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Learning objectives of this lecture

Understand key differences between the numerical
approximations of diffusion and wave equations

Apply von Neumann stability analysis to finite
difference approximations of the wave equation
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1 —Approximations of waves



Finite differences for the wave equation

‘r

Let’s use centered differences for both terms of the
one-dimensional wave equation

2
Uy — C Uxx

We get
n+1 n n—1
U —2uj—|—uj _ 2 ]+1 —2u” —I—Lt]l
(A1) (Ax>2

This is an explicit scheme, which can be written as

n+1 n n n n—1
uj+ =S(I/tj_|_1 —|—uj_1) +2(1 —s)u; —u;

with s = ¢2(A1)?/(Ax)?



Finite differences for the wave equation

The value at the (n + 1)t time step depends on the
two previous steps:

u’]?+1 = s(u’}+1 + u’}_l) + 2(1 — s)u’; — u@

Compare with the diffusion equation u; = uxx
with a forward difference for u, and a centered
difference for u,., which led to:

XX ?

n+1 n n n
uj+ :s(ujle —I—Ltj_l) + (I —2s)u;

with s = Ar/(Ax)?



Example: s =2

With s =2
n+1 __ n n . n __  n—1
U _s(uj+1—|—uj_1)—|—2(1 S)u; —u;
the schemes simplifies into
n+1 n n __.ny __ . ,n—1
U —2(uj+1—|—uj_1 uj) U
n 8 -12 4 -13 22 13 4 -12 8 n=4
4 -2 3 6 -3 =2 4 n=3
2 1 =2 1 2 n=2
j 1 2 1 n=1
1 2 1 n=0

‘r

This is clearly unstable!



Example: s =1

For s =1 we have Ax = ¢ Ar, which leads to:
n+l __ .n n o

jooT My T T
With the same initial conditions as in the previous

example we get:
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This is a pretty good approximation of the true
solution!

& Remember: u(x,?) = Hp(x + ct) + p(x — ct)]
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2 — Initial conditions



How should we handle initial conditions?

We need to approximate
u(x,0) = ¢p(x) ou/dt(x,0) = Yr(x)

To maintain an O(A?)? truncation error we use a
centered finite difference in time:

W) = (jAY), T = y(jAx)

(2 At

Using a simpler approximation, the larger error on
the initial condition would contaminate the overall
solution

< 1



How do we handle initial conditions?

Forn =0,
n+1 n n n n—1
uj+ zs(uj+1 —|—uj_1) +2(1 —s)u; —u;

becomes
—1 0
i 4us =s(u +ud_) +2(10 —su)
which gives the initial values (since ;' = u; —2Ary;)
u = @,
1
]

= S(@j+1+ ¢ + (1= )9 + Y At

) Y

‘-
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Example

Consider the same ¢(x) as before, and v (x) = 0.

This leads to
%11%?00000?51% n=b5
:
51 300035135 n=3
150313 n=2
j 1111 3 n=1
> 1 2 1 n=0

This is an even better approximation to the true
w solution
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3 — Stability
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Von Neumann analysis

Remember the general procedure:
* separate the variables

* evaluate the amplification factor &(k)
as a function of the wave number &

* use the von Neuman stability condition:

(k) <1 forallk.
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Von Neumann analysis

Let’s plug the separated solution

u;a _ (eikAx )J’ [f(k)]n

into the difference equation

n+1 n n—1
U —2uj—|—uj _ 2 ]-|-1 — 2u" —|—l/t] |
(A1)? (Ax)*

We get
E_2pETl kA ) ik
(a2 (A
»2cos (kAx) —2
=cC
(Ax)?

‘r
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Von Neumann analysis

Thus: &4+ &1 —2 =2s[cos (kAx) — 1]
Posing p = s[cos(kAx) — 1], we get
201+ pE+1=0

which has the roots

522(1+p)i\/(2(1+p))2—4
2
= 1 4pty/(14p)2 1
—14+p+/p2+2p

‘r
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. E=1+pEt\p?+2p
Von Neumann analysis

Note that p = s[cos(kAx) —1] <0

If p<—2, p*+2p > 0 and there are two real
roots, one of which is less than -1, which means
that |£] > 1, so that the scheme is unstable

If p > =2, p? + 2p < 0 and there are two
complex conjugate roots 1 4+ p £ i\/—p2 —2p
which satisfy

EP=0+pF—-p*—2p=1

so & = cosO +isinf for some real number 6
and the solution oscillates in time

- Ifp=—2,then& = —1
& 17




Von Neumann analysis

Stability thus requires p = s|cos(kAx) — 1] > —2

forall &, i.e.
s < 2 for all k
I — cos(k Ax)
And thus
At)?
s = cz( )2 <1
(Ax)

A )
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Interpretation

At each time step At the values of the numerical
solution spread out by one unit Ax

So Ax/At isthe propagation speed of the
numerical scheme

The propagation speed for the exact wave equation

IS C
, (Ar)?

(Ax)’
the numerical propagation speed to be at least as

large as the continuous propagation speed

So the stability condition s = ¢ <1 requires



Interpretation

C =
At/Ax =2
X S =

Numerical domain of dependence

The computed solution at the point P does not
make use of the initial data in the regions B and C
as it ought to.

Therefore, the scheme leads to entirely erroneous
g values of the solution.

20



Other schemes

- The scheme we just studied uses centered
differences in space and time. If we apply it to

“singular” initial data, the results are stable but not

accurate — better schemes should be used in such
cases
1 -1 1 -1 1 -1 1
1 -1 1 -1 1
1 -1 1
1
1

W o o nH
O = N W P

T 3 8S

- There are also implicit schemes for the wave
equation (like the Crank— Nicolson scheme). They
are less urgently needed here since the stability
condition for the explicit scheme does not require

g the time step to be so much smaller than the spatial

& step.



Take-home messages

Approximations of waves can be carried out in a
similar way to what was done for diffusions

The Neumann stability analysis can be
performed in exactly the same way

The stability criterion for the centered
difference explicit scheme for the wave
equation is less demanding on the time step
than for diffusions



