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Learning objectives of this lecture

@ Understand the notion of “well-posed” problem,
together with the concepts of boundary and/or
initial conditions

@ Recognize the main families of
- 2"d-order PDEs

- systems of 1st-order PDEs



Outline

Initial and boundary conditions
Well-posed problems
Types of second-order PDEs

Types of systems of first-order PDEs \\
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Reminder



What is a PDE? What is the order of a PDE?

A PDE is an identity that relates
- independent variables (e.g. x, y, £ ...)

- to a dependent variable u, and its partial
derivatives.

We will often denote the derivatives by subscripts,
thus e.g. u, = ou/ ox.

The order of a PDE is the order of the highest
derivative which appears in the equation:

- E.g. 1%torder: F(x,y,u,u,,uy,)=0
- E.g. 2" order: F(x,y,u,uy, uy, Uy, tyy, Uyy) = 0.
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What is a linear PDE? When is it homogeneous?

Let us write the PDE in the form % (u) = g,
where

- & is an operator
- and gis a function of the independent variables

(Or zero). We will somehow generalize

this later in this class
A PDE is linear if /

Yu+tv)=4%wWw)+<%£Wv)and L(cu)=c % (u)

for any functions « and v, and any constant c.

¥ Besides, it is homogeneous if g=0, i.e. Z(u) = 0.

ér



15t order linear PDEs can be reformulated as ODEs;
their solution is constant along characteristic curves

Consider the 15t order PDE

a(x, y) u, + b(x, y) u,=0

where a(x, y) and b(x, y) are not both equal to
Zero.

It expresses actually a directional derivative of u.
Hence, solving the PDE reduces to solving the ODE:
dy [ dx=b(x, y) / a(x, y)

and the solution of the PDE is constant along the
solution curves of this ODE, referred to as
characteristic curves.



For a 15t order linear PDE with constant coefficients,
the characteristic curves are straight lines

v

Consider the 1t order PDE
au,+bu,=0

where a and b are not both equal to zero.

The general solution

V=(a,b
of this PDE writes: . Y /' (@, )
uw ) =f(bx=ay) 3 .
with fany function S /

of one variable. ™~ Naeq for initial / boundary

conditions!



Paradigmatic PDEs

Simple transport

u,+cu. =0
Wave equation
Uy = ( Uy,
Diffusion equation
u,=k(u,
Laplace equation

U, = Au

= c? Au

=k Au

|
S
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1 — Initial and boundary conditions,
and the concept of well-posed problems
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Initial and boundary conditions

General PDE solutions involve arbitrary functions:
to single out one solution we need auxiliary
conditions.

For PDEs describing physical phenomena these
conditions are motivated by physics and take the
form of initial or boundary conditions:

an initial condition specifies the physical state at
a particular time ¢,.

a boundary condition specifies the specifies the
physical state on the boundary of the domain D
in which the PDE is valid.

% .



Initial conditions

) Y

For the diffusion equation u, = k Au,
the initial condition is

L E.g. initial temperature,
M(X’ tO) _ ¢(X)’ initial concentration ...

where ¢(x) = ¢(x, y, z) is a given function.

This will be proven

For the wave equation u,, = ¢? Au, ater i the couree.
a pair of initial conditions is needed: J

0
u(x, o) = ¢(x) and a_b;(’" f0) = Y(x),

where ¢(x) is the initial position and v (x) is the
initial velocity.
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Boundary conditions

The three most common types of boundary
conditions are:

E.g. - (D) u is specified (“Dirichlet condition”)

violin string

tg.string  « (N) the normal derivative ou / on is specified
free to move

transversally (“Neumann condition”)

e L (R)Ou/ On+ au is specified (“Robin condition”)

a spring

where a is a given function of x, y, z, and .

Each is to hold for all ¢
:b’ and for some x = (x, y, z) belonging to bdy D.

14



Boundary conditions (cont’d)

Usually we write (D), (N), and (R) as equations.
For instance, (N) is written as the equation
ou/ on = g(x, t)

where g is a given function that could be called
the boundary data.

Any of these boundary conditions is called
homogeneous if the specified function equals zero.
Otherwise it is called inhomogeneous.

4» 15



Initial and boundary conditions

We will come back later on which initial and/or

boundary conditions must be specified to set up a
problem that has a unique solution.

This depends on the PDE being considered, and can
be analyzed mathematically.

Some PDEs are posed in an unbounded domain D.
‘ \ In that case conditions “at infinity” are needed.

“Jump” conditions apply when the domain is made
:»’ L of two parts, such as two media for instance.

E.g. waves at the air-water interface 16



Well-posed problems

Well-posed problems consist of a PDE in a domain
with a set of initial and/or boundary conditions (or
other auxiliary conditions) that enjoy the following
properties:

‘Thisis | 1. existence: there exists at least one solution

| crucial ' u(x, t) satisfying all these conditions.
: because you |
| can never
I measure the |

: input data :

| with perfect | 3. Stability: the unique solution u(x, ¢) depends in
:Ericisifn; " a stable manner on the data of the problem.
LM TEP 1 This means that if the data are changed a little,

I to some

l
l

levelof I the corresponding solution changes only a little.
l

| aCCuracy

2. uniqueness: there is at most one solution.
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An example based on ODEs

» [ x(0).2(0).2(0)|=[0.10.1,0.1].

x(1)
. | x(0).(0).2(0) |=[0.100001,0.1.0.1]
x(1) ,

25 4
04

x(t)—x(t) 21

-50

t

(Po pe 2000) 0 10 20 20 40 50 60 70 80 % 100
> Time series from the resolution of the so-called Lorenz equations
b for two slightly different initial conditions [ x(0), ¥(0), z(0) ] .



Outline

Initial and boundary conditions
Well-posed problems
Types of second-order PDEs

Types of systems of first-order PDEs

i
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2 — Types of second-order equations

20



Types of second order equations

Laplace, wave, and diffusion equations are in some
sense typical among all second-order PDEs.

However, these three equations are radically
different from each other, in terms of represented
physics, analytical features and numerical schemes.

“ Itis natural that the Laplace equation u,, + u,, =0
—+ and the wave equation u,, — u,,, = 0 should have
~. very different properties: after all, the algebraic
equation x? + y> = 1 represents a circle, whereas
the equation x> — y? = 1 represents a hyperbola.
@ The parabola is somehow in between.

21



Types of Second Order Equations

Let’s consider the second order PDE in two
variables

ayUyy +201Uxy + anuyy + ajuy + auy + aou = 0.

Theorem 1. By a linear transformation of the
independent variables, the equation can be
reduced to one of three forms:

(i) Elliptic case: If afz < apiayy, itis reducible to
P (where - - - denotes terms of order 1 or 0)

22



Types of Second Order Equations

i) Hyperbolic case: If at, > ajjax, it is reducible to

(i) Parabolic case: if a?, = aj1a2 , it is reducible to
12

(UnleSS Ay —dyp —dyr — 0 — 1storder PDE)

We will come back to this classification (and a
P generalization) later in the course.

ér
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Geometric analogy

The key quantity that determines the type of such a
PDE is its discriminant:

A= (26112)2 —4a, a,, .

This reminds the discriminant of a quadratic equation

a,x’+2a,xy+a,y’ +ax+a,y+a,=0
whose solutions trace out a plane curve.
The discriminant fixes its geometric type:
(i) anellipse:If A<O0
(i) a hyperbola: If A>0
& i) a parabola: If A=0

24
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3 — Types of systems of first-order PDEs

i. 1%torder quasi-linear PDEs

i. Introductory example

iii. General theory

iv. Application to a simple example



Here, we focus on systems of 15t order quasi- N
linear PDEs, with two independent variables =

The motivation for studying systems of quasi-linear
15t order PDEs is twofold:

- a broad range of processes in engineering may
be described by a set of 15t order PDEs;

- some higher order PDEs may be transformed
into a system of 15t order PDEs.

Definition A quasi-linear PDE is a PDE in which
the derivatives of highest order with respect to
- each independent variable appear linearly.

<
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Quasi-linear higher order PDEs may be m
transformed into a system of 1t order PDEs =

Let us consider as an example this 2" order PDE:

3 —
U, +uu, +(tanu)uyy = f(u,ux,uy)

Define p=u, and ¢ =u, so thatthe original
PDE is equivalent to this system of 15t order PDEs:

pp.+q’(p,+q,)/2+(tanu)g, = f (1, p.q)

4 q.—p,=0
u —p=0

ér
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Aim: combine the equations so that you m
end up with a set of ODEs, instead of PDEs V-

Let us consider now this simpler example:
2 _
u,—ca u_=>b

where, in general, a and b can be functions of x, ¢,
u, and u, (not u). Notation srefersto+ 1 or — 1.

The wave and Laplace equations are particular cases.

Defining p=u, and g=u, the 2" order PDE s
equwalent to this system of 1t order PDEs:

—g[a xtpq] px—b(xtpq)
‘ L pt_q)c:O

J\
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Aim: combine the equations so that you m
end up with a set of ODEs, instead of PDEs V-

-

Qt_g[a(x9t9p9Q):|2px:b(x9t9PDQ) (1)

\ p,—q,=0 (2)
Linearly combining Eqgs (1) and (2):
o(1)+ 4(2),
with oand A coefficients to be determined, leads
to:

c0,q—A10.q—0¢ [a(x,t,p,q)]z 0.p
+A0,p= Gb(x,t,p,q)

) Y
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Aim: combine the equations so that you m
end up with a set of ODEs, instead of PDEs V-

c0,q—A0.q—0o¢ [a(x,t,p,q)]2 o.p

o] 8

+A0,p= O'b(x,t,p,q)
oy re-arranging the termes,

00,— 1 8x]q+[/"t 0,—ceca’ Gx}pzab

Jo? + 1% 8 JA* +c%a o,

S1

curvilinear coordinates,
/ with slopes / ,
A dx oE&a
—=f, =-
dt O dl‘ A 30




Aim: combine the equations so that you m
end up with a set of ODEs, instead of PDEs V-

To obtain ODEs (instead of PDEs), the derivation
operators in the two terms should be the same
(i.e. the slopes ¢, and ¢, of the curvilinear
coordinates s, and s, should be equal):
2
[ =0,=1 o -t-_0f¢_,
o A

S A R

This leads to the compatibility condition €2 = ga?.

31



Case 1: assume ¢=+1 (and a > 0) [N

The compatibility equation £ 2 = a? has two real
solutions: ¢ =a and{ =-a.

Hence, the considered system of two PDEs has two
independent families of characteristic curves.

By definition, such a system is called hyperbolic.

Note that the slope of the characteristic curves
depends only on a, the coefficient of the
derivatives of highest order, not on b.

& In other words, b does not influence the PDE type.

32



The slope of the characteristics are eigenvalues ...

<., r

<

The considered system of 1t order PDEs

-

Qt —& [a(xatapaq):lz px :b(x9t9p9Q)
\ pl‘_qx:O

may be written in matrix form:

HEEA WE

—\

A

J/\

Note that the eigenvalues of matrix A are nothing
but the slopes of the characteristics: { =+ a.
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Case 2: assume ¢=—1 (and a > 0) [N

The compatibility equation € 2 = — a2 has two
complex solutions: ¢ =ia and{ =-1ia.

Hence, the considered system of two PDEs has
no real families of characteristic curves.

By definition, such a system is called elliptic.

Again, note that the solutions of the compatibility

equation depend only on a, the coefficient of the
derivatives of highest order, not on b.

& Here also, b does not influence the type of PDE.
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More general theory of characteristics m
for a system of 15t order PDEs V-

Consider now the most general system of 15t order
PDEs, with N dependent variables / unknowns:

u,+ A, z,u)u,=h(x, ¢, u)

with u the vector of N unknown functions,
A a N by N matrix and h a vector of dimension V.

Any PDE i of the system may be written as:

N
o.u. +ZA..8 u.—h. =0
j=1

jox7j

35



More general theory of characteristics m
for a system of 15t order PDEs V-

Let us look for a linear combination of the PDEs of
the system:

N N N N
ZGZ. o.u, +ZaiZAl.j8xuj —Zal. h, =0
i=1 =1 j=l i=1

where o; are coefficients to be determined.

Using Kroenecker delta o, the equations write:

N N N | N
Z (Zlo; 0, jaf+(zlaiAijj6x uj=ZGi h,

=L

v

é\
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More general theory of characteristics m
for a system of 15t order PDEs V-

The terms in the square brackets are all directional
derivatives, which could be written in characteristic
form, as follows:

/N N i N
(Z;Gi 51.]. j8t+(21:0i14ijj6x uj:ZGi h,

N

oy (0, +€6x):0j\/1+€2 0,

where € is the slope of the
characteristic curves

ji: ... provided that compatibility conditions are verified!

37



More general theory of characteristics m
for a system of 15t order PDEs V-

The following algebraic equations need to be
satisfied, for all ;:

N
ZGiAij N N
=l =( = Y o0,4,-(> 0,6, =0
Zai 51']' i=1 i=1
i=l1 IdentitI matrix

= Y[(47), 18, |o,=0 = (AT-r1)o=0
i=l1

1: = Compatibility condition: det(AT— 1) =0.

38



More general theory of characteristics m
for a system of 15t order PDEs V-

From the compatibility condition det(A! — £ 1) =0,
the N possible characteristic slopes £, of a system of
15t order PDEs are the eigenvalues of matrix A.

If all eigenvalues of A are real (and corresponding
eigenvectors are independent, i.e. A is
diagonalisable), then the system of PDEs is
hyperbolic.

If all eigenvalues of A are complex (and
corresponding eigenvectors are independent, i.e. A
is diagonalisable), then the system of PDEs is elliptic.

39



More general theory of characteristics m
for a system of 15t order PDEs V-

The case where the eigenvectors are not

independent, i.e. A is not diagonalisable, often
corresponds to parabolic systems of PDEs.

If some eigenvalues of A are real and others are
complex, then the system of PDEs is hybrid.

40



A simple example

We consider the case of the wave equation:

_ 2
Uy = C Uy
Let us define the following new unknowns:

q = u, and p=u,

Then, we have the system of 1%t order PDEs:

q;—c*p.=0

P~ 4:=0

41



A simple example [N

The system may be written in matrix form as
2
1 + 0 “ |1 =0
p) \-1 0 J\p)

The eigenvalues of the matrix are A ==+ ¢, which
correspond to the slopes of the characteristics.

The system of two 1%t order PDEs has two families
of characteristics, just like 2"d order wave equation.

42



Take-home messages

By definition, the solution of a “well-posed”
problem (i) exists, (ii) is unique and (iii) is stable.
This is achieved by prescribing suitable auxiliary
conditions, such as initial and boundary conditions.

Depending on the sign of the coefficients of the
highest derivatives, second-order PDEs are either
(i) elliptic, (ii) hyperbolic, or (iii) parabolic.

For a system of 15t-order PDEs, the type of the
system depends on the eigenvalues of the matrix.

The various types of PDEs have radically different
properties — next class: the wave equation.

% .



What’s next?

Transport Wave Diffusion Laplace
equation equation equation equation

General introduction Class 1

Modelling from physics Class 1

Well-posed problems Class 2

Classification Class 2

Main properties Class 4

Analytical solution Class 1 Class 6 Class 8
Von Neumann Class 5

Numerical approximation Class 5 Class 4 Class 10
Boundary problems Class 7 Class 8
Non-linear Class 9

3; + Linear algebra (Classes 11, 12, 13)



Répartition entre les salles TD / TP

B5b S24 : TD1
B5b S34 : TD2
B5b S26 : TP1
B5b S28 : TP2

B5b S30: TP3

ér
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