
INFO 0939: Project 2 – Due on 22 December 2020

Intermediate deadline 1 (MPI explicit code): 17 November 2020
Intermediate deadline 2 (MPI implicit code): 01 December 2020

Goals of the Project

• Solve partial differential equations.

• Experiment stability of explicit and implicit time integration schemes.

• Combine MPI and OpenMP to take advantage of both distributed and shared mem-
ory parallelisation strategies.

Statement

In chemistry, the reaction-diffusion equation naturally appears to model the interaction of
different compounds (“components”) that diffuse and react together into a solvent. The
equation can be written as follows for each component:

∂c

∂t
= ∇ · (D∇c)︸ ︷︷ ︸

diffusion

+ R︸︷︷︸
reaction

, (1)

where c = c(t,x) is the concentration [mol/`], D is the mass diffusivity [m2/s] and
R = R(t,x, c) is the reactive term [mol/`.s] that can depend on time, position or the
concentration of the component itself. Interesting behavior can be seen when two of more
components are involved leading to a reaction-diffusion system. In some cases, the system
can reach stable solutions and show pattern structures (see Figure 1). In biology, this be-
havior is one of the possible causes of the welts and spots observed on animals like zebras
and tigers.

In this project, you are asked to study the Gray-Scott model, that involves two components
A (with concentration a) and B (with concentration b) that follow the reaction mechanism
schematized below in (2). The mechanism considers autocatalytic production of B, which
decays to form an inert product P . Moreover, the reactor is crossed by a constant flow at
the rate λ that brings reactant A at concentration a0 and removal of the product P and
some of the reactants A and B:

∅ λ−→ A

A+ 2B
k1−→ 3B

B
k2−→ P

B
λ−→ ∅

A
λ−→ ∅

(2)



Figure 1: Two stable pattern structures that can be obtained in this project.

After nondimensionalisation of the kinetic equations corresponding to this model, one can
find the following system written in term of two nondimensional unknowns u = a/a0 and
v = b/a0: 

∂u

∂t
= ∇ · (Du∇u)− uv2 + f(1− u)

∂v

∂t
= ∇ · (Dv∇v) + uv2 − (f + k)v

(3)

where Du is the mass diffusivity of u, Dv is the mass diffusivity of v, f = λ/k1a
2
0 is the

inverse of the mean residence time in nondimensional time units and k = k2/k1a
2
0 is the

effective rate constant for formation of product P . These are clearly two reaction-diffusion
equations, which are particular forms of (1).

The finite difference method

The system of equations (3) is discretized on the nodes of a square grid with spatial step
∆x, and with time discretized using an explicit or a semi-implicit Euler scheme, with time
step ∆t. Periodic boundary conditions are imposed on the boundaries of the domain.
(The two discretization methods and the boundary conditions are further explained in the
sections below.)

The domain of study is a fixed square of unit dimension. At the beginning of the simu-
lation the domain is filled with reactant u at constant and uniform unit nondimensional
concentration, while the reactant v is initialized to one only inside a circle of radius 0.05
at the center of the square domain, and to zero elsewhere. The concentration is computed
at the nodes (i, j) of the square grid described above, for every i ∈ {0, 1, 2, · · · , b1/∆xc}
and j ∈ {0, 1, 2, · · · , b1/∆xc} and for every time iteration n ∈ {0, 1, 2, · · · , bTmax/∆t c},
such that uni,j stands for the nondimensional concentration u at position (i∆x, j∆x) and
at time n∆t. The same conventions are used for the nondimensional concentration v.

2



Explicit Euler scheme

The simplest Euler method is called explicit because the unknown values at the next time
step, n+ 1, depend explicitly of the known values at the current time step, n. The explicit
finite difference scheme applied to (3) leads to the following system:

un+1
i,j − uni,j

∆t
= Du

uni+1,j + uni,j+1 − 4uni,j + uni−1,j + uni,j−1

∆x2
− uni,jvni,jvni,j + f(1− uni,j),

vn+1
i,j − vni,j

∆t
= Dv

vni+1,j + vni,j+1 − 4vni,j + vni−1,j + vni,j−1

∆x2
+ uni,jv

n
i,jv

n
i,j − (f + k)vni,j.

(4)

Semi-implicit Euler scheme

For the semi-implicit Euler method, the unknown values at the next time step, n + 1,
depend both on the known values at the current time step, n, but also of unknown values
at step n+1. Therefore, unknown values can no longer be evaluated independently of each
other, leading to the necessary solution of a linear system of equations at each time step.
The semi-implicit finite difference scheme applied to (3) leads to the following system:

un+1
i,j − uni,j

∆t
= Du

un+1
i+1,j + un+1

i,j+1 − 4un+1
i,j + un+1

i−1,j + un+1
i,j−1

∆x2
− uni,jvni,jvni,j + f(1− uni,j),

vn+1
i,j − vni,j

∆t
= Dv

vn+1
i+1,j + vn+1

i,j+1 − 4vn+1
i,j + vn+1

i−1,j + vn+1
i,j−1

∆x2
+ uni,jv

n
i,jv

n
i,j − (f + k)vni,j.

(5)

At each time step, a sparse linear system of equations must be solved, whose unknowns are
the reactant nondimensional concentrations of un+1 and vn+1, stored together in a vector.
To store the sparse matrix (named A), an efficient method keeps in memory only the non-
zero values. While in this project it is actually not necessary to store the matrix, if you
wish to do so we suggest that you store non-zero values (named ak) using 3 arrays (ai, aj
and a) of size Nz, equal to the number of non-zero values in A, defined such that:

∀k ∈ {0, 1, · · · , Nz} (A)ai(k),aj(k) = a(k) = ak. (6)

In order to solve the linear system of equations, we ask you to choose an iterative method
(and to justify your choice). A good candidate could be the conjugate gradient method,
which is briefly summarized in Algorithm 1.

Periodic boundary condition

The periodic boundary conditions imposed on the four borders of the square domain can
be understood as if the flat square domain is folded onto itself so that the top border
touches the bottom one leading to a cylinder. This cylinder is then folded again to join

3



Algorithm 1: Conjugate gradient method.
x0 = 0
r0 = b−Ax0

p0 = r0

i = 0

while
‖ri‖2

‖r0‖2

≥ rthreshold do

α =
rTi ri

pTi Api
xi+1 = xi + αpi
ri+1 = ri − αApi

β =
rTi+1ri+1

rTi ri
pi+1 = ri+1 + βpi
i = i + 1

end
return xi.

the two ends, resulting in a torus. Therefore the top border becomes linked to the bottom
one and the right border becomes linked to the left one.

From a practical point of view, that means that when you implement (4) and (5) you
should pay attention when you evaluate an unknown on the borders, when some i or j
indices go out of the possible range (−1 or b1/∆xc + 1). When this happens, you should
replace indices equal to −1 by b1/∆xc, and indices equal to b1/∆xc+ 1 by 0, as shown in
Figure 2.

Instructions

By group of two students (this is mandatory) you are asked to implement a code that:

1. Models the Gray-Scott reaction diffusion system using double precision represen-
tation;

2. Uses the explicit or the semi-implicit scheme;

3. Solves the linear system (for the semi-implicit scheme);

4. Uses both MPI and OpenMP;

5. Takes from the command line a parameter file and a flag used to chose the numerical
scheme (0 for explicit and 1 for semi-implicit). A call to your program could thus
look like ./prog param.txt 0 or ./prog param.txt 1.

4



i

j
(0, 0) (b 1

∆x
c, 0)

(0, b 1
∆x
c) (b 1

∆x
c, b 1

∆x
c)

•
•

•
•

••
••

••
••

• •
• •

• •
• •

•
•

•
•

••
••

••
••

• •
• •

• •
• •

•
•

•
•

••
••

••
••

• •
• •

• •
• •

•
•

•
•

••
••

••
••

• •
• •

• •
• •

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

/

/

/��

�
××

×

? ?

?

Figure 2: The computation grid with the periodic boundary condition.

The parameter file is written in ASCII and has the following structure:

∆t(double)
∆x(double)
Tmax(double)
Du(double)
Dv(double)
f(double)
k(double)
rthreshold(double)
S(unsigned int)

Your program should interpret the given values with the type specified between
parentheses. The parameters ∆t, ∆x, Tmax, Du, Dv, f and k are defined above;
rthreshold is the residual threshold for the Conjugate Gradient algorithm; S is the
sampling rate at which the results should be saved to disk (S = 0 stands for never
saving the results, S = 1 corresponds to saving all time steps, S = 2 corresponds to
saving one time step out of two, etc.).

6. Saves the solutions using the following binary output file format (two files per time
step, u.dat and v.dat) where N is the number of values in the x and y directions,
respectively, written as a 32 bit unsigned integer, and the αi,j are either the u con-
centration or the v concentration written as double precision numbers. Note that

5



because the file is written in binary mode, no newline or space characters should be
used in the file.

N
α0,0 α1,0 . . . αN−1,0

α0,1 α1,1 . . . αN−1,1
...

...
. . .

...
α0,N−1 α1,N−1 . . . αN−1,N−1

Submit your C code on the Montefiore submission platform https://submit.montefiore.

ulg.ac.be/. Note that no errors have to be reported during the automatic tests performed
on this platform. If your last submission generates error(s), a default grade of
0/20 will be attributed.

Write a report of maximum 30 pages where you:

1. Describe your implementation;

2. Study the stability of the explicit numerical scheme for various combinations of pa-
rameters;

3. Perform a thorough scalability analysis (weak and strong) for both the explicit and
semi-implicit version of the code;

4. Compare the performance of the explicit and semi-implicit methods for various com-
binations of parameters.

5. Present some parameters (Du, Dv, f and k) that give interesting or funny pattern
structures.

When your code passes on the submission platform, send your report by email to anthony.

royer@uliege.be in PDF format together with your C code and SLURM submission
script. The files (report, C code, SLURM script) should be named

project2 Lastname1 Lastname2.pdf

project2 Lastname1 Lastname2 *.c

project2 Lastname1 Lastname2 *.h

project2 Lastname1 Lastname2.sh

(“*” means that you can have multiple header or source files.)

Appendix

• Matlab scripts are provided to help with the visualization of your results (see
/home/ulg/ace/aroyer/info0939/hw2 on the Lemaitre3 cluster).

6



• Parameter files to generate the patterns of Figure 1 can be found at
/home/ulg/ace/aroyer/info0939/hw2 on the Lemaitre3 cluster as well.

• The diffusion coefficients have to be different to observe patterns. A good ratio could
be Du

Dv
= 2.

7


