
INFO 0939: Project 1 – Due on October 20, 2020
Updated 06/10/2020

(Intermediate deadline: October 6, 2020)

Goals of the Project

• Refresh your C language knowledge.

• Experiment with the SLURM job scheduler.

• Write your first parallel program using OpenMP.

• Implement a Brownian motion model to study the behavior of dioxygen gas.

Introduction

The kinetic theory of gases is a simple model of the behavior of gases, which has allowed to
establish many important concepts in thermodynamics. Gas is described by the model as
plenty of identical particles having the same mass and size, traveling at different velocities
and exchanging energy only by elastic collisions between them. Under these assumptions,
the motion of the particle can be represented by the laws of classical mechanics.

In this project, you will study dioxygen gas using a Brownian motion model. In particular,
you will verify using a brute-force computational simulation that

• the dioxygen molecule speeds follow the Maxwell-Boltzmann distribution (see Fig-
ure 1);

• under the assumptions of the kinetic theory of gases, the dioxygen is a perfect gas;

• and the temperature is proportional to the kinetic energy of the system.

The (unknown) pressure p (in pascal) and the temperature T (in kelvin) of the gas are
given by the following formulas:

p =
Dm 〈v2〉

3
, (1)

T =
m 〈v2〉

3kB
, (2)

where D is the molecule density (assumed in this project to be fixed, with D = 5 ∗ 1027

molecules/m3), m is the mass of a dioxygen molecule (m = 5.314 ∗ 10−26 kg), 〈v2〉 is the

average squared particle speed (〈v2〉 =
1

N

∑N
i=1 ‖vi‖2, with vi the velocity of the particle

pi, i = 1, . . . , N) and kB is the Boltzmann constant (kB = 1.38064852 ∗ 10−23 J/K).
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Figure 1: Maxwell-Boltzmann speed distribution of dioxygen gas at 0, 100 and 200 ◦C.

In order to compute the (unknown) velocities, you will simulate the time evolution of the
position a (large) number of molecules in a cubic subdomain of side-length l (given in pico-
meter, with 1 pm = 1 ∗ 10−12 m) of a gas container, given initial positions and velocities
for all the particles. To simulate this time evolution, you will use the algorithm described
below that updates the velocities at I time steps separated by ∆t = 1 ∗ 10−14s.

The algorithm

The algorithm takes as input the size of the cubic domain l (in pico-meter), the number of
time steps I, and the initial kinetic energy K of molecules (in electron-volt, eV).

• Knowing the kinetic energy K, compute the initial particle speed:

v0 =

√
2Kqe
m

, (3)

where qe is the electron electric charge (qe = 1.602176635 ∗ 10−19 C) that gives the
conversion between electron-volt to joule.

• Allocate memory to store the velocity and the position of N particles, with N = D∗l3.
The position and the velocity are both stored as three double precision floating point
numbers corresponding to the three spatial coordinates.

• Initialize the position (xi, yi, zi) and the velocity vi =
(v0 sin(θi) cos(φi), v0 sin(θi) sin(φi), v0 cos(θi)) for each particle pi, i = 1, . . . , N ,
by considering that xi ∈ [0, l], yi ∈ [0, l], zi ∈ [0, l], θi ∈ [0, π] and φi ∈ [0, 2π] are
(pseudo) random numbers generated by the rand function. It is not a problem if

2



particles “overlap” (see below); it is also advised to work with velocities in meter
per second and positions in pico-meter in order to avoid numerical issues.

Beware that this part of the algorithm must not be made parallel because the rand

function contains locks.

• Then for each time step, from 1 to I:

– For each particle pi do:

∗ Search for its neighboring particles, defined as particles that are at most
at a distance d. The parameter d is the kinetic diameter of the dioxygen
molecule (d = 346 pm). Particles that overlap, i.e. for which the distance
between them is smaller than the square of the machine epsilon (that is
approximately equal to 2∗10−16), are not considered as neighboring particle
and are simply ignored.

∗ For each neighbor particle pj (no matter the order in which they are con-
sidered), update the velocity vi of particle pi and the velocity vj of particle
pj according to:

vnew
i = vi −

(vi − vj) · (xi − xj)

‖xi − xj‖2
(xi − xj), (4)

vnew
j = vj −

(vj − vi) · (xj − xi)

‖xj − xi‖2
(xj − xi). (5)

These are the equations of a two-body elastic collision in three dimensions.

– Once the velocity is updated for each particle, update their position using

xnew
i = xi + ∆t vi, (6)

and check that each particle remains in the box. If a particle goes out of the
box, re-enter it from the opposite side.

At the end of the algorithm:

• Save the speed of each particle (‖vi‖) into a CSV file named speed.csv structured as
described in Figure 2;

• Compute the average square speed 〈v2〉 = 1
N

∑N
i=1 ‖vi‖2;

• Compute the pressure p and the temperature T using (1) and (2) and print them to
the screen.
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Figure 2: Structure of the output file speed.csv.

Instructions

Intermediate deadline

By group of two students (this is mandatory) you are asked to implement a C program
that

1. takes from the command line the number of time steps I, the size of the box l in
pico-meter and an initial particle kinetic energy K (realistic values are between 0.04
eV and 0.1 eV). A call to your program must thus look like ./brownian 10000 5000

0.04;

2. saves the speed of each particle into a file speed.csv;

3. computes the pressure p and the temperature T ;

4. is written in a single C file main.c (no header and no other source files).

Final deadline

Implement a multithreaded version of the code using OpenMP. This program should run
on the CECI clusters: to this end, you should write a SLURM script that reserves a given
number of cores on the supercomputer, with appropriate memory and job duration.

Write a report of maximum 5 pages where you:

1. describe your implementation;

2. study the effect of the loop scheduling on your parallel implementation;

3. analyze the efficiency (strong scaling) of your parallel implementation;

4. show that the dioxygen molecule speeds follow the Maxwell-Boltzmann distribution;

5. show that under the assumptions of the kinetic theory of gases, the dioxygen is a
perfect gas, i.e. show that it follows p = DkBT ;
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6. show that T = αK (the temperature does not depend on the number of particles)
with α a constant to determine.

Submit your C code on the Montefiore submission platform https://submit.montefiore.

ulg.ac.be/. Note that no errors have to be reported during the automatic tests performed
on this platform. If your last submission generates error(s), a default grade of
0/20 will be attributed.

When your code passes on the submission platform, send your report in PDF format
together with your C code and SLURM submission script to anthony.royer@uliege.be

and cgeuzaine@uliege.be. The files (report, C code, SLURM script) should be named

project1 Lastname1 Lastname2.pdf

project1 Lastname1 Lastname2.c

project1 Lastname1 Lastname2.sh

Remarks

The number of arguments and their values are passed as arguments (argc and argv) to
the main routine: int main(int argc, char **argv). For ./brownian 10000 10000

0.04; argc will be 4, argv[0] will be "./brownian", argv[1] will be "10000", argv[2]
will be "10000" and argv[3] will be "0.04". The C library functions atoi and atof can
be used to convert strings into integers and floating point values, respectively.

Make your code easily readable by other people and by “future you”. This implies to:

• correctly indent your code;

• make things as simple as possible... while still being efficient;

• use pertinent, meaningful variable and function names, even if it makes them longer;

• make functions when necessary.

As usual, don’t write the code all at once without testing. Write it part by part and test
every small functionality separately.
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