
11

Lecture 5b Approximations of waves

Mathématiques appliquées (MATH0504-1)
B. Dewals, C. Geuzaine

14/10/2021



2

Learning objectives of this lecture

Understand key differences between the numerical 
approximations of diffusion and wave equations

Apply the von Neumann stability analysis to finite 
difference approximations of the wave equation

Outline

Approximation of waves, and initial conditions

Stability analysis
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1 – Approximations of waves
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Finite differences for the wave equation

Let’s use centered differences for both terms of the 
one-dimensional wave equation: 

We get

This is an explicit scheme, which can be written as

with s = c2 (t)2 / (x)2.
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Finite differences for the wave equation

The value at the (n + 1)st time step depends on the 
two previous steps:

Compare with the diffusion equation ut = k uxx , 
with a forward difference for ut and a centered 
difference for uxx , which led to:

with s = k t / (x)2.
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Example 1: Let’s set the value of s to 2 …

With s = 2,

the schemes simplifies into

This is clearly unstable!
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Example 2: What if the value of s is set to 1 ?

For s = 1, we have x = c t , which leads to: 

With the same initial conditions as in the previous 
example, we get:

Seems like good approximation of the true solution!

Remember: 
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2 – Initial conditions
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How should we handle initial conditions?

We need to approximate

To maintain an  (t) truncation error,
we use a centered finite difference in time: 

In contrast, if a simpler approximation is used, 
the larger error on the initial condition would 
contaminate the overall solution.
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How do we handle initial conditions?

For n = 0,

becomes

This gives the initial values (since                            )
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Example

Consider the same (x) as before, and (x) ≡ 0. 

Assuming again s = 1, this leads to:

This is an even better approximation of the true 
solution: 
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3 – Stability
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Von Neumann analysis

Remember the general procedure:

1. inject the error mode in the difference 
equation;

2. simplify the exponentials, which leads to a 
recurrence relation;

3. solve the recurrence relation for the 
amplification factor(s) as a function of the 
wave number k ;

4. the scheme is stable if no mode diverges.
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Von Neumann analysis

We start by injecting the error mode

in the difference equation

After simplifying the exponentials, we get:
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Von Neumann analysis

Posing   p = s [cos(kx) – 1] and adjusting the time 
index, we get

The characteristic polynomial of this expression

has the following roots:
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Von Neumann analysis

The solution of the recurrence equation has the 
form (warning, n is an exponent here!)

where A and B are two constants that depend on 
the initial error.

The solution is stable if no amplification factor is 
larger than one, i.e.

We need to analyse several cases, depending on 
the sign of the value under the square root in         .
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Von Neumann analysis

Reminder:

Case 1: p < – 2

• p2 + 2 p > 0

• there are two real roots:

• one of them () is lower than – 1

• thus    1 and the scheme is unstable

2

1,2 1 2 = +  +p p p
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Von Neumann analysis

Case 2: p > – 2

• p2 + 2 p < 0

• there are two complex roots: 

• so that

• hence, the scheme is stable (oscillations: wave ).
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Von Neumann analysis

Case 3: p = – 2

• p2 + 2 p = 0

• roots are multiple :

• so that the scheme is ‘stable’
provided that the initial error is constant in time.

2

1,2 1 2 = +  +p p p 1= −
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Von Neumann analysis

Stability thus requires                                                 
for all k, i.e.

In the most restrictive case, the smallest value on 
the right of the inequality is obtained when                          

and thus
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Interpretation

At each time step t, the values of the numerical 
solution spread out by one unit x. So x / t

is the propagation speed of the numerical scheme.

The propagation speed for the exact wave equation 
is c.

So the stability condition       

requires the numerical propagation speed to be at 
least as large as the exact wave propagation speed.
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Interpretation

Stable Unstable
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Interpretation

Stable Unstable
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Interpretation
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Interpretation

?
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Interpretation
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Interpretation

The computed solution at the point P does not 
make use of the initial data in the regions B and C
as it ought to.

Therefore, the scheme leads to entirely erroneous 
values of the solution. 
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Other schemes

The scheme we just studied uses centered 
differences in space and time. If it is applied to 
“singular” initial data, the results are stable but not 
accurate – better schemes should be used in such 
cases.

Implicit schemes also exist for the wave equation 
(like the Crank– Nicolson scheme). They are less 
urgently needed here since the stability condition 
for the explicit scheme does not require the time 
step to be so much smaller than the spatial step. 
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Take-home messages

• Approximations of waves can be carried out in a 
similar way to what was done for diffusions

• Care in discretizing the initial (and boundary) 
conditions is essential to get accurate solutions

• The von Neumann stability analysis gives us a 
stability criterion for the centered difference 
explicit scheme

• The stability criterion for the wave equation is 
less demanding on the time step than for 
diffusions
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