INFO 0939 Project 2022

Last updated: 04/10/2022

Goals of the Project

* Solve partial differential equations using a finite difference scheme coded in C.

* Experiment with the stability of explicit time integration schemes.

Parallelize the code on shared and distributed memory systems using OpenMP and MPI.
* Run scalability analyses.

» Learn about the physics of acoustic wave propagation through numerical simulations.

Project statement

The propagation of sound waves is governed by the following system of first order partial differential
equations:

oP

= —pc?divy, (1)
aa: = —;gl’adP, ()

where, in three dimensions and assuming a Cartesian coordinate system and MKS units, P = P(x,y, z,t)
is the scalar pressure field (in Pa) and v = v(x,y,z,7) is the vector velocity (in m/s). Both the pressure
and the velocity are function of the position (x,y,z) and of the time 7. The material parameters are the
speed of sound ¢ = ¢(x,y,z) (in m/s) and the density p = p(x,y,z) (in kg/m*), which can be function
of the position but are assumed to be independent of time.

Expanded in terms of the three components vy, vy, v, of the velocity v, system (1)—(2) can be rewritten

as
?f:—p&(‘;‘;#f;yu%j), ©)

You are asked to solve this system of partial differential equations using the Finite Difference Time
Domain (FDTD) method (see e.g. [1]). The FDTD method is based on a discretization of the pressure
and the components of the velocity in both space and time, on regularly spaced grid nodes. A pressure
node is surrounded by velocity components such that the components are oriented along the line
joining the component and the pressure node. The distance (offset) between pressure nodes along the

Figure 1: Spatial discretization in three dimensions: arrangement of velocity nodes relative to the
pressure node with the same spatial indices [m,n, p] (the time index ¢ is omitted for clarity).

x, y and z directions is supposed to be constant, and equal respectively to Ay, A, and A,. In addition
to these spatial offsets, the pressure nodes are assumed to be offset by half of a temporal step A, from
the velocity nodes. Given four integer indices m, n, p and g, we introduce the following notations for
the representation of the discretized pressure and velocity components (see Figure 1):

Pm,n, p] := P(mA,,nA, pA;,qA;), @)
VI 2 mn, pl o= ve((m+ 1/2)Ar,nAy, pA., (g + 1/2)A,), (8)
V;IH/z[m,n,p] =vy(mAy, (n+1/2)Ay, pA;, (g+1/2)A;), 9
w2 [n, p) = v.(mAg,nAy, (p+1/2)As, (g +1/2)A,). (10)

For this project it will be assumed that the spatial grid offsets are equal in all directions, i.e. Ay = A, =
A, = 0. Replacing the derivatives in (3) with finite differences and using the discretization (7)—(10)
yields the following update equation for the pressure:

A _ _
Pq[manvp] :Pq_l[mﬂnap] _pCZET (Vz l/z[mvl/l?p} _V)qc 1/2[1’)’1— 1,7’[,p]+
vg_l/Q[mvl%p}_vg_l/z[mvn_lyp]—i_
v P, p) =8 P, p—1]). an

The update equation for the x component of the velocity is obtained from the discretized version of
(4), which yields

1A

p o

q—1/2

VP mn, pl =8 P m,n, pl

(Pi[m+1,n,p] — P![m,n, p]). (12)

The update equations for the other two components are derived in a similar way.

For this project a homogeneous initial condition is always assumed for both the pressure and the
velocity, i.e.

1/2[

Po[m,n,p] = Vx 1/2[

manap] :Vy 1/2[

m?’/l’?p]:vz m7n7p]:07 vm7n7p7 (13)

and a Dirichlet condition is specified on selected pressure nodes to impose a sound source:
Pq[m7n7p] :Ps%urce[mvnvpL m7n7p€S7 (14)

where S denotes the subset of nodes where P ce [m,n, p] is imposed. For example, if there are Ny,
N, and N, nodes respectively along x, y and z, a point-wise sinusoidal source at frequency f can be
imposed in the middle of the domain by choosing

Fource[[Nx/2]: [Ny/2], [Ne/2]] = sin(27 fgA). (15)

On the boundary of the domain, one assumes homogeneous Neumann boundary conditions for the
pressure (where any node “outside” the domain by one offset is given the same value as the one
associated to the closest node on the boundary, e.g. PY[—1,n,p] := P4[0,n,p] or P4[m,Ny,p] :=
P?[m,Ny, — 1, p|) and zero normal velocity. Finally, note that a two-dimensional problem in the z =0
plane can be solved simply by setting p = 0 and v3+1/ 2[m,n, p]l = 0,Ym,n, p,q, and by ignoring the
update equation for v,.

Instructions
By group of two students you are asked to:

1. Write the remaining FDTD update equations for vy and v,.

2. Write a sequential C program that solves the discretized equations in two dimensions over the
unit square (1m x 1m) with constant material parameters ¢ = 340 m/s and p = 1.225 kg/m?, and
with the pressure imposed as a sinusoidal source at frequency 3400Hz at a single node in the
middle of the grid. Validate the solution and study the effect of the spatial grid size 6 and the
time step A,. In particular, study the stability of the scheme depending on the ratio cA;/§.

3. Generalize the previous code so that it

* reads an input ASCII parameter file (see “ASCII parameter file format” below) that defines
the main parameters of the simulation. The name of this parameter file should be the only
argument taken by your program when executed from the command line;

* reads binary input map files (see “Binary data file format” below) describing the spatial
profile of the speed of sound and density. The corresponding file names will be specified
in the input parameter file;

e creates binary output files for the pressure and for each component of the velocity for
selected time steps, using the same format as for the binary input map files (the base
names for these files will again be specified in the input parameter file).

The resulting program is what is expected for deadline 1.

4. Do a rough analysis of the arithmetic intensity of the FDTD and determine which is the main
limiting factor for the speed of your algorithm. What do you expect if you run the FDTD on a
machine capable of 250 GB/s of memory bandwidth and 1.3 TFLOPS/s of processing power?

5. Parallelize the code for shared memory architectures using OpenMP. This should be done for
deadline 2.

6. Parallelize the code for distributed memory architectures using MPIL. You are completely free to
imagine how to split the computation for the parallel implementation. Several approaches are
possible: prefer simple solutions and document your choices. The resulting code is expected
for deadline 3.

7. Perform a scalability analysis of your parallel code, by evaluating both the strong and weak
scaling.

8. Imagine a few combinations of input parameters, speed and density maps and sources to study
the propagation of sound in interesting configurations.

Here are some optional enhancements that you can work on if you would like to go further:

1. (Difficulty level: easy) Extend your code to the three-dimensional case;

2. (Difficulty level: moderate) Add a new source type where the pressure is computed from an
audio file (you can use e.g. £ fmpeg to extract the raw waveform), extract the computed sound
at one or more interesting location(s) and reconstruct the audio file from the simulated data;

3. (Difficulty level: moderate to difficult, depending on the choice of condition) Implement more
sophisticated boundary conditions on the boundary of the domain to simulate a transparent
boundary, allowing waves to exit the simulation domain without reflection.

ASCII parameter file format

The input parameter file is an ASCII text file that contains the simulation parameters, structured as
follows:

delta

delta_t

max_t

sampling_rate

source_type

input_speed_ filename
input_density_filename
output_pressure_base_filename
output_velocity_x_base_filename
output_velocity_y base_filename
output_velocuty_z_base_filename

with

delta (double): spatial grid offset J;
delta_t (double): time step A;;
max_t (double): maximum simulation time; the maximum number of time steps is [max_t /A, |;

sampling_rate (int): sampling rate at which output files should be created (0: never save,
1: save all steps, 2: save 1 step out of 2, etc.);

source_type (string): type of source; the value point_source_middle_3400 should
correspond to the 3400 Hz sine wave excitation on a single node in the middle of the domain, as
described above. Add additional source types as necessary for your experiments: for example,
the value double_source_ping could correspond to two sources with a short “ping” sound,
and myfile.wav could correspond to an audio file.

input_speed_filename (string): name of the input file containing the sound speed profile
(the file format is described in “Binary data file format” below);

input_density_filename (string): same as input_speed_filename but for the
density profile;

output_pressure_base_filename (string): base name of the output file for the pres-
sure; the full file name consists of the base name to which the time step g is appended (the file
format is described in “Binary data file format” below);

output_velocity_x_base_filename (string): same as output_pressure_base—
_filename, but for the x component of the velocity;

output_velocity_y_base_filename (string): same as output_pressure_base—
_filename, but for the y component of the velocity;

output_velocity_z_base_filename (string): same as output_pressure_base—
_filename, but for the z component of the velocity.

Sample parameter files will be provided in class. They can be written and read using the fprintf ()
and fscanf () functions from the standard C library.

Binary data file format

The input and output binary files are structured as follows:

nx ny nz xmin xmax ymin ymax zmin zmax values...

* nx (int): number of nodes along x;
* ny (int): number of nodes along y;

* nz (int): number of nodes along z;

¢ xmin (double): minimum x coordinate of the domain;
¢ xmax (double): maximum x coordinate of the domain,;
e ymin (double): minimum y coordinate of the domain;
* ymax (double): maximum y coordinate of the domain;
* zmin (double): minimum z coordinate of the domain;
¢ zmax (double): maximum z coordinate of the domain;

* values (nx X ny X nz doubles). The values are assumed to be given “by row”, i.e.

for(int p = 0; p < nz; pt++)
for(int n = 0; n < ny; nt++t)
for(int m = 0; m < nx; m++)
printf ("value[%d] [%d] [%d] = %g\n", m, n, p,
value[ny » nx » p + nx * n + m]);

Sample binary data files will be provided in class. They can be written and read using the fwrite ()
and fread () functions from the standard C library. You can use various packages to visualize these
files: Matlab, Octave, Python, ...

Evaluation

You will need to submit your code, as well as input parameter and data files, for each of the three
intermediate deadlines, together with the exact command line to compile and run the code on the
NICS cluster. Detailed instructions will be given in class. The codes submitted for the intermediate
deadlines will not be graded, but failure to submit your code will lead to a penalty on your final grade.

The final version of your code will need to be submitted no later than one week before the oral
exam, which will take place during the January exam session. You will need to prepare a 10 minute
presentation for the oral exam, with a summary of the main results of your project. A hands-on
examination will follow, where you will be asked technical questions on your program, and you will
be tasked with running it on a new input dataset.

General remarks on C coding style

Your coding style will be evaluated. As such, some quality in the submitted code is expected, and you
should strive to have a clean and neat coding style. In general, think about who will read your code
and ask yourself if it is clear and understandable. Please beware of some common mistakes that will
lead to penalties on your final grade:

* Do all your computations in double. There is no reason to use single precision in this project.

e If youmalloc () something, remember to free () it.

* Check return values for failure, especially from malloc (), fopen () or similar calls. Don’t
assume that those calls will always succeed.

* Don’t use Variable Length Arrays, i.e.

int function (int N) {
int array[N];

The value of N must be known at compile time. If it is not the case, use malloc ().

* Don’t abuse comments. If something is obvious, don’t comment it. If you feel the need to
comment some code, ask yourself if perhaps you can write the code in a clearer way instead of
putting that comment.

* Try to use relevant and appropriate variable and function names. Be coherent in naming things,
in order to make it easy to track down where data goes.

* Avoid global variables. There are very few valid use cases for global variables and they are one
of the factors that make your code not thread safe.

* Finally, a function should fit on your screen. If it doesn’t, perhaps you should split it in smaller
pieces. Also, if you have a function that takes more than 10 parameters, perhaps you need to
think if you really need all of them, or it might be time to create a st ruct?

References

[1] John B. Schneider, Understanding the Finite-Difference Time-Domain Method, 2010. Available
online at: http://www.eecs.wsu.edu/~schneidj/ufdtd/ .

