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Objective of the course

Introduce mathematical topics and methods useful
for a wide range of engineering applications:

Partial Differential Equations (PDEs), including
simple numerical methods

Linear algebra complements: subspace methods
and Singular Value Decomposition (SVD)



Organization

Schedule

- Theory: Friday 1:45 PM - 3:45 PM
B4 A604, B31 De Méan, B7a A500 — Check your
calendars!

- Exercises: Friday 4 PM — 5:45 PM (B5b) — Except
Today and October 18th

Course website with the latest information, slides and
exercise booklet in PDF format:
http://people.montefiore.ulg.ac.be/seuzaine/MATH0504

Videos (Theory 2020) are available on eCampus

Written exam in January (theory + exercises)


http://people.montefiore.ulg.ac.be/geuzaine/MATH0504

Textbooks

1. Strauss, W. (2008). 2. Trefethen, L.N. &

Partial Differential Bau, D. (1997).
Equations: An Numerical Linear
Introduction, Wiley. Algebra, SIAM.
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Partial Differential Equations (PDEs)

The understanding of the fundamental processes
of the natural world is based to a large extent on
partial differential equations:

deformation and vibration of solids
fluids flow

dispersion of chemicals

heat diffusion

radiation of electromagnetic waves
structure of molecules

interactions of photons and electrons ...



Partial Differential Equations (PDEs)

Partial differential equations also play a central role
in modern mathematics, especially in geometry
and analysis.

The availability of powerful computers is gradually
shifting the emphasis in PDEs away from the
analytical computation of solutions and toward
both their numerical analysis and the qualitative
theory.



Partial Differential Equations (PDEs)

In this course we will

motivate with physics but then do mathematics,

focus on three classical equations,
All key ideas can be understood from them!

consider one spatial dimension before
extending to two and three dimensions
with their more complicated geometries,

address problems without boundaries
before bringing in boundary conditions.



Learning objectives of this class

Learn elementary properties of PDEs

Solve simple first-order linear PDEs

Understand the link between some classical PDEs
and the modelling of physical phenomena

Qutline  What s a partial differential equation?
First-order linear equations

e Flows, vibrations and diffusions
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1 — What is a Partial Differential Equation?

Definition of a PDE
Linear vs. nonlinear, homogeneous vs. inhomogeneous

Examples
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What is a PDE?

Let x,y,... denote independent variables and let
u denote a dependent variable that is an unknown
function of these variables, i.e. u(x, y, ...).

A PDE is an identity that relates the independent
variables, the dependent variable u, and the partial
derivatives of u.

We will often denote the derivatives by subscripts,
thus e.g. du/o0x = u,.

A solution of a PDE is a function u(x, y, ...) that
satisfies the equation identically, at least in some
region of the x, vy, ... variables.

% .



Examples with two independent variables

ér

X AR D

uy +uy, =0 (transport)

uy +yu, =0 (transport)

uy +uuy, =0 (shock wave)

uyx +uy, =0 (Laplace’s equation)

Uy — U +u> =0 (wave with interaction)
u, + uu, + Uy =0  (dispersive wave)

Uy + Uy =0 (vibrating bar)

u, —iuy, =0 (@ =+/—1) (quantum mechanics)
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Order of a PDE

The order of a PDE is the highest derivative that
appears in the equation.

Most general first order PDE in two independent
variables:

F(xayauau)muy):()

Most general second order PDE in two independent
variables:

F(-xa y7 M, MXa My, Mxx, uxya uyy) — O
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Linear vs. nonlinear PDEs

Write the equation in the form £u = g, where &

is an operator and g is a function of the
independent variables (or zero).

A PDE is linear if
$(u—+v)=%u+ Sv $(cu) = cfu
for any functions u, v and any constant c.

If one or both conditions do not hold, the PDE is
nonlinear.

| We will mostly study linear PDEs (often with
& constant coefficients).



Homogeneous vs. inhomogeneous PDEs

ér

If &£ is alinear operator, the equation
Su=20

is called a homogeneous linear equation.

The equation

Yu=¢g

where g # 0is a given function of the
independent variables, is called an inhomogeneous
linear equation.
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Wooclap

Go to https://wooclap.com and
enter event code LIMUZD

Which of the following operators are linear?

$(u—+v)=%u+%v F(cu) = cSu

(a)
(b)
(c)
(d)
(€)

Fu =u, + xu,
Fu =uy, + uu,
iﬁuzux—l—ui

fu=u,+u,+1
Fu = 1+ x%(cos y)u, + uy,, — [arctan(x/y)]u
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https://wooclap.com/

Wooclap

Nonlinear, linear inhomogeneous or linear
homogeneous PDE?

(a) U — Uy +1=0

(b) u; —u,, +xu=20

(C) U — Uxxr T ULy = 0

(d) U — Uxyx T x2 =0

() iu; —uy+u/x=20

6w +u2)" a1+ u2) =0
(g uy+eu,=0

(h) Ur + Uyyxx + /1 +u=0

\ %

ér



2 — First-Order Linear Equations

Constant coefficient equation

Variable coefficient equation
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Constant coefficient equation

Let us solve
au,+bu,=0
where ¢ and b are not both zero.

The quantity a u, + b u, is the directional derivative
of u in the direction of the vector V = (a,b).

The PDE thus means that u(x,y) is constant
along the direction of V.

20



Note: equation of a line parallel to vector V

General formulation:

y=mx+c

where m is the slope, and c the intercept.

If the line is parallel to vector V = (a,b), then the
slope m is givenbym =5/ a.

Hence the equation of the line becomes:

b
y=—x+c¢c = bx—ay=-—ac=constant
> a

21



Constant coefficient equation

The lines parallel to V = (a, b) are described by the
equation:

b x —a y = constant

ty
e 7 |
V. X

These lines are called characteristic lines.

The solution u(x,y) is constant on each
- characteristic line.

ér
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Constant coefficient equation

On the line b x — a y = cst, the solution u takes a
constant value, which depends on the particular

line, i.e., on the value of the constant.

Call the constant ¢,

and the value of the solution (¢ ):
u(x.9)= 1 (c)=f (bx—ay)
4» 23



Constant coefficient equation

We have: u(x,y) = f(c) = f(bx—ay)

Since c is arbitrary, this holds for all values of x and
y. It follows that

u(x,y) = f(bx—ay)

is the general solution of the PDE, with fany
function of one variable.

Moral: a PDE has arbitrary functions in its solution.

These functions need to be fixed thanks to
auxiliary (“boundary” or “initial”) conditions.
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Example: solve 2 u, + 3 u, = 0 with the auxiliary
condition u = sin x whent=0

The quantity 3 u, + 2 u, is the directional derivative
of u in the direction of the vector V = (3, 2).

This means that u(x, f) must be constant in the
direction of V.

The lines parallel to V have the equations

2 x — 3 t = constant.

K4
/ /

7

"X
«f VvV

ér
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Example: solve 2 u, + 3 u, = 0 with the auxiliary
condition u = sin x whent=0

Thus the general solution of the PDE is

ux, ) =f2x—-31),
where f is any function of one variable.
Auxiliary condition (initial condition)
* setting = 0 yields the equation /(2 x) =sin x
* Letting s = 2 x yields f(s) = sin (s/2).
* Therefore, u(x, t) = SlItl (x —3/2 t).
/ /

<’ 7 "X

Vv

ér
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Variable coefficient equation

Let us solve
u +yu,=0

This is a linear PDE, but with a variable coefficient.
The PDE asserts that the directional derivative of u
in the direction of thevector V=(1, y ) is zero.

The curves in the x-y Ay

lane with (/,y) as :/
P ’ / )
tangent vectors - -

have slopes y. \\\
& N
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Variable coefficient equation

The equations of these characteristic curves are

ﬂzl = y=Ce

dx 1

As the value of C'is varied, these curves fill the x-y
plane without intersecting.

AV
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Variable coefficient equation

On the paths defined by the characteristic curves
the PDE reduces to an ordinary differential
equation (ODE):

d ou ou

—ul(x,Ce’ |=—+Ce" —=u_+yu_ =0
dx ( ) Ox oy Y

Hence, u = f (C), with fan arbitrary function of the
characteristic coordinate C=¢"y .

The general solution of the PDE is thus

) u(x,y)=fle”
. ()= e |



Variable coefficient equation

This geometric method works nicely for any PDE of
the form a(x, y) u, + b(x, y) u, = 0.

It reduces the solution of the PDE to the solution of
the ODE

dy _ b(x,y)

dx a(x,y)

If the ODE can be solved, so can the PDE. Every

solution of the PDE is constant on the solution
> curves of the ODE.
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Alternative formulation

It is also possible to transform the following PDE
a(x, y) u, + b(x, y) u,=0
from the definition of the total derivative

ou dy ou
Ox a’x@y

into the following 2 ODEs, by identification

—u[x y(x)] = =0,

du dy b(x,y)
AR () & —
p dx dx a(x,y)

31



Example: solve V1 —x%u,+u, =0 with u(0,y) =y

On the characteristic curves defined by
dy 1

dx /1—x?
the PDE reduces to an ODE. Integrating, we get

y = arcsinx +C

The general solution of the PDE is thus

u(x,y) = f(y— arcsinx)
Since we are told that «(0,y) =y, we need f(y) =y
and thus:

. u(x,y) =y—arcsinx

4» 32



Alternative : solve v1—x2u,+u, =0 with u(0,y) =y

The 2 ODEs are
du dy 1

EZO & a’x: 2

Integrating, we get

u=C, & y =arcsinx + C,
If we define y, = y(x=0), we have
u=y, & y=arcsinx+ Y,
From the characteristic line equation: y, =—arcsinx+y

Finally, replacing the above expression in the
4»’ solution u(x,y) =y —arcsinx

33
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3 — Flows, Vibrations and Diffusions

34



PDE Examples from Physics

In physical problems the independent variables are
often those of space x, y, z, and time t.

Let us look at some classical problems:
- transport of a pollutant in a fluid flow
- vibrating string
- vibrating drumhead
- diffusion of a dye in a motionless fluid

- stationary diffusion

35



Simple Transport

Consider a fluid (e.g., water) flowing at a constant
rate c along a horizontal pipe of fixed cross section
in the positive x direction.

A substance (e.g., a pollutant) is suspended in the
water. Let u(x, ¢) be its linear concentration (e.g., in
g/cm) at time ¢.

The amount of pollutant in the interval [0, b] at the
timetis(e.g., in g):

b
M=\ ulx,t)dx
4» -[O ( ) )



Simple Transport

At the later time ¢ + 4, the same molecules of
pollutant have moved to the right by a distance
chleg.,in centimeters) i.e.,

M = j xt dx = _“;+Chu(x,t+h)dx

Differentiating with respect to b, we get
u(b,t) :u(b+ch,t+h)
Differentiating this last result with respect to 4,

and setting 7 = 0, we get
cu, (b+ch,t+h)+u,(b+ch,t+h)=0

% cu,(b,t)+u,(b,t)=0
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Leibniz integral rule

To evaluate the derivative of these integrals

jbu(x,t) dx = jil+6hu(x,t+h) dx

0

with respect to b, the Leibniz integral rule has been
used:

d d

o ea)|e=0F
—b(z)—u(a,z)—

+u (b,z) e dza(z)
4» 38



Simple Transport

The simple transport PDE is thus u; + cu, = 0.

The general solution is a function of (x — ct) only:
the substance is transported to the right at a fixed
speed c. Each individual particle moves to the right

at speed c; in the x-f plane, each particle moves

precisely along a characteristic line. "

Same shape—» — =)

dt
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Simple Transport

The simple transport PDE is thus u; + cu, = 0.

The general solution is a function of (x — c¢t) only:
the substance is transported to the right at a fixed
speed c. Each individual particle moves to the right

at speed c; in the xt plane, each particle moves

precisely along a characteristic line. Ju

Sameshape—» — = 0
dt

40



Vibrating String
Consider a flexible, elastic homogenous string of

length /, undergoing small transverse vibrations.

Let u(x, ¢) be its displacement from equilibrium
position at time ¢ and position x:

Let p be the (constant) linear density (mass per
unit length) of the string.



Vibrating String

Because the string is perfectly flexible, the tension
(force) is directed tangentially along the string:

T(xy, £)

|
|
|
X0 X1

Let us denote by 7(x, ) the magnitude of this
tension vector and let us write Newton’s law for
. the part of the string between x, and x;.



Vibrating String

We have Y F=ma ,i.e., inthe x-u coordinate
system (with the x-component of a = 0 since we
assume purely transversal vibrations):

—T cosBy+TcosO; =0 along x

A1
—T sin 6y + T sin 6, :/ Puysrdx along u
X0

with 6y and 0; the angles
between the tension
vector and the x-axis

4 [
"’ at x, and x;, respectively. """
& 0 1 P Y

Ao




Vibrating String

Since tan 0 is equal to the slope Ou =u_, we have

1

Ox

cos 0 \/Tu,% s T%—u)%

and thus

—T cos@, +Tcosb, =0 =

—T'sin6,+Tsino, = jxlp u, dx =

4 F

<

T

\/1+u§

J1+u

T u

X

J1+u?

|
1
X




Vibrating String

Assuming that the motion is small, i.e.

Jl+u? :1+%u§+...z1

the first equation leads to:

T

2
Jl+ux%

i.e., the tension 7'is constant along the string.

4» 45



Vibrating String

Assuming that the motion is small, i.e.

Jl+u? :1+%u§+...z1

the second equation leads to:

X1

\/TLXZ = jX1 P U, dx
tug| "0

— Tux(xl’t)_Tux(xo,t)ZIX1§
X0 OX

(Tu,)dx= IX1 pu, dx

- This leads us to a second order PDE: (T u,), =pu,

<
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Vibrating String

Since T'is independent of x, we can rewrite the
equation as:

) | I
Uu. =Cc u with C= |—

It XX
Jo,

This is the wave equation.

We will see in Lecture 2 that c is the wave speed.

47



Vibrating Drumhead

The two-dimensional version of a string is an

elastic, flexible membrane stretched over a frame
(a homogeneous drumhead).

Say the frame lies in the x-y plane, with u(x, y, 1)

the vertical displacement (there is no horizontal
motion).

| A

=Y

48
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Vibrating Drumhead

The horizontal components of Newton’s law again
give constant tension 7.

Let D be any domain in the x-y plane (e.g., a circle
or a rectangle). Let bdy D be its boundary curve.
The vertical component gives (like 1D string case):

F:f T—ds_//,ou,tdxdy_ma
bdy D

where du/on = n - Vu is the directional derivative in
the outward normal direction, n being the unit
4»' outward normal vector on bdy D.

49
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Vibrating Drumhead

Using the Gauss theorem, we get

/[V -(TVu)dx dy = //pu” dx dy.
D

D

Since D is arbitrary, we have pu,;; =V - (T'Vu).
Since T is constant, we eventually get:
wyy = V- (Vi) = *(uyy + Uyy)

where ¢ =/T/p as before: this is the 2D wave
equation.

The operator V - (Vu) =div grad u = uy, + uy, is
4»’ known as the 2D Laplacian.

50



Wave Equation in Three Dimensions

The pattern is now clear. Simple three-dimensional
vibrations obey the equation:

Ut = Cz(uxx T Uyy T Uzz)-

The operator ¥ = 9%/9x> + 3%/9y* + 9/9z* is called
the three-dimensional Laplacian operator, usually
denoted by A or VZ.

Physical examples described by the 3D wave equation
or a variation of it include the vibrations of an elastic
solid, sound waves in air, electromagnetic waves,
linearized supersonic airflow, free mesons in nuclear
& physics, seismic waves propagating through the earth...

51



Diffusion

Imagine a motionless liquid filling a straight pipe
and a chemical dye, which is diffusing through the
liquid.

The dye moves from regions of higher concentration
to regions of lower concentration. The rate of

motion is proportional to the concentration
gradient. (This is known as Fick’s law of diffusion.)

Let u(x, ¢) be the concentration (mass per unit
length) of the dye at position x of the pipe at time ¢.



Diffusion P o —

In the section of pipe from x, to x;, the mass of dye
IS

Al dM Al
M(t) = / u(x,t)dx, so — = / u,(x,t)dx.
X0 dt X0

The mass in this section of the pipe cannot change
except by flowing in or out at its ends.
By Fick’s law:

dM .
- = flow in — flow out = ku . (xy, 1) — ku,(xp, t),

where k is a proportionality constant.

53



Diffusion

We thus have

x|
/ u (x,t)dx = kuy(x1,t) — kuy(xo,1) =

X0
leading to

u =ku

4 XX

which is the diffusion equation.

xl&)

X0

ox

(kuy)dx

54



Diffusion in Three Dimensions

In three dimensions we have

///u,dxdydzz f/k(n-Vu)dS,

D bdy D
where D is any solid domain and bdy D is its
bounding surface.

By the divergence theorem, we get the three-
dimensional diffusion equation

u, :k(uxx +u, +uzz)=kAu
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Diffusion in Three Dimensions

If there is an external source (or a “sink”) of the
dye, and if the rate k& of diffusion is a variable, we
get the more general inhomogeneous equation

u, =V -(kVu)+ f(x, t).

The same equation describes the conduction of
heat, brownian motion, diffusion models of
population dynamics, and many other phenomena.
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Laplace Equation

Consider the wave and the diffusion equations in a
situation where the physical state does not change
with time.

Then u,=u, = 0 and both the wave and the
diffusion equations reduce to

Au = Uyy + Uy, +u; =0.

This is called the Laplace equation. Its solutions are
called harmonic functions.



Take-home messages

- General solutions of PDEs involve arbitrary
functions ; well-posed problems require the
prescription of initial and/or boundary
conditions.

- Simple first-order linear PDEs can be recasted as
ODEs; their solution is constant along
characteristic curves (for homogeneous PDE).

- The wave, diffusion and Laplace equations are
representative of the three main families of
second-order PDEs: hyperbolic, parabolic and

& elliptic.



Next lecture

Initial and boundary conditions
Well-posed problems

Classification of PDEs
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