomic operation: Update

The update clause allows for the atomic update of x.

#pragma omp atomic update
expression-statement

Expression statement

x++; x--; ++x; --x;

x op= expr; x = x op expr; x = expr op x;

82/122

Atomic operation: Capture
The capture clause allows for atomic update of the location designated by x
while also capturing the original or final value of the location designated by x.

#pragma omp atomic update
expression-statement

Expression statement

v = x++; v = x--; v = ++x; v = --x;

v = x op= expr; v = x = x op expr;

v = x = expr op x;

83/122

Atomic operation: Capture
The capture clause allows for atomic update of the location designated by x
while also capturing the original or final value of the location designated by x.

#pragma omp atomic update
structured-block

Structured block (part. 1)

{ v = x; x op= expr; } { x op= expr; v = x; }

{ v = x; x = x op expr; } { v = x; x = expr op x; }

{ x = x op expr; v = x; } { x = expr op x; v = x; }

84/122

Atomic operation: Capture
The capture clause allows for atomic update of the location designated by x
while also capturing the original or final value of the location designated by x.

#pragma omp atomic update
structured-block

Structured block (part. 2)

{ v = x; x++; } { v = x; ++x; } { ++x; v = x; }

{ x++; v = x; } { v = x; x--; } { v = x; --x; }

{ --x; v = x; } { x--; v = x; }

84/122

Atomic example

The previous example of the summation of the elements of an array using a
critical construct can be rewritten using an atomic update.

#pragma omp for
for (int i = 0; i < n; ++i) {

local_sum += a[i];
}

#pragma omp atomic
sum += local_sum;

85/122

Atomic example

for (i = 0; i < 10000; ++i) {
index[i] = i % 1000;
y[i] = 0.0;

}

for (i = 0; i < 1000; ++i)
x[i] = 0.0;

#pragma omp parallel for
for (i = 0; i < 10000; ++i) {
#pragma omp atomic update
x[index[i]] += 1.0 * i;

y[i] += 2.0 * i;
}

86/122

Atomic example

for (i = 0; i < 10000; ++i) {
index[i] = i % 1000;
y[i] = 0.0;

}

for (i = 0; i < 1000; ++i)
x[i] = 0.0;

#pragma omp parallel for
for (i = 0; i < 10000; ++i) {
#pragma omp atomic update
x[index[i]] += 1.0 * i;

y[i] += 2.0 * i;
}

The advantage of using atomic in this example is that
it allows updates of two different elements of x
in parallel. If a critical construct were used,
all updates to elements of x would be executed serially

86/122

Atomic vs. Critical

Safely incrementing the value of count in parallel can be done either by
using an atomic or a critical directive

#pragma omp atomic
count++;

#pragma omp critical
count++

An atomic operation has much
lower overhead but the set of
possible operations is restricted
It can take advantage of
hardware support for atomic
operations

A critical section can surround
any arbitrary block of code
There is a significant overhead
when a thread enters and exits
the critical section

87/122

Atomic vs. Reduction
Don’t use atomic operation this way:

#pragma omp parallel for
for (int i = 0; i < n; ++i) {
#pragma omp atomic
sum += a[i];

}

It is better to use a reduction clause:

#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < n; ++i)
sum += a[i];

88/122

Performance Considerations

Avoid or minimize the use of barrier and critical sections.

Use the nowait clause where possible to eliminate unnecessary
barriers

Favour the use of master instead of single

89/122

Loop Scheduling

Loop Scheduling

Loop scheduling, specify how iterations of a loops are divided into contiguous
non-empty subsets (chunks), and how these chunks are distributed to the
threads. Changing the loop scheduling is possible using the schedule
clause.

#pragma omp for schedule(schedule-kind, chunk-size)
for-loop

Where the value of schedule-kind can be static , dynamic ,
guided or runtime . The default scheduling is static . The optional
chunk-size may have different behavior depending on the scheduling.

91/122

Static Loop Scheduling

With static loop scheduling, iterations are divided into chunks and the
chunks are assigned to the threads. Each chunk contains the same number of
iterations, except for the chunk that contains the last iteration, which may
have fewer iterations.

#pragma omp for schedule(static)
for-loop

92/122

Dynamic Loop Scheduling

With dynamic loop scheduling, the iterations are distributed to threads in
chunks. Each thread executes a chunk of iterations, then requests another
chunk, until no chunks remain to be distributed.

#pragma omp for schedule(dynamic)
for-loop

93/122

Guided Loop Scheduling

The guided loop scheduling is similar to the dynamic scheduling except
that the size of each chunk is proportional to the number of unassigned
iterations, decreasing to one.

#pragma omp for schedule(guided)
for-loop

94/122

Why Using the Scheduling Clause?

The default scheduling, static with a chunk-size equals to
niter/nthreads is not ideal for all workload.

It may be the case that iterations of high index represent more work. In
that case, some of the threads will finish early and have nothing to do.
We have a load imbalance.

Changing the scheduling may help to balance the amount of work
between the threads.

95/122

Example: Number of Prime Numbers
int prime, sum = 0;
#pragma omp parallel shared(n) private(prime)
{
#pragma omp for reduction(+:sum)
for (int i = 2; i <= n; i++) {
prime = 1;

for (int j = 2; j < i; j++) {
if (i % j == 0) {
prime = 0;
break;

}
}

sum += prime;
}

}

96/122

Example: Number of Prime Numbers
int prime, sum = 0;
#pragma omp parallel shared(n) private(prime)
{
#pragma omp for reduction(+:sum)
for (int i = 2; i <= n; i++) {
prime = 1;

for (int j = 2; j < i; j++) {
if (i % j == 0) {
prime = 0;
break;

}
}

sum += prime;
}

}

Trip count of this loop may be very low or
very high depending if the number is prime
or not

96/122

Example: Number of Prime Numbers
int prime, sum = 0;
#pragma omp parallel shared(n) private(prime)
{
#pragma omp for reduction(+:sum)
for (int i = 2; i <= n; i++) {
prime = 1;

for (int j = 2; j < i; j++) {
if (i % j == 0) {
prime = 0;
break;

}
}

sum += prime;
}

}

If the number is not a prime number, we have an early exit

96/122

Example: Number of Prime Numbers

$ gcc -fopenmp -o example omp_schedule_prime.c
$ OMP_NUM_THREADS=4 ./example

Default Static Dynamic Guided
N Pi(N) Time Time Time Time

1024 172 0.000182 0.000120 0.000104 0.000121
2048 309 0.000561 0.000359 0.000425 0.000393
4096 564 0.001987 0.001309 0.001216 0.001239
8192 1028 0.007116 0.004474 0.004375 0.005114
16384 1900 0.029730 0.015594 0.015902 0.015161
32768 3512 0.099248 0.058475 0.056940 0.057160
65536 6542 0.358250 0.218291 0.244626 0.254815
131072 12251 1.416871 0.848736 0.788619 0.819390
262144 23000 5.207946 3.193940 3.062080 3.064527
524288 43390 20.565462 12.638959 12.086839 12.102800

97/122

Example: Triangular Loop

#pragma omp parallel shared(a, n)
{
#pragma omp for
for (int i = 0; i < n; ++i) {
a[i] = 0.0;

for (int j = 0; j < i; ++j) {
a[i] += cos(-3.1 * sin(2.3 * cos ((double) j))) ;

}
}

}

98/122

Example: Triangular Loop

$ gcc -fopenmp -o example omp_schedule_triangular.c
$ OMP_NUM_THREADS=4 ./example

Default Static Dynamic Guided
N Time Time Time Time

1024 0.025865 0.016811 0.018739 0.018241
2048 0.100062 0.070023 0.082587 0.091206
4096 0.383107 0.238520 0.232556 0.226914
8192 1.515341 0.905186 0.895541 0.880046
16384 6.064787 3.540685 3.526388 3.590453
32768 24.041088 15.465762 14.088137 14.539937
65536 97.495829 59.291353 59.403173 60.252156

99/122

Nesting, Orphaning and Tasking

Nested Parallelism

OpenMP parallel regions can be nested inside each other but it is disabled by
default, meaning that

If nested parallelism is disabled, then the new team created by a thread
encountering a parallel construct inside a parallel region consists only of
the encountering thread. This is the default.

If nested parallelism is enabled, then the new team may consist of more
than one thread.

The maximum level of nested parallelism can be set by the
OMP_MAX_ACTIVE_LEVELS environment variable.

101/122

Nested Parallelism
void report_num_threads(int level) {
#pragma omp single
printf("Level %d - number of threads: %d\n",

level, omp_get_num_threads());
}

#pragma omp parallel num_threads(2)
{
report_num_threads(1);
#pragma omp parallel num_threads(2)
{
report_num_threads(2);
#pragma omp parallel num_threads(2)
{
report_num_threads(3);

}
}

}
102/122

Nested Parallelism : Disabled

$ gcc -fopenmp -o example omp_nested.c
$ OMP_NUM_THREADS=4 ./example
Level 1: number of threads in the team - 2
Level 2: number of threads in the team - 1
Level 3: number of threads in the team - 1
Level 2: number of threads in the team - 1
Level 3: number of threads in the team - 1

103/122

Nested Parallelism: Enabled

$ gcc -fopenmp -o example example omp_nested.c
$ OMP_NUM_THREADS=4 OMP_MAX_ACTIVE_LEVELS=3 \
./example

Level 1: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2

104/122

Nested Parallelism the Solution?

Let’s consider this piece of code: the amount of iteration in the first loop is
tiny. Running this loop in parallel may be inefficient.

#pragma omp parallel for
for (int i = 0; i < 3; ++i) {

for (int j = 0; j < n; ++j) {
a[i][j] = do_something();

}
}

105/122

Nested Parallelism the Solution?

Let’s consider this piece of code: the amount of iteration in the first loop is
tiny. Running this loop in parallel may be inefficient.

#pragma omp parallel for
for (int i = 0; i < 3; ++i) {

for (int j = 0; j < n; ++j) {
a[i][j] = do_something();

}
}

If I run this program on more than three threads,
some threads will be idle

105/122

Nested Parallelism the Solution?

Let’s consider this piece of code: the amount of iteration in the first loop is
tiny. Running this loop in parallel may be inefficient.

#pragma omp parallel for
for (int i = 0; i < 3; ++i) {
#pragma omp parallel for
for (int j = 0; j < n; ++j) {
a[i][j] = do_something();

}
}

Why not use nested parallelism?
Mmm... We rely on the user enabling nested parallelism
and, if he/she does, controlling the number of threads
is tedious, we will probably have a competition for
the resources

105/122

Nested Parallelism the Solution?

Let’s consider this piece of code: the amount of iteration in the first loop is
tiny. Running this loop in parallel may be inefficient.

for (int i = 0; i < 3; ++i) {
#pragma omp parallel for
for (int j = 0; j < n; ++j) {
a[i][j] = do_something();

}
}

Not really the best solution, we may have
more overhead by creating the team of threads
for the inner loop

105/122

Loop collapsing
The best way is to collaspe the two loops to increase the run trip of the loop.

#pragma omp parallel for
for (int ij = 0; ij < 3*n; ++ij) {
a[ij/n][j%n] = do_something();

}

Or better, use the collapse clause

#pragma omp parallel for collapse(2)
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = do_something();

}
}

106/122

Loop collapsing

The collapse clause, collapse the iterations of the n-associated loops to
which the clause applies into one larger iteration space. This clause can only
apply on tightly nested loops, meaning that there is no code between the
loops.

#pragma omp for collapse(n)
nested-for-loops

107/122

Tasking

Not all calculations are expressed as loops (data parallel), in the case where
units of work are generated dynamically, as in recursive structures it is better
to use task parallelism.

For task parallelism, OpenMP provides the task construct.

#pragma omp task
structured-block

A task is an independent unit of work that is running or going to run.

108/122

Tasking

When a thread encounters a task construct, a new task is generated and
added to the task queue.

The moment of execution of the task is up to the OpenMP runtime, which
chooses an eligible task in the task queue.

Execution can either be immediate or delayed.

Completion of a task can be enforced through task synchronization (with
the taskwait directive).

109/122

Tasking Example: Fibonacci Number
int fib(int n) {
int i, j;

if(n > 1) {
#pragma omp task shared(i) firstprivate(n)
i = fib(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fib(n-2);

#pragma omp taskwait

return i+j;
}

return n;
}

110/122

Tasking Example: Fibonacci Number
int fib(int n) {
int i, j;

if(n > 1) {
#pragma omp task shared(i) firstprivate(n)
i = fib(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fib(n-2);

#pragma omp taskwait

return i+j;
}

return n;
}

We need to wait for the two tasks to complete
in order to compute the result

110/122

Fibonacci: Execution

111/122

Orphaning

Directives are active in the dynamic scope of a parallel region, not just its
lexical scope. This allows for orphaned directives.

Orphaning is a situation when directives related to a parallel region are
outside the lexical extent of the parallel region.

Typical situation is calling a function containing a worksharing directive
from a parallel region.

112/122

Orphaning Example
void ax(int n, double alpha, double* x) {
#pragma omp for
for (int i = 0; i < n; ++i) {
x[i] = alpha * x[i];

}
}

int main (int argc, char *argv[]) {
// ...

#pragma omp parallel shared(x, n)
{
ax(n, 3.0, x);

}

return 0;
}

113/122

Orphaning Example
void ax(int n, double alpha, double* x) {
#pragma omp for
for (int i = 0; i < n; ++i) {
x[i] = alpha * x[i];

}
}

int main (int argc, char *argv[]) {
// ...

#pragma omp parallel shared(x, n)
{
ax(n, 3.0, x);

}

return 0;
}

Orphaned for directive that will bind
to the calling parallel region

Call to a function that contain an orphaned directive

113/122

Orphaning

If a function with an orphaned directive is called outside of a parallel
region, then this function will only be executed by the master thread.

In an orphaned directive, variables in the argument list inherit their data
scope attribute from the calling routine.

114/122

False Sharing

False Sharing in Action

double local_sum[omp_get_max_threads()];
double sum = 0.0;

#pragma omp parallel shared(sum)
{
int tid = omp_get_thread_num();
local_sum[tid] = 0.0;

#pragma omp for
for (int i = 0; i < n; ++i)

local_sum[tid] += 0.5 * x[i] + y[i];

#pragma omp atomic
sum += local_sum[tid];

}

116/122

False Sharing in Action

Let’s measure the time spend in the parallel region (using the
omp_get_wtime() function).

Threads Time (s)

1 0.535418

2 0.421140

4 0.554419

8 0.597622

The speedup from 1 thread to 2 theads is bad

When going to 4 and 8 threads the time spend in
the parallel region is worst than with 1 thread

117/122

False Sharing

False sharing is when threads impact the performance of each other while
modifying independent variables sharing the same cache line

If one core writes, the cache line
holding the memory line is
invalidated on other cores.

Even though another core is not
using that data, the second core
will need to reload the line
before it can access its own data
again.

118/122

False Sharing: Solution
Solution: introduce a padding.

double local_sum[LINESIZE*omp_get_max_threads()];
double sum = 0.0;

#pragma omp parallel shared(sum)
{
int tid = omp_get_thread_num();
local_sum[LINESIZE*tid] = 0.0;

#pragma omp for
for (int i = 0; i < n; ++i)

local_sum[LINESIZE*tid] += 0.5 * x[i] + y[i];

#pragma omp atomic
sum += local_sum[LINESIZE*tid];

}

119/122

False Sharing: Solution

Timing for different paddings on a CPU with a cache line size of 64 bytes.

Threads Time (s) Time (s) Time (s)

padding = 4 padding = 8 padding = 16

1 0.535418 0.535418 0.535418

2 0.601417 0.270089 0.270843

4 0.441149 0.152651 0.149363

120/122

False sharing

When threads access global or dynamically allocated shared data
structures there is a potential sources of false sharing

False sharing may be difficult to spot. For example, when theads access
completely different global variables that happen to be relatively close
together in memory.

Use thread-local copies of data when possible. The thread-local copy can
be read and modified frequently and only when complete, be copied back
to the global data structure

121/122

That’s all folks!

	Synchronization
	Loop Scheduling
	Nesting, Orphaning and Tasking
	False Sharing
	That's all folks!

