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Learning objectives of this lecture

Understand the fundamental properties 
of the wave equation

Write the general solution of the wave equation

Solve initial value problems with the wave equation

Understand the concepts of causality, domain of 
influence, and domain of dependence in relation 
with the wave equation

Become aware that the wave equation ensures 
conservation of energy
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Outline

1. Reminder: physical significance and derivation 
of the wave equation, basic properties

2. General solution of the wave equation

3. Initial value problem

4. Causality

5. Energy

6. Generalized wave equation
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1 - Reminders
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Reminder

The 1D wave equation describes the small 
displacements of a flexible, elastic, homogenous 
string (e.g. guitar string or violin string), which 
undergoes transverse vibrations (in a plane). 

The displacement from equilibrium position 
at time t and position x is noted u(x, t).

u(x, t)
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Reminder

Using Newtown’s law and these assumptions,

• the string is perfectly flexible, so that the tension 
(force) T(x, t) is directed tangentially along the string,

• the density r of the string (mass per unit length) is a 
constant because the string is homogeneous,

• purely transverse motion, no longitudinal motion,

leads to

T is independent of t a well as x,

where is the wave speed.
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Reminder

The 1D wave equation, or a variation of it, 
describes also other wavelike phenomena, such as 

• vibrations of an elastic bar, 

• sound waves in a pipe,

• long water waves in a straight channel,

• the electrical current in a transmission line …

The 2D and 3D versions of the equation describe:

• vibrations of a membrane / of an elastic solid, 

• sound waves in air, 

• electromagnetic waves (light, radar, etc.), 

• seismic waves propagating through the earth …
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For the sake of simplification, we consider here
an infinite domain: −∞ < x < +∞

Real physical situations are often on finite intervals.

However, we do not consider boundaries here,
for two reasons:

• from a mathematical perspective, the absence of a 
boundary is a big simplification, which does not 
prevent shedding light on most of the fundamental 
properties of PDEs;

• from a physical perspective, far away from the 
boundary, it will take a certain time for the boundary 
to have a substantial effect on the process, and until 
that time the solutions derived here are valid. 
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Basic properties of the wave equation

The wave equation (WE) writes: 

where the following notation is used for the 
derivatives: …

The WE has the following basic properties:

• it has two independent variables, x and t, 
and one dependent variable u
(i.e. u is an unknown function of x and t);

• it is a second-order PDE, since the highest derivative 
in the equation is second order;

• it is a homogeneous linear PDE.



10

The wave equation is a hyperbolic PDE

Comparing the wave equation

to the general formulation

reveals that

since a12 = 0, a11 = ‒ c2 and a22 = 1.

Hence, the wave equation is hyperbolic.
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2 – Solution of the wave equation

In this section, we use two different approaches to derive the general 
solution of the wave equation (Section 2.1 in Strauss, 2008).
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1st approach 
The operator in the wave equation factors

The wave equation

may be written as:

This is equivalent to two 1st order PDEs:
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1st approach 
We solve each of the two 1st order PDEs

As shown in Lecture 1 (Sect. 1.2), the general 
solution of is given by:

where h is any function.

Indeed, expresses that the 
directional derivative of v along the direction 
V = (‒ c, 1) is zero. 

x

t
V
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1st approach 
We solve each of the two 1st order PDEs

The lines parallel to V = (‒ c, 1) have the equations

x + c t = constant.

These lines are the characteristic lines.

Since the function v must remain constant on each 
such line, v depends only on x + c t :

x

t
V
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1st approach 
We solve each of the two 1st order PDEs

Now, the second 1st order equation takes the form

It is easy to check directly by differentiation that 
one solution is:

, where

[A prime (ʹ ) denotes the derivative of a function of one variable]

x

t
V
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1st approach 
We solve each of the two 1st order PDEs

To the particular solution f (x + c t) of equation

we can add the solution g (x − c t) of the homogeneous 
equation 

to get another solution (since the equation is linear).

Therefore, the most general solution is expressed as a 
particular solution plus any solution of the 
homogeneous equation:

u(x, t) = f (x + c t) + g(x − c t).

0
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2nd approach 
Introduce the characteristic coordinates

Consider the following change of coordinates:

By the chain rule, one obtains:

and

Therefore,

and

So, the wave equation takes the form:

−
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2nd approach 
Introduce the characteristic coordinates

Since c ≠ 0, 

is equivalent to:

The solution of this transformed equation is

which agrees exactly with the result obtained from 
the 1st approach.
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The most general solution of the wave equation
is the sum of two functions, i.e. two waves of 
arbitrary shape each:

• g (x − c t), traveling to the right at speed c; 

• f (x + c t), traveling to the left at speed c.

The wave equation has two families of 
characteristic lines: x ± c t = constant

x − c t  = constant

x + c t  = constant
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Here, we anticipate the result of a numeric example 
detailed later on …

++
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This is how propagation of information at a finite 
speed looks like in two dimensions …
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3 – Initial value problem

In this section, we solve the initial value problem 
and present a few worked out examples
(Section 2.1 in Strauss, 2008)
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The initial-value problem, i.e. the wave equation and 
its initial conditions, has one and only one solution

The initial-value problem (IVP) consists in solving 
the wave equation

with the initial conditions (IC):

where f and y are arbitrary functions of x.

This problem has one, and only one, solution,
as we show hereafter.
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The solution of the IVP is easily found from the 
general formula u(x, t) = f(x + ct) + g(x – ct)

Setting t = 0 in u(x, t) = f(x + ct) + g(x – ct), 

we get:

Using the chain rule, we differentiate

u (x, t) = f (x + ct) + g (x – ct) with respect to t

and set t = 0:
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The solution of the IVP is easily found from the 
general formula u(x, t) = f(x + ct) + g(x – ct)

By differentiating f (x) = f (x) + g (x), 
one obtains:

Combining with 

gives us:
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The solution of the IVP is easily found from the 
general formula u(x, t) = f(x + ct) + g(x – ct)

Integrating, we get:

and

where A and B are constants.

Since , we have A + B = 0.

( ) ( )
0

1 1

2 2

s

f s s ds A
c

f y= + +

( ) ( )
0

1 1

2 2

s

g s s ds B
c

f y= − +



27

The solution of the IVP is easily found from the 
general formula u(x, t) = f(x + ct) + g(x – ct)

Substituting 

• s = x + c t into the formula for f

• and s = x − c t into that of g, 

we get:

This simplifies to:

( ) ( ) ( )
0 0

1 1 1 1
,

2 2 2 2

x ct x ct

u x t x ct ds x ct ds
c c

f y f y
+ −

= + + + − − 
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A first worked out example

Considering f (x) = sin x and y (x) = 0, 
one obtains from the general solution:

u(x, t) = [ sin ( x + c t ) + sin ( x – c t ) ] / 2

Hence,

u(x, t) = sin x cos ( c t ).

This can be checked easily by substituting the 
expression found for u(x, t) into the wave equation.
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A first worked out example
u(x, t) = [ sin ( x + c t ) + sin ( x – c t ) ] / 2

++
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Another example

Let us consider now f (x) = 0 and y (x) = cos x. 

The solution writes:

u(x, t) = [ sin ( x + c t ) ‒ sin ( x – c t ) ] / ( 2 c )

Hence,

u(x, t) = cos x sin ( c t ) / c .

Again, this can be checked easily by substituting 
the result into the wave equation and the IC.
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The plucked string

Consider an infinitely long string with initial 
position:

and initial velocity y(x) = 0 for all x. 

This is a “three-finger” pluck, with all three fingers 
removed at once.
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The plucked string

The solution

u(x, t) 

= f (x + c t) 

+ g(x − c t) 

is the sum of 
two triangle 
functions,

• one moving 
to the right 

• and one to 
the left. 
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The plucked string

This solution is 
not twice 
differentiable; 
but it is a 
“weak” 
solution, 
as discussed 
later 
(Section 12.1).
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Poor flea …

The midpoint of a piano string of tension T, 
density r, and length l is hit by a hammer 
whose head diameter is 2 a. 

A flea is sitting at a distance l / 4 from one end. 
(Assume that a < l / 4 ; otherwise, poor flea!) 

How long does it take for the disturbance to reach 
the flea?

l

2 a

l / 4
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Poor flea …

The wave celerity c is given by:

Hence, the travelling time from the edge of the 
hammer to the flea is:

( l / 2 – a – l / 4 ) / c = ( l / 4 – a ) / c

l

2 a

l / 4
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4 – Causality in the wave equation

In this section, we introduce the concepts of zones of influence and of 
dependence (Section 2.2 in Strauss, 2008)
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Principle of causality: 
no part of the waves goes faster than speed c

We have just learned that 

• the effect of an initial position f(x) is a pair of 
waves traveling in either direction at speed c
and at half the original amplitude;

• the effect of an initial velocity y(x) is a wave 
spreading out at speed ≤ c in both directions. 

So, part of the wave may lag behind (if there is an 
initial velocity), but 

no part goes faster than speed c. 

This is the principle of causality.
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u(x, t) depends only on the IC within the interval 
(x − ct, x + ct), called domain of dependence

The value of u(x, t) at any point (x, t) depends only
on the values of 

• f at the two points x ± ct, 

• and y within the interval [x − ct, x + ct]. 

This interval is called the domain of dependence of 
the point (x, t) on t = 0. It is bounded by the pair of 
characteristic lines that pass through (x, t).
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Vice versa, an IC at a given point affects the solution 
only in the domain of influence of the point

Here is an “inverse” way to express causality. 

An initial condition (position or velocity or both) 
at the point (x0, 0) can affect the solution for t > 0 
only in the shaded sector, which is called the 
domain of influence of the point (x0, 0). 

Similarly, if f and y vanish for |x| > R, then 
u(x, t) = 0 for |x| > R + ct : the domain of influence 
of an interval (|x| ≤ R) is a sector (|x| ≤ R + ct).
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5 – Energy in the wave equation

In this section, we demonstrate that the wave equation  ensures 
conservation of energy (Section 2.2 in Strauss, 2008)
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The wave equation ensures conservation of energy

Consider an infinite string with constants r and T. 

The transverse displacement u(x,t) is governed by:

ρ utt = T uxx for −∞ < x < +∞. 

The kinetic energy K is given by:

To ensure integral convergence, we assume that 
f(x) and y(x) vanish outside an interval {|x| ≤ R}.

Consequently, as mentioned above, u(x, t)

[and therefore ut(x, t)] vanish for |x| > R + ct.

21
d

2
tK u xr

+

−

= 
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The wave equation ensures conservation of energy

Differentiating the kinetic energy, we can pass the 
derivative under the integral

Next, we substitute the PDE ρ utt = T uxx

and integrate by parts to get

21
d d

2
t t tt

dK d
u x u u x

dt dt
r r

+ +

− −

 
= = 

 
 

 d dt xx t x tx x

dK
T u u x T u u T u u x

dt

+ +
+

−

− −

= = − 

Term evaluated at x = ±∞ and so it vanishes.
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The wave equation ensures conservation of energy

The final term is a pure derivative since:

Let us define the potential energy P as:

Consequently, the total energy

remains constant since 

2 21 1
d  d  d

2 2
tx x x x

dK d
T u u x T u x Tu x

dt t dt

+ + +

− − −

  
= − = − = − 

  
  

21
 d

2
xP Tu x

+

−

= 
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4 – Generalization

Through one example, we show here that a range of more general 
equations can be solved in a similar way as the wave equation 
discussed so far.
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Exercise: solve uxx − 3uxt − 4utt = 0, 
u(x, 0) = x2, ut (x, 0) = ex

The PDE factors as follows:

or

which is equivalent to two 1st order PDEs:

4 0u
t x t x

     
− + + =  

     

t xu u v+ =

1
0

4
t xv v− =

1
4 0

4
u

t x t x

     
− − + =  

     
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Exercise: solve uxx − 3uxt − 4utt = 0, 
u(x, 0) = x2, ut (x, 0) = ex

As shown in Lecture 1, the general solution of

writes:

Hence, leads to:

where h is an arbitrary function.

1

4
v h x t

 
= + 

 

1
0

4
t xv v− =
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Exercise: solve uxx − 3uxt − 4utt = 0, 
u(x, 0) = x2, ut (x, 0) = ex

Now, the second 1st order equation takes the form:

By adding (since the PDE is linear) one particular 
solution f and the general solution g of the 
homogeneous PDE, we obtain:

with .

1

4
t xu u h x t

 
+ = + 

 

( )
1

4
u f x t g x t

 
= + + − 

 

( ) ( )
4

5
f s h s =
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Exercise: solve uxx − 3uxt − 4utt = 0, 
u(x, 0) = x2, ut (x, 0) = ex

An alternate solution strategy consists in using a 
change of variable.

Consider 

The PDE becomes:

and the general solution writes:

1

4
x t = +

x t = −

( )
1

4
u f x t g x t

 
= + + − 

 
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Exercise: solve uxx − 3uxt − 4utt = 0, 
u(x, 0) = x2, ut (x, 0) = ex

By applying the same procedure as followed earlier 
to solve the IVP, we get:

and

Hence,

and

Leading, in the end, to:

( ) ( ) 2f x g x x+ =

( ) ( )
2

24 1 4 1 1
exp exp

5 4 5 4 5
u x t x t x t x t

    
= + − − + + + −    

    

2f g s + =

( ) ( )
1

4

xf x g x e − =

4 4 sf g e − =
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Take-home messages

The basic properties of the wave equation include:

• the IVP has one, and only one, solution,

• information gets transported in both directions
(along the characteristic lines) at a finite speed, 

• consequently, an initial condition at a given 
point affects the solution only in a finite 
interval, called the domain of influence,

• vice-versa for the domain of dependence, the 
solution in not smoothed over time, which is 
reflected in the energy conservation property.
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What will be next?

The one-dimensional diffusion equation (DE) writes:

ut = k uxx

Although it differs from the wave equation (WE)

utt = c2 uxx

“just” by one unit in the order of the time derivative, 

• this equation has mathematical properties 
strongly contrasting with those of the WE

• it also reflects a physical process which is totally 
different from waves…

The DE equation is harder to solve than the WE … 
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