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Learning objectives of this lecture

Understand key differences between the numerical 
approximations of diffusion and wave equations
Apply von Neumann stability analysis to finite 
difference approximations of the wave equation
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Finite differences for the wave equation

Let’s use centered differences for both terms of the 
one-dimensional wave equation 

We get

This is an explicit scheme, which can be written as

with

8.3 APPROXIMATIONS OF WAVES 211

(b) What is the stability condition for your scheme in terms of s1 =
!t/(!x)2 and s2 = !t/(!y)2?

15. Formulate the Crank-Nicolson scheme for ut = uxx + uyy .

8.3 APPROXIMATIONS OF WAVES

In this section we continue our discussion of finite difference approximations
for some very simple PDEs. Although the PDEs are simple, the methods we
develop can be used for more difficult, even nonlinear, equations. For the
one-dimensional wave equation utt = c2uxx the simplest scheme is the one
using centered differences for both terms:

un+1
j − 2un

j + un−1
j

(!t)2 = c2 un
j+1 − 2un

j + un
j−1

(!x)2 . (1)

It is explicit since the (n + 1)st time step appears only on the left side. Thus

un+1
j = s

(
un

j+1 + un
j−1

)
+ 2(1 − s)un

j − un−1
j , (2)

where we now denote s = c2(!t)2/(!x)2. Its template diagram is

n + 1 ∗

n • • •
s 2 − 2s s

n − 1 •
−1

Notice that the value at the (n + 1)st time step depends on the two previ-
ous steps, because the wave equation has time derivatives of second order.
Therefore, the first two rows u0

j and u1
j must be given as initial conditions.

Example 1.

If we pick s = 2, the scheme simplifies to

un+1
j = 2

(
un

j+1 + un
j−1 − un

j

)
− un−1

j (3)

and it is easy to compute by hand the solution shown in Figure 1, given
its first two rows. This horrendous solution bears no relationship to the
true solution of the wave equation, which is a pair of waves traveling to
the left and right, u(x, t) = 1

2 [φ(x + ct) + φ(x − ct)]. The scheme for
s = 2 is highly unstable. !
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Finite differences for the wave equation

The value at the (n + 1)st time step depends on the 
two previous steps:

Compare with the diffusion equation                   
with a forward difference for ut and a centered 
difference for uxx , which led to:

with

8.2 APPROXIMATIONS OF DIFFUSIONS 203

EXERCISES

1. The Taylor expansion written in Section 8.1 is valid if u is a C4 function.
If u(x) is merely a C3 function, the best we can say is that the Taylor
expansion is valid only with a o(!x)3 error. [This notation means that the
error is (!x)3 times a factor that tends to zero as !x → 0.] If merely a
C2 function, it is only valid with a o(!x)2 error, and so on.
(a) If u(x) is merely a C3 function, what is the error in the first derivative

due to its approximation by the centered difference?
(b) What if u(x) is merely a C2 function?

2. (a) If u(x) is merely a C3 function, what is the error in the second
derivative due to its approximation by a centered second difference?

(b) What if u(x) is merely a C2 function?
3. Suppose that we wish to approximate the first derivative u′(x) of a very

smooth function with an error of only O(!x)4. Which difference approx-
imation could we use?

8.2 APPROXIMATIONS OF DIFFUSIONS

We take up our discussion of the diffusion equation ut = uxx again. There
is nothing obviously wrong with the scheme we used, as each derivative is
appropriately approximated with a small local truncation error. Somehow the
little errors have accumulated! What turns out to be wrong, but this is not
obvious at this point, is the choice of the mesh !t relative to the mesh !x .
Let’s make no assumption now about these meshes; in fact, let

s = !t

(!x)2 . (1)

As before, we can solve the scheme (8.1.7) for un+1
j :

un+1
j = s

(
un

j+1 + un
j−1

)
+ (1 − 2s)un

j . (2)

The scheme is said to be explicit because the values at the (n + 1)st time step
are given explicitly in terms of the values at the earlier times.

Example 1.

To be specific, let’s consider the standard problem:

ut = uxx for 0 < x < π, t > 0
u = 0 at x = 0, π

u(x, 0) = φ(x) =
{

x in
(
0, π

2

)

π − x in
(

π
2 , π

)
.

s = Dt/(Dx)2
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and it is easy to compute by hand the solution shown in Figure 1, given
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the left and right, u(x, t) = 1

2 [φ(x + ct) + φ(x − ct)]. The scheme for
s = 2 is highly unstable. !
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Example: s = 2

With s = 2

the schemes simplifies into

This is clearly unstable!
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212 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 1

Example 2.

For s = 1 we have !x = c !t and the scheme

un+1
j = un

j+1 + un
j−1 − un−1

j . (4)

The same initial data as above lead to the solution shown in Figure 2.
This is an excellent approximation to the true solution! !

INITIAL CONDITIONS

How do we handle the initial conditions? We approximate the conditions
u(x, 0) = φ(x) and ∂u/∂t(x, 0) = ψ(x) by

u0
j = φ( j!x),

u1
j − u−1

j

2 !t
= ψ( j!x). (5)

This approximation is chosen to have a O(!x)2 local truncation error in order
to match the O(!x)2 + O(!t)2 truncation error of the scheme (2). (If we
only used a simpler approximation with a O(!x) error, the initial conditions
would contaminate the solution with too big an error.) Let’s abbreviate φ j =
φ( j!x) and ψ j = ψ( j!x). Now (2) in the case n = 0 is

u1
j + u−1

j = s
(
u0

j+1 + u0
j−1

)
+ 2(1 − s)u0

j .

Together with (5), this gives us the starting values

u0
j = φ j ,

u1
j = s

2
(φ j+1 + φ j−1) + (1 − s)φ j + ψj!t,

(6)

the first two rows of the computation. Then we march ahead in time to get u2
j ,

u3
j , and so on, using (2).

Figure 2
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Example: s = 1

For s = 1 we have                    , which leads to: 

With the same initial conditions as in the previous 
example we get:

This is a pretty good approximation of the true 
solution!
Remember: 
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to match the O(!x)2 + O(!t)2 truncation error of the scheme (2). (If we
only used a simpler approximation with a O(!x) error, the initial conditions
would contaminate the solution with too big an error.) Let’s abbreviate φ j =
φ( j!x) and ψ j = ψ( j!x). Now (2) in the case n = 0 is

u1
j + u−1

j = s
(
u0

j+1 + u0
j−1

)
+ 2(1 − s)u0

j .

Together with (5), this gives us the starting values

u0
j = φ j ,

u1
j = s

2
(φ j+1 + φ j−1) + (1 − s)φ j + ψj!t,

(6)

the first two rows of the computation. Then we march ahead in time to get u2
j ,

u3
j , and so on, using (2).

Figure 2
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(b) What is the stability condition for your scheme in terms of s1 =
!t/(!x)2 and s2 = !t/(!y)2?

15. Formulate the Crank-Nicolson scheme for ut = uxx + uyy .

8.3 APPROXIMATIONS OF WAVES

In this section we continue our discussion of finite difference approximations
for some very simple PDEs. Although the PDEs are simple, the methods we
develop can be used for more difficult, even nonlinear, equations. For the
one-dimensional wave equation utt = c2uxx the simplest scheme is the one
using centered differences for both terms:

un+1
j − 2un

j + un−1
j

(!t)2 = c2 un
j+1 − 2un

j + un
j−1

(!x)2 . (1)

It is explicit since the (n + 1)st time step appears only on the left side. Thus

un+1
j = s

(
un

j+1 + un
j−1

)
+ 2(1 − s)un

j − un−1
j , (2)

where we now denote s = c2(!t)2/(!x)2. Its template diagram is

n + 1 ∗

n • • •
s 2 − 2s s

n − 1 •
−1

Notice that the value at the (n + 1)st time step depends on the two previ-
ous steps, because the wave equation has time derivatives of second order.
Therefore, the first two rows u0

j and u1
j must be given as initial conditions.

Example 1.

If we pick s = 2, the scheme simplifies to

un+1
j = 2

(
un

j+1 + un
j−1 − un

j

)
− un−1

j (3)

and it is easy to compute by hand the solution shown in Figure 1, given
its first two rows. This horrendous solution bears no relationship to the
true solution of the wave equation, which is a pair of waves traveling to
the left and right, u(x, t) = 1

2 [φ(x + ct) + φ(x − ct)]. The scheme for
s = 2 is highly unstable. !
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2 – Initial conditions
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How should we handle initial conditions?

We need to approximate

To maintain an              truncation error we use a 
centered finite difference in time: 

Using a simpler approximation, the larger error on 
the initial condition would contaminate the overall 
solution

212 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 1

Example 2.

For s = 1 we have !x = c !t and the scheme

un+1
j = un

j+1 + un
j−1 − un−1

j . (4)

The same initial data as above lead to the solution shown in Figure 2.
This is an excellent approximation to the true solution! !

INITIAL CONDITIONS

How do we handle the initial conditions? We approximate the conditions
u(x, 0) = φ(x) and ∂u/∂t(x, 0) = ψ(x) by

u0
j = φ( j!x),

u1
j − u−1

j

2 !t
= ψ( j!x). (5)

This approximation is chosen to have a O(!x)2 local truncation error in order
to match the O(!x)2 + O(!t)2 truncation error of the scheme (2). (If we
only used a simpler approximation with a O(!x) error, the initial conditions
would contaminate the solution with too big an error.) Let’s abbreviate φ j =
φ( j!x) and ψ j = ψ( j!x). Now (2) in the case n = 0 is

u1
j + u−1

j = s
(
u0

j+1 + u0
j−1

)
+ 2(1 − s)u0

j .

Together with (5), this gives us the starting values

u0
j = φ j ,

u1
j = s

2
(φ j+1 + φ j−1) + (1 − s)φ j + ψj!t,

(6)

the first two rows of the computation. Then we march ahead in time to get u2
j ,

u3
j , and so on, using (2).

Figure 2

212 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 1

Example 2.

For s = 1 we have !x = c !t and the scheme

un+1
j = un

j+1 + un
j−1 − un−1

j . (4)

The same initial data as above lead to the solution shown in Figure 2.
This is an excellent approximation to the true solution! !

INITIAL CONDITIONS

How do we handle the initial conditions? We approximate the conditions
u(x, 0) = φ(x) and ∂u/∂t(x, 0) = ψ(x) by

u0
j = φ( j!x),

u1
j − u−1

j

2 !t
= ψ( j!x). (5)

This approximation is chosen to have a O(!x)2 local truncation error in order
to match the O(!x)2 + O(!t)2 truncation error of the scheme (2). (If we
only used a simpler approximation with a O(!x) error, the initial conditions
would contaminate the solution with too big an error.) Let’s abbreviate φ j =
φ( j!x) and ψ j = ψ( j!x). Now (2) in the case n = 0 is

u1
j + u−1

j = s
(
u0

j+1 + u0
j−1

)
+ 2(1 − s)u0

j .

Together with (5), this gives us the starting values

u0
j = φ j ,

u1
j = s

2
(φ j+1 + φ j−1) + (1 − s)φ j + ψj!t,

(6)

the first two rows of the computation. Then we march ahead in time to get u2
j ,

u3
j , and so on, using (2).

Figure 2

212 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 1

Example 2.

For s = 1 we have !x = c !t and the scheme

un+1
j = un

j+1 + un
j−1 − un−1

j . (4)

The same initial data as above lead to the solution shown in Figure 2.
This is an excellent approximation to the true solution! !

INITIAL CONDITIONS

How do we handle the initial conditions? We approximate the conditions
u(x, 0) = φ(x) and ∂u/∂t(x, 0) = ψ(x) by

u0
j = φ( j!x),

u1
j − u−1

j

2 !t
= ψ( j!x). (5)

This approximation is chosen to have a O(!x)2 local truncation error in order
to match the O(!x)2 + O(!t)2 truncation error of the scheme (2). (If we
only used a simpler approximation with a O(!x) error, the initial conditions
would contaminate the solution with too big an error.) Let’s abbreviate φ j =
φ( j!x) and ψ j = ψ( j!x). Now (2) in the case n = 0 is

u1
j + u−1

j = s
(
u0

j+1 + u0
j−1

)
+ 2(1 − s)u0

j .

Together with (5), this gives us the starting values

u0
j = φ j ,

u1
j = s

2
(φ j+1 + φ j−1) + (1 − s)φ j + ψj!t,

(6)

the first two rows of the computation. Then we march ahead in time to get u2
j ,

u3
j , and so on, using (2).

Figure 2

212 CHAPTER 8 COMPUTATION OF SOLUTIONS

Figure 1

Example 2.

For s = 1 we have !x = c !t and the scheme

un+1
j = un

j+1 + un
j−1 − un−1

j . (4)

The same initial data as above lead to the solution shown in Figure 2.
This is an excellent approximation to the true solution! !

INITIAL CONDITIONS

How do we handle the initial conditions? We approximate the conditions
u(x, 0) = φ(x) and ∂u/∂t(x, 0) = ψ(x) by

u0
j = φ( j!x),

u1
j − u−1

j

2 !t
= ψ( j!x). (5)

This approximation is chosen to have a O(!x)2 local truncation error in order
to match the O(!x)2 + O(!t)2 truncation error of the scheme (2). (If we
only used a simpler approximation with a O(!x) error, the initial conditions
would contaminate the solution with too big an error.) Let’s abbreviate φ j =
φ( j!x) and ψ j = ψ( j!x). Now (2) in the case n = 0 is

u1
j + u−1

j = s
(
u0

j+1 + u0
j−1

)
+ 2(1 − s)u0

j .

Together with (5), this gives us the starting values

u0
j = φ j ,

u1
j = s

2
(φ j+1 + φ j−1) + (1 − s)φ j + ψj!t,

(6)

the first two rows of the computation. Then we march ahead in time to get u2
j ,

u3
j , and so on, using (2).

Figure 2



11

How do we handle initial conditions?

For n = 0,

becomes

which gives the initial values (since                            )
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Example

Consider the same          as before, and                . 
This leads to

This is an even better approximation to the true 
solution
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Figure 3

Example 3.

For instance, let the initial data be

φ(x) = 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0

and ψ(x) ≡ 0. Let s = 1. Then from (6) we get the starting values (the
first two rows)

0 0 0 0 0 1
2 1 1 1 1

2 0 0 0 0 0
0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 .

If we use (4), we get the solution shown in Figure 3. This is an
even better approximation to the true solution than that shown in Fig-
ure 2. !

STABILITY CRITERION

Now let’s analyze the stability by the method of Section 8.2. Again, a clue may
be found in the values of the coefficients. None are negative if s ≤ 1. Once
again this simple observation turns out to be the correct stability condition.
However, proceeding more logically, we separate the variables

un
j = (η) j (ξ )n where η = eik%x .

From (1) we get

ξ + 1
ξ

− 2 = s
(

η + 1
η

− 2
)

= 2s [cos(k %x) − 1]. (7)

Letting p = s[cos(k%x) − 1] for the sake of brevity, (7) can be written as

ξ 2 − 2(1 + p)ξ + 1 = 0, which has the roots ξ = 1 + p ±
√

p2 + 2p. (8)

Note that p ≤ 0. If p < −2, then p2 + 2p > 0 and there are two real roots,
one of which is less than −1. Thus for one of the roots we have |ξ | > 1, so that
the scheme is unstable. On the other hand, if p > −2, then p2 + 2p < 0 and
there are two complex conjugate roots 1 + p ± i

√
−p2 − 2p. These complex

roots satisfy

|ξ |2 = (1 + p)2 − p2 − 2p = 1.
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3 – Stability
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Von Neumann analysis

Remember the general procedure:
• separate the variables
• evaluate the amplification factor x(k)

as a function of the wave number k
• use the von Neuman stability condition:

|x (k)| ≤ 1     for all k.



15

Von Neumann analysis

Let’s plug the separated solution

into the difference equation

We get
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(b) What is the stability condition for your scheme in terms of s1 =
!t/(!x)2 and s2 = !t/(!y)2?

15. Formulate the Crank-Nicolson scheme for ut = uxx + uyy .

8.3 APPROXIMATIONS OF WAVES

In this section we continue our discussion of finite difference approximations
for some very simple PDEs. Although the PDEs are simple, the methods we
develop can be used for more difficult, even nonlinear, equations. For the
one-dimensional wave equation utt = c2uxx the simplest scheme is the one
using centered differences for both terms:
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Notice that the value at the (n + 1)st time step depends on the two previ-
ous steps, because the wave equation has time derivatives of second order.
Therefore, the first two rows u0

j and u1
j must be given as initial conditions.
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If we pick s = 2, the scheme simplifies to
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j = 2
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and it is easy to compute by hand the solution shown in Figure 1, given
its first two rows. This horrendous solution bears no relationship to the
true solution of the wave equation, which is a pair of waves traveling to
the left and right, u(x, t) = 1

2 [φ(x + ct) + φ(x − ct)]. The scheme for
s = 2 is highly unstable. !

( ) ( )j nn ik x
ju e kxD= é ùë û

x �2+x�1

(Dt)2 = c2 eikDx �2+ e�ikDx

(Dx)2

= c2 2cos(kDx)�2
(Dx)2
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Von Neumann analysis

Thus:
Posing                                         , we get

which has the roots

x +x�1 �2 = 2s[cos(kDx)�1]
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So ξ = cos θ + i sin θ for some real number θ . In this case the solutions
oscillate in time (just as they ought to for the wave equation). Finally, if
p = −2, then ξ = −1.

Thus a necessary condition for stability is that p ≥ −2 for all k. This
means that

s ≤ 2
1 − cos(k #x)

for all k. Thus stability requires that

s = c2 (#t)2

(#x)2 ≤ 1. (9)

There is a nice way to understand this condition (9). At each time step #t
the values of the numerical solution spread out by one unit #x . So the ratio
#x/#t is the propagation speed of the numerical scheme. The propagation
speed for the exact wave equation is c. So the stability condition requires
the numerical propagation speed to be at least as large as the continuous
propagation speed. In Figure 4 we have sketched the domains of dependence
of the true and the computed solutions for the case c = 1 and #t/#x = 2 (so
that s = 4). The computed solution at the point P does not make use of the
initial data in the regions B and C as it ought to. Therefore, the scheme leads
to entirely erroneous values of the solution.

On the other hand, even the stable schemes do not do a very good job
at resolving singularities in the true solution. For instance, one solution of
the nice scheme (4) with s = 1 is shown in Figure 5. This initial condition is

Figure 5
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Stability thus requires                                                 
for all k, i.e.

And thus
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Interpretation

At each time step        the values of the numerical 
solution spread out by one unit       
So                 is the propagation speed of the 
numerical scheme

The propagation speed for the exact wave equation 
is c

So the stability condition                                 requires 
the numerical propagation speed to be at least as 
large as the continuous propagation speed
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the values of the numerical solution spread out by one unit #x . So the ratio
#x/#t is the propagation speed of the numerical scheme. The propagation
speed for the exact wave equation is c. So the stability condition requires
the numerical propagation speed to be at least as large as the continuous
propagation speed. In Figure 4 we have sketched the domains of dependence
of the true and the computed solutions for the case c = 1 and #t/#x = 2 (so
that s = 4). The computed solution at the point P does not make use of the
initial data in the regions B and C as it ought to. Therefore, the scheme leads
to entirely erroneous values of the solution.

On the other hand, even the stable schemes do not do a very good job
at resolving singularities in the true solution. For instance, one solution of
the nice scheme (4) with s = 1 is shown in Figure 5. This initial condition is
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The computed solution at the point P does not 
make use of the initial data in the regions B and C
as it ought to.
Therefore, the scheme leads to entirely erroneous 
values of the solution. 
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Other schemes

• The scheme we just studied uses centered 
differences in space and time. If we apply it to 
“singular” initial data, the results are stable but not 
accurate – better schemes should be used in such 
cases

• There are also implicit schemes for the wave 
equation (like the Crank– Nicolson scheme). They 
are less urgently needed here since the stability 
condition for the explicit scheme does not require 
the time step to be so much smaller than the spatial 
step. 
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Take-home messages

• Approximations of waves can be carried out in a 
similar way to what was done for diffusions

• The Neumann stability analysis can be 
performed in exactly the same way

• The stability criterion for the centered 
difference explicit scheme for the wave 
equation is less demanding on the time step 
than for diffusions


