
1

Lecture 4b Approximations of diffusions

Mathématiques appliquées (MATH0504-1)
B. Dewals, Ch. Geuzaine

18/10/2019

2

Learning objectives

Become aware of the existence of stability
conditions for the design of numerical schemes

Derive formally the stability condition for
the 1D diffusion equation

Understand the general von Neumann stability
condition, involving the concepts of

• amplification factor
• stable / unstable modes

Discover that numerical schemes may be unstable,
conditionally stable or unconditionally stable

3

1. Hands on activity: Matlab computation

2. Derivation of a stability criterion for an explicit
discretization of the 1D diffusion wave equation

3. General von Neumann stability conditions,
and application in practice

4. Crank-Nicolson scheme

Outline

1. Hands on activity: Matlab computation

2. Derivation of a stability criterion for an explicit
discretization of the 1D diffusion wave equation

3. General von Neumann stability condition,
and application in practice

4. Crank-Nicolson scheme

1 – Hands on activity: Matlab computation
In this section, we use finite differences to compute numerical
approximations of the solution of the 1D diffusion equation. We
highlight the influence of the choice of the time step (with respect to
the grid spacing) on the stability of the computation (Section 8.2 in
Strauss, 2008).

5

A first attempt to compute a solution
of the 1D diffusion equation was a total failure!

According to the maximum principle, the true
solution of the diffusion equation remains
bounded by the minimum and maximum values in
the initial condition (0 and 1 in the example) ...

In contrast, the computational “approximation”
• lead to negative values
• as well as growing values

far above the maximum
in the initial condition

Hence, the computational result
was nowhere near the true solution!

6

Let us have another try!

Let’s solve again the diffusion problem

using finite differences.

We use a forward difference for ut and a centered
difference for uxx.

The difference equation is

It has a local truncation error of O(Dt) and O(Dx)2.

7

Let us have another try!

In contrast with the first attempt, we do not specify
now the choice of the mesh Dt and the mesh Dx.

We introduce the following notation:

The difference equation

becomes

8

Explicit vs. implicit numerical schemes

The scheme

is said to be explicit because the values at time step
n + 1 are given explicitly in terms of the values
at the earlier times.

In contrast, one example of an implicit scheme
would write:

 

1 1 1 1
1 1

2

2n n n n n
j j j j ju u u u u

t x

   
   


D D

9

Explicit vs. implicit numerical schemes

A scheme may also be semi-implicit, such as:

where q is a parameter usually set between 0 an 1.

Opting for a (semi-)implicit scheme generally
improves the stability of the scheme; but it
requires the resolution of (large) systems of
algebraic equations.

The value of q may be chosen to enhance the
scheme accuracy. We will come back to this later.

 
   

1 1 1 1
1 1 1 1

2 2

2 2
1

n n n n n n n n
j j j j j j j ju u u u u u u u

t x x
q q

   
       

  
D D D

10

Now, use the explicit scheme to solve with Matlab
a standard diffusion problem

The explicit scheme writes:

Consider the following standard problem:

11

Now, use the explicit scheme to solve with Matlab
a standard diffusion problem

First, discretize in space the 1D domain (0, p) ,
with a grid of J + 1 nodes and a spacing Dx = p / J.

The discrete boundary and initial conditions are

and

with

Dx = p / J

x = px = 0
j = Jj = 0

12

It is your turn! Hands on! Launch Matlab
and look at how the computation behaves …

① Create the domain

Consider J = 20

x_start = 0; x_end = pi; J = 20;

dx = (x_end - x_start) / J;

X = [x_start:dx:x_end];

Dx = p / J

x = px = 0
j = Jj = 0

13

It is your turn! Hands on! Launch Matlab
and look at how the computation behaves …

② You will compute the solution for t = p 2 / 25
by considering s = Dt / (Dx)2 = 0.4.
t_end = pi^2 / 25;

s = 0.4;

dt = s * dx^2;

③ Initialize a matrix to store the solution:
N = uint8(t_end / dt);

U = zeros(N+1,J+1);

14

It is your turn! Hands on! Launch Matlab
and look at how the computation behaves …

④ Prescribe the initial condition …
II = find(X<pi/2);

U(1,II) = X(II);

II = find(X>=pi/2);

U(1,II) = pi - X(II);

⑤ … and the boundary conditions
U(:,1) = 0;

U(:,end) = 0;

15

It is your turn! Hands on! Launch Matlab
and look at how the computation behaves …

⑥ Now, you are ready for your first numerical
resolution of a PDE:

for n = 1:N

U(n+1,2:end-1) …

= s*(U(n,3:end)+U(n,1:end-2))…

+ (1-2*s) * U(n,2:end-1);

end

How does the result look like?

16

It is your turn! Hands on! Launch Matlab
and look at how the computation behaves …

s = 0.46

17

It is your turn! Hands on! Launch Matlab
and look at how the computation behaves …

s = 0.54

2 – Derivation of a stability criterion
In this section, we derive a theoretical stability criterion for an explicit
discretization of the 1D diffusion wave equation. The theoretical
criterion agrees amazingly well with the observations made in the
numerical experiments described in the previous section.

19

A stability criterion can be formally derived

Heuristically, we find that the computation remains
stable provided that s < 1/2.

A hint on this can be found in the discretized
equation

where the coefficient 1 − 2 s becomes negative for
s > 1/2.

Let us demonstrate now the stability condition

s < 1/2.

We proceed in six simple steps.

20

① Separate the variables in the difference equation

We look for solutions of the difference equation

of the form

,

with Xj a function of space only (x = j Dx), and

Tn a function of time only (t = n Dt).

Substituting in the difference equation, we get

j
n
j nu X T

   1 1 1 1 2j j n j jn n nX X XsT sT XT T     

21

① Separate the variables in the difference equation

The difference equation may be rewritten as

The left-hand side (LHS) and the right-hand side
(RHS) of this equation are functions of independent
variables (respectively n and j).

Therefore, the equality may hold only if each side
is a constant independent of n and j.

We note this constant x.

1 1 11 2n

n

j j

j

s s
X X

T X

T  
  1 1 11 2n

n

j j

j

X
s s n

T X

XT
x 

    , j 

22

② Solve the time equation

From

we get

The factor x plays a major part in the assessment
of the stability of numerical schemes.

It is called amplification factor.

1n

n

T

T
x 

0nT T 0
n

nT Tx

23

③ Solve the spatial equation

The difference equation

may be rewritten

This is a discretized form of a second-order ODE,
which has sine and cosine solutions.

Therefore, we guess solutions of the form

with A, B arbitrary constants and q to be determined.

1 11 2 j j

j

s
X

X
s

X
x 

  

   1 12 1 0j j j js X X X Xx     

cos sinjX A j B jq q 

24

④ Prescribe the boundary conditions

The boundary conditions of the problem were
formulated as

Setting X0 = 0 at j = 0 implies that A = 0.

We can freely set B = 1, so that Xj becomes

Dx = p / J

x = px = 0
j = Jj = 0

0 0n n
Ju u 

cos sinjX A j B jq q  sinjX jq

25

④ Prescribe the boundary conditions

The boundary conditions of the problem were
formulated as

Setting XJ = 0 at j = J implies that sin Jq = 0.

Thus, Jq = k p , with k an integer (wave number).

Combining with J = p / Dx leads to q = k p, and

Dx = p / J

x = px = 0
j = Jj = 0

0 0n n
Ju u 

 sinjX j xk D

26

⑤ Determine x from the spatial equation

Let us substitute Xj = sin (j k Dx) into the spatial
equation

It leads to

or

Hence,

1 11 2 j j

j

X X
s s

X
x 

  

   
 

sin 1 sin 1
1 2

sin

j k x j k x
s s

jk x
x

 D   D        
D

   
 

2sin cos
1 2

sin

jk x k x
s s

jk x
x

D D
  

D

   1 2 1 cosk s k xx x    D  

27

⑥ Discuss the value of x as a function of s

We know from the solution of the time equation

that |x k| must remain below 1; otherwise
• the numerical solution would amplify with time,

and we have no chance to get a stable solution
• we have no chance that the numerical solution

converges towards the true solution
u(x,t) → 0 for t = n Dt → ∞.

Therefore let us look at the condition(s) to be
prescribed on s so that |x | remains below 1 for all k.

0
n

nT Tx

28

⑥ Discuss the value of x as a function of s

Since the factor 1 − cos(kDx) in

varies between 0 and 2, we have

1 – 4 s ≤ x k ≤ 1.

So, stability requires that 1 – 4 s ≥ – 1, hence

This is the condition required for stability
of the computation!

2

1

2

t
s

x

D
 

D

   1 2 1 cosk s k xx x    D  

29

Which is the most unstable mode?

The analysis above shows that the “most dangerous”
mode is the mode for which x(k) = − 1.

From

we can infer that this “most dangerous” mode
corresponds to cos(k Dx) = − 1.

The corresponding wave number k is

which is a fairly high wave number.

k
x

p


D

   1 2 1 cosk s k xx x    D  

30

Which is the most unstable mode?

This theoretical result is, again, fully consistent with
the observations in the “failed” computation.

s = 0.54
Period of the
“most dangerous”
mode according
to theory
 2p / k
= 2p / (p / Dx)
= 2 Dx

3 – Von Neumann stability condition
In this section, we formulate a more general stability condition and
describe how to apply it in practice.

32

Outline

1. Hands on activity: Matlab computation

2. Derivation of a stability criterion for an explicit
discretization of the 1D diffusion wave equation

3. General von Neumann stability condition,
and application in practice

4. Crank-Nicolson scheme

33

General procedure for assessing the stability
in a diffusion or a wave problem

The example discussed above suggests the
following general procedure:

• separate the variables
• evaluate the amplification factor x(k)

as a function of the wave number and
 Dt / Dx2 (diffusion)
 Dt / Dx (wave)

• use the so-called von Neuman stability
condition:

|x k| ≤ 1 for all k.

34

Practical trick, to be used in the exercises

The result

could have been obtained very quickly from the
difference equation

by simply substituting into the difference equation
an exponential mode of the form:

   1 2 1 cosk s k xx x    D  

1 11 2 j j

j

X X
s s

X
x 

  

  jik x
jX e D

4 – Crank-Nicholson scheme
In this section, we present a different numerical scheme than used so
far, and we show that this scheme may be unconditionally stable.

36

Implication for engineering

The stability criterion

means that in practice the time steps must be
taken very short.

Particularly, for the numerical scheme considered
so far, Dt scales with the square of Dx!

Let us investigate whether a slightly different
scheme may lead to a less restrictive stability
condition … or even no stability condition at all.

2

1

2

t
s

x

D
 

D

37

Crank-Nicolson scheme

Let us come back to the semi-implicit scheme
introduced earlier

with q a number between 0 and 1.

If q = 0, it reduces to the previous explicit scheme.

Otherwise, it is implicit since un+1 appears on both
sides of the equation. This means that, at each
time step, a system of linear algebraic equations
must be solved.

 
   

1 1 1 1
1 1 1 1

2 2

2 2
1

n n n n n n n n
j j j j j j j ju u u u u u u u

t x x
q q

   
       

  
D D D

38

Let us analyze the stability of the scheme

As before, we plug the separated solution

into the difference equation

It leads to

 
   

1 1 1 1
1 1 1 1

2 2

2 2
1

n n n n n n n n
j j j j j j j ju u u u u u u u

t x x
q q

   
       

  
D D D

   j nn ik x
ju e kxD   

 
   2 2

1 2 2
1

ik x ik x ik x ik xe e e e

t x x

x q qx
D  D D  D    

  
D D D

     1 2 1 cos 1 2 cos 1k sx xs kx q x q   D   D       

 
   2 2

1 2 2
1

ik x ik x ik x ik xe e

t x

e e

x

x q qx
D  D D  D

D D

   
 

D




39

Let us analyze the stability of the scheme

From

we get the following expression for x(k):

By examining this result, we find out that
• x(k) ≤ 1 is always true;
• while x(k) ≥ − 1 requires that:

     1 2 1 cos 1 2 cos 1s k x s k xx q x q   D   D       

   
 

1 2 1 1 cos

1 2 1 cos

s k x

s k x

q
x

q
   D  

  D  

   1 2 1 cos 1s k xq  D   

40

Let us analyze the stability of the scheme

If 1 − 2 q ≤ 0, the condition

is fulfilled whatever the value of s

This means that

for q ≥ 1 / 2, the scheme is unconditionally stable.

The particular case of q = 1 / 2 is called the Crank-
Nicholson scheme. It is second-order accurate in Dt.

For q < 1 / 2, the stability condition writes:

   1 2 1 cos 1s k xq  D   

 
1

2 1 2
s

q




41

Take-home messages

We empirically observed a stability criterion,
which we also demonstrated theoretically.

In an explicit discretization of the diffusion equation,
Dt scales with Dx², which may be very restrictive.

Implicit schemes can be unconditionally stable.

The stability of a numerical scheme may be assessed
by plugging an exponential mode

into the difference equation and checking that the
absolute value of the amplification factor x
remains below 1 for all wave numbers k.

   j nn ik x
ju e kxD   

