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Reminder

We have derived explicit solutions for the wave 
equation and the diffusion equation on the whole 
line

For numerical approximations of the same 
equations we have seen how separated solutions 
can be used to get insights about stability
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Learning objectives of this lecture

Understand and apply the method of separation of 
variables for problem with Dirichlet and Neumann 
boundary conditions

Learn how to solve the wave and the diffusion 
equation in bounded domains
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Outline

Wave equation with homogeneous Dirichlet 
boundary conditions

Diffusion equation with homogeneous Dirichlet 
boundary conditions

Neumann boundary conditions
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1 – Wave equation with Dirichlet conditions
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Wave equation with Dirichlet conditions

Consider the wave equation on a finite interval 
0 < x < l with homogeneous Dirichlet boundary 
conditions:

with initial conditions:

We will build the general solution as a linear 
combination of special ones that are easy to find.

4

BOUNDARY
PROBLEMS

In this chapter we finally come to the physically realistic case of a finite
interval 0 < x < l. The methods we introduce will frequently be used in the
rest of this book.

4.1 SEPARATION OF VARIABLES, THE
DIRICHLET CONDITION

We first consider the homogeneous Dirichlet conditions for the wave equation:

utt = c2uxx for 0 < x < l (1)
u(0, t) = 0 = u(l, t) (2)

with some initial conditions

u(x, 0) = φ(x) ut (x, 0) = ψ(x). (3)

The method we shall use consists of building up the general solution as a linear
combination of special ones that are easy to find. (Once before, in Section
2.4, we followed this program, but with different building blocks.)

A separated solution is a solution of (1) and (2) of the form

u(x, t) = X (x)T (t). (4)

(It is important to distinguish between the independent variable written as a
lowercase letter and the function written as a capital letter.) Our first goal is
to look for as many separated solutions as possible.
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Wave equation with Dirichlet conditions

Let us look for separated solutions of the problem, 
i.e. solutions of the form

Plugging such solutions into the wave equation we 
get

Dividing* by              , we get
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4.1 SEPARATION OF VARIABLES, THE DIRICHLET CONDITION 85

Plugging the form (4) into the wave equation (1), we get

X (x)T ′′(t) = c2 X ′′(x)T (t)

or, dividing by −c2 XT ,

− T ′′

c2T
= − X ′′

X
= λ.

This defines a quantity λ, which must be a constant. (Proof: ∂λ/∂x = 0 and
∂λ/∂t = 0, so λ is a constant. Alternatively, we can argue that λ doesn’t
depend on x because of the first expression and doesn’t depend on t because
of the second expression, so that it doesn’t depend on any variable.) We will
show at the end of this section that λ > 0. (This is the reason for introducing
the minus signs the way we did.)

So let λ = β2, where β > 0. Then the equations above are a pair of
separate (!) ordinary differential equations for X(x) and T(t):

X ′′ + β2 X = 0 and T ′′ + c2β2T = 0. (5)

These ODEs are easy to solve. The solutions have the form

X (x) = C cos βx + D sin βx (6)

T (t) = A cos βct + B sin βct, (7)

where A, B, C, and D are constants.
The second step is to impose the boundary conditions (2) on the separated

solution. They simply require that X(0) = 0 = X(l). Thus

0 = X (0) = C and 0 = X (l) = D sin βl.

Surely we are not interested in the obvious solution C = D = 0. So we must
have βl = nπ , a root of the sine function. That is,

λn =
(nπ

l

)2
, Xn(x) = sin

nπx
l

(n = 1, 2, 3, . . .) (8)

are distinct solutions. Each sine function may be multiplied by an arbitrary
constant.

Therefore, there are an infinite (!) number of separated solutions of (1)
and (2), one for each n. They are

un(x, t) =
(

An cos
nπct

l
+ Bn sin

nπct
l

)
sin

nπx
l

(n = 1, 2, 3, . . . ), where An and Bn are arbitrary constants. The sum of solutions
is again a solution, so any finite sum

u(x, t) =
∑

n

(
An cos

nπct
l

+ Bn sin
nπct

l

)
sin

nπx
l

(9)

is also a solution of (1) and (2).
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Wave equation with Dirichlet conditions

The quantity      must be constant, as

and

Are there other constraints on    ?

1. Is             allowed?

Then               , and thus                                   .

The boundary conditions                                  
lead to                      , i.e.                     .
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88 CHAPTER 4 BOUNDARY PROBLEMS

For example, consider the diffusion of a substance in a tube of length l.
Each end of the tube opens up into a very large empty vessel. So the concen-
tration u(x, t) at each end is essentially zero. Given an initial concentration
φ(x) in the tube, the concentration at all later times is given by formula (17).
Notice that as t → ∞, each term in (17) goes to zero. Thus the substance
gradually empties out into the two vessels and less and less remains in the
tube. !

The numbers λn = (nπ/l)2 are called eigenvalues and the functions
Xn(x) = sin(nπx/ l) are called eigenfunctions. The reason for this termi-
nology is as follows. They satisfy the conditions

− d2

dx2
X = λX, X (0) = X (l) = 0. (19)

This is an ODE with conditions at two points. Let A denote the operator
−d2/dx2, which acts on the functions that satisfy the Dirichlet boundary con-
ditions. The differential equation has the form AX = λX . An eigenfunction
is a solution X ̸≡ 0 of this equation and an eigenvalue is a number λ for which
there exists a solution X ̸≡ 0.

This situation is analogous to the more familiar case of an N × N matrix
A. A vector X that satisfies AX = λX with X ̸≡ 0 is called an eigenvector and
λ is called an eigenvalue. For an N × N matrix there are at most N eigenvalues.
But for the differential operator that we are interested in, there are an infinite
number of eigenvalues π2/ l2, 4π2/ l2, 9π2/ l2, . . . . Thus you might say that
we are dealing with infinite-dimensional linear algebra!

In physics and engineering the eigenfunctions are called normal modes
because they are the natural shapes of solutions that persist for all time.

Why are all the eigenvalues of this problem positive? We assumed this in
the discussion above, but now let’s prove it. First, couldλ=0 be an eigenvalue?
This would mean that X ′′ = 0, so that X (x) = C + Dx . But X (0) = X (l) = 0
implies that C = D = 0, so that X (x) ≡ 0. Therefore, zero is not an eigen-
value.

Next, could there be negative eigenvalues? If λ < 0, let’s write it as
λ = −γ 2. Then X ′′ = γ 2 X , so that X (x) = C cosh γ x + D sinh γ x . Then
0 = X (0) = C and 0 = X (l) = D sinh γ l. Hence D = 0 since sinh γ l ̸= 0.

Finally, let λ be any complex number. Let γ be either one of the two square
roots of −λ; the other one is −γ . Then

X (x) = Ceγ x + De−γ x ,

where we are using the complex exponential function (see Section 5.2).
The boundary conditions yield 0 = X (0) = C + D and 0 = Ceγ l + De−γ l .
Therefore e2γ l = 1. By a well-known property of the complex exponential
function, this implies that Re(γ ) = 0 and 2l Im(γ ) = 2πn for some integer n.
Hence γ = nπ i/ l and λ = −γ 2 = n2π2/ l2, which is real and positive. Thus
the only eigenvalues λ of our problem (16) are positive numbers; in fact, they
are (π/ l)2, (2π/ l)2, . . . .
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Plugging the form (4) into the wave equation (1), we get

X (x)T ′′(t) = c2 X ′′(x)T (t)

or, dividing by −c2 XT ,

− T ′′

c2T
= − X ′′

X
= λ.

This defines a quantity λ, which must be a constant. (Proof: ∂λ/∂x = 0 and
∂λ/∂t = 0, so λ is a constant. Alternatively, we can argue that λ doesn’t
depend on x because of the first expression and doesn’t depend on t because
of the second expression, so that it doesn’t depend on any variable.) We will
show at the end of this section that λ > 0. (This is the reason for introducing
the minus signs the way we did.)

So let λ = β2, where β > 0. Then the equations above are a pair of
separate (!) ordinary differential equations for X(x) and T(t):

X ′′ + β2 X = 0 and T ′′ + c2β2T = 0. (5)

These ODEs are easy to solve. The solutions have the form

X (x) = C cos βx + D sin βx (6)

T (t) = A cos βct + B sin βct, (7)

where A, B, C, and D are constants.
The second step is to impose the boundary conditions (2) on the separated

solution. They simply require that X(0) = 0 = X(l). Thus

0 = X (0) = C and 0 = X (l) = D sin βl.

Surely we are not interested in the obvious solution C = D = 0. So we must
have βl = nπ , a root of the sine function. That is,

λn =
(nπ

l

)2
, Xn(x) = sin

nπx
l

(n = 1, 2, 3, . . .) (8)

are distinct solutions. Each sine function may be multiplied by an arbitrary
constant.

Therefore, there are an infinite (!) number of separated solutions of (1)
and (2), one for each n. They are

un(x, t) =
(

An cos
nπct

l
+ Bn sin

nπct
l

)
sin

nπx
l

(n = 1, 2, 3, . . . ), where An and Bn are arbitrary constants. The sum of solutions
is again a solution, so any finite sum

u(x, t) =
∑

n

(
An cos

nπct
l

+ Bn sin
nπct

l

)
sin

nπx
l

(9)

is also a solution of (1) and (2).
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and

Are there other constraints on    ?
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Let                    , so that                      .

We thus have                                                        .

Then 0 = X (0) = C and 0 = X (l) = D sinh γ l . 
Hence D = 0 since                       , i.e.                    .
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gradually empties out into the two vessels and less and less remains in the
tube. !

The numbers λn = (nπ/l)2 are called eigenvalues and the functions
Xn(x) = sin(nπx/ l) are called eigenfunctions. The reason for this termi-
nology is as follows. They satisfy the conditions

− d2

dx2
X = λX, X (0) = X (l) = 0. (19)

This is an ODE with conditions at two points. Let A denote the operator
−d2/dx2, which acts on the functions that satisfy the Dirichlet boundary con-
ditions. The differential equation has the form AX = λX . An eigenfunction
is a solution X ̸≡ 0 of this equation and an eigenvalue is a number λ for which
there exists a solution X ̸≡ 0.

This situation is analogous to the more familiar case of an N × N matrix
A. A vector X that satisfies AX = λX with X ̸≡ 0 is called an eigenvector and
λ is called an eigenvalue. For an N × N matrix there are at most N eigenvalues.
But for the differential operator that we are interested in, there are an infinite
number of eigenvalues π2/ l2, 4π2/ l2, 9π2/ l2, . . . . Thus you might say that
we are dealing with infinite-dimensional linear algebra!

In physics and engineering the eigenfunctions are called normal modes
because they are the natural shapes of solutions that persist for all time.

Why are all the eigenvalues of this problem positive? We assumed this in
the discussion above, but now let’s prove it. First, couldλ=0 be an eigenvalue?
This would mean that X ′′ = 0, so that X (x) = C + Dx . But X (0) = X (l) = 0
implies that C = D = 0, so that X (x) ≡ 0. Therefore, zero is not an eigen-
value.

Next, could there be negative eigenvalues? If λ < 0, let’s write it as
λ = −γ 2. Then X ′′ = γ 2 X , so that X (x) = C cosh γ x + D sinh γ x . Then
0 = X (0) = C and 0 = X (l) = D sinh γ l. Hence D = 0 since sinh γ l ̸= 0.

Finally, let λ be any complex number. Let γ be either one of the two square
roots of −λ; the other one is −γ . Then

X (x) = Ceγ x + De−γ x ,

where we are using the complex exponential function (see Section 5.2).
The boundary conditions yield 0 = X (0) = C + D and 0 = Ceγ l + De−γ l .
Therefore e2γ l = 1. By a well-known property of the complex exponential
function, this implies that Re(γ ) = 0 and 2l Im(γ ) = 2πn for some integer n.
Hence γ = nπ i/ l and λ = −γ 2 = n2π2/ l2, which is real and positive. Thus
the only eigenvalues λ of our problem (16) are positive numbers; in fact, they
are (π/ l)2, (2π/ l)2, . . . .
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Plugging the form (4) into the wave equation (1), we get

X (x)T ′′(t) = c2 X ′′(x)T (t)

or, dividing by −c2 XT ,

− T ′′

c2T
= − X ′′

X
= λ.

This defines a quantity λ, which must be a constant. (Proof: ∂λ/∂x = 0 and
∂λ/∂t = 0, so λ is a constant. Alternatively, we can argue that λ doesn’t
depend on x because of the first expression and doesn’t depend on t because
of the second expression, so that it doesn’t depend on any variable.) We will
show at the end of this section that λ > 0. (This is the reason for introducing
the minus signs the way we did.)

So let λ = β2, where β > 0. Then the equations above are a pair of
separate (!) ordinary differential equations for X(x) and T(t):

X ′′ + β2 X = 0 and T ′′ + c2β2T = 0. (5)

These ODEs are easy to solve. The solutions have the form

X (x) = C cos βx + D sin βx (6)

T (t) = A cos βct + B sin βct, (7)

where A, B, C, and D are constants.
The second step is to impose the boundary conditions (2) on the separated

solution. They simply require that X(0) = 0 = X(l). Thus

0 = X (0) = C and 0 = X (l) = D sin βl.

Surely we are not interested in the obvious solution C = D = 0. So we must
have βl = nπ , a root of the sine function. That is,

λn =
(nπ

l

)2
, Xn(x) = sin

nπx
l

(n = 1, 2, 3, . . .) (8)

are distinct solutions. Each sine function may be multiplied by an arbitrary
constant.

Therefore, there are an infinite (!) number of separated solutions of (1)
and (2), one for each n. They are

un(x, t) =
(

An cos
nπct

l
+ Bn sin

nπct
l

)
sin

nπx
l

(n = 1, 2, 3, . . . ), where An and Bn are arbitrary constants. The sum of solutions
is again a solution, so any finite sum

u(x, t) =
∑

n

(
An cos

nπct
l

+ Bn sin
nπct

l

)
sin

nπx
l

(9)

is also a solution of (1) and (2).
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Wave equation with Dirichlet conditions

Set let us assume that      > 0, i.e.                . 
This leads to:

whose solution is of the form

with C and D two arbitrary constants. 

The boundary conditions                                  imply 
that
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Wave equation with Dirichlet conditions

• The number                          are called eigenvalues

• The functions                                        are called 
eigenfunctions

Why?

They satisfy an ODE with conditions at two points:

If we denote by A the linear operator            , the 
ODE writes                    .

88 CHAPTER 4 BOUNDARY PROBLEMS

For example, consider the diffusion of a substance in a tube of length l.
Each end of the tube opens up into a very large empty vessel. So the concen-
tration u(x, t) at each end is essentially zero. Given an initial concentration
φ(x) in the tube, the concentration at all later times is given by formula (17).
Notice that as t → ∞, each term in (17) goes to zero. Thus the substance
gradually empties out into the two vessels and less and less remains in the
tube. !

The numbers λn = (nπ/l)2 are called eigenvalues and the functions
Xn(x) = sin(nπx/ l) are called eigenfunctions. The reason for this termi-
nology is as follows. They satisfy the conditions

− d2

dx2
X = λX, X (0) = X (l) = 0. (19)

This is an ODE with conditions at two points. Let A denote the operator
−d2/dx2, which acts on the functions that satisfy the Dirichlet boundary con-
ditions. The differential equation has the form AX = λX . An eigenfunction
is a solution X ̸≡ 0 of this equation and an eigenvalue is a number λ for which
there exists a solution X ̸≡ 0.

This situation is analogous to the more familiar case of an N × N matrix
A. A vector X that satisfies AX = λX with X ̸≡ 0 is called an eigenvector and
λ is called an eigenvalue. For an N × N matrix there are at most N eigenvalues.
But for the differential operator that we are interested in, there are an infinite
number of eigenvalues π2/ l2, 4π2/ l2, 9π2/ l2, . . . . Thus you might say that
we are dealing with infinite-dimensional linear algebra!

In physics and engineering the eigenfunctions are called normal modes
because they are the natural shapes of solutions that persist for all time.

Why are all the eigenvalues of this problem positive? We assumed this in
the discussion above, but now let’s prove it. First, couldλ=0 be an eigenvalue?
This would mean that X ′′ = 0, so that X (x) = C + Dx . But X (0) = X (l) = 0
implies that C = D = 0, so that X (x) ≡ 0. Therefore, zero is not an eigen-
value.

Next, could there be negative eigenvalues? If λ < 0, let’s write it as
λ = −γ 2. Then X ′′ = γ 2 X , so that X (x) = C cosh γ x + D sinh γ x . Then
0 = X (0) = C and 0 = X (l) = D sinh γ l. Hence D = 0 since sinh γ l ̸= 0.

Finally, let λ be any complex number. Let γ be either one of the two square
roots of −λ; the other one is −γ . Then

X (x) = Ceγ x + De−γ x ,

where we are using the complex exponential function (see Section 5.2).
The boundary conditions yield 0 = X (0) = C + D and 0 = Ceγ l + De−γ l .
Therefore e2γ l = 1. By a well-known property of the complex exponential
function, this implies that Re(γ ) = 0 and 2l Im(γ ) = 2πn for some integer n.
Hence γ = nπ i/ l and λ = −γ 2 = n2π2/ l2, which is real and positive. Thus
the only eigenvalues λ of our problem (16) are positive numbers; in fact, they
are (π/ l)2, (2π/ l)2, . . . .
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What about the equation in T ?
With 

leads to

Thus                                                        , with An and 
Bn two arbitrary constants.

ln = b 2
n

4.1 SEPARATION OF VARIABLES, THE DIRICHLET CONDITION 85

Plugging the form (4) into the wave equation (1), we get

X (x)T ′′(t) = c2 X ′′(x)T (t)

or, dividing by −c2 XT ,

− T ′′

c2T
= − X ′′

X
= λ.

This defines a quantity λ, which must be a constant. (Proof: ∂λ/∂x = 0 and
∂λ/∂t = 0, so λ is a constant. Alternatively, we can argue that λ doesn’t
depend on x because of the first expression and doesn’t depend on t because
of the second expression, so that it doesn’t depend on any variable.) We will
show at the end of this section that λ > 0. (This is the reason for introducing
the minus signs the way we did.)

So let λ = β2, where β > 0. Then the equations above are a pair of
separate (!) ordinary differential equations for X(x) and T(t):

X ′′ + β2 X = 0 and T ′′ + c2β2T = 0. (5)

These ODEs are easy to solve. The solutions have the form

X (x) = C cos βx + D sin βx (6)

T (t) = A cos βct + B sin βct, (7)

where A, B, C, and D are constants.
The second step is to impose the boundary conditions (2) on the separated

solution. They simply require that X(0) = 0 = X(l). Thus

0 = X (0) = C and 0 = X (l) = D sin βl.

Surely we are not interested in the obvious solution C = D = 0. So we must
have βl = nπ , a root of the sine function. That is,

λn =
(nπ

l

)2
, Xn(x) = sin

nπx
l

(n = 1, 2, 3, . . .) (8)

are distinct solutions. Each sine function may be multiplied by an arbitrary
constant.

Therefore, there are an infinite (!) number of separated solutions of (1)
and (2), one for each n. They are

un(x, t) =
(

An cos
nπct

l
+ Bn sin

nπct
l

)
sin

nπx
l

(n = 1, 2, 3, . . . ), where An and Bn are arbitrary constants. The sum of solutions
is again a solution, so any finite sum

u(x, t) =
∑

n

(
An cos

nπct
l

+ Bn sin
nπct

l

)
sin

nπx
l

(9)

is also a solution of (1) and (2).

n
n

n

n

n
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There are thus an infinite (!) number of separated 
solutions of 

(one for each n). They are:

where An and Bn are arbitrary constants.

4

BOUNDARY
PROBLEMS

In this chapter we finally come to the physically realistic case of a finite
interval 0 < x < l. The methods we introduce will frequently be used in the
rest of this book.

4.1 SEPARATION OF VARIABLES, THE
DIRICHLET CONDITION

We first consider the homogeneous Dirichlet conditions for the wave equation:

utt = c2uxx for 0 < x < l (1)
u(0, t) = 0 = u(l, t) (2)

with some initial conditions

u(x, 0) = φ(x) ut (x, 0) = ψ(x). (3)

The method we shall use consists of building up the general solution as a linear
combination of special ones that are easy to find. (Once before, in Section
2.4, we followed this program, but with different building blocks.)

A separated solution is a solution of (1) and (2) of the form

u(x, t) = X (x)T (t). (4)

(It is important to distinguish between the independent variable written as a
lowercase letter and the function written as a capital letter.) Our first goal is
to look for as many separated solutions as possible.
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The sum of solutions is also a solution, so

is also a solution.

This solution also satisfies the initial conditions

and 

if

and 
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and 
are Fourier sine series!
Provided that the series converge*, we know the 
coefficients:

And we have found an explicit solution to the wave 
equation with homogeneous Dirichlet conditions!

5.1 THE COEFFICIENTS 105

m and n being positive integers. This can be verified directly by integration.
[Historically, (1) was first discovered by a horrible expansion in Taylor series!]

Proof of (2). We use the trig identity

sin a sin b = 1
2 cos(a − b) − 1

2 cos(a + b).

Therefore, the integral equals

l
2(m − n)π

sin
(m − n)πx

l

∣∣∣∣
l

0
− [same with (m + n)]

if m ̸= n. This is a linear combination of sin(m ± n)π and sin 0, and so it
vanishes. !

The far-reaching implications of this observation are astounding. Let’s fix
m, multiply (1) by sin(mπx/ l), and integrate the series (1) term by term to
get

∫ l

0
φ(x) sin

mπx
l

dx =
∫ l

0

∞∑

n=1

An sin
nπx

l
sin

mπx
l

dx

=
∞∑

n=1

An

∫ l

0
sin

nπx
l

sin
mπx

l
dx .

All but one term in this sum vanishes, namely the one with n = m (n just being
a “dummy” index that takes on all integer values ≥1). Therefore, we are left
with the single term

Am

∫ l

0
sin2 mπx

l
dx, (3)

which equals 1
2 lAm by explicit integration. Therefore,

Am = 2
l

∫ l

0
φ(x) sin

mπx
l

dx . (4)

This is the famous formula for the Fourier coefficients in the series (1). That
is, if φ(x) has an expansion (1), then the coefficients must be given by (4).

These are the only possible coefficients in (1). However, the basic question
still remains whether (1) is in fact valid with these values of the coefficients.
This is a question of convergence, and we postpone it until Section 5.4.

APPLICATION TO DIFFUSIONS AND WAVES

Going back to the diffusion equation with Dirichlet boundary conditions, the
formula (4) provides the final ingredient in the solution formula for arbitrary
initial data φ(x).
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As for the wave equation with Dirichlet conditions, the initial data consist
of a pair of functions φ(x) and ψ(x) with expansions (4.1.10) and (4.1.11).
The coefficients Am in (4.1.9) are given by (4), while for the same reason the
coefficients Bm are given by the similar formula

mπc
l

Bm = 2
l

∫ l

0
ψ(x) sin

mπx
l

dx . (5)

FOURIER COSINE SERIES

Next let’s take the case of the cosine series, which corresponds to the Neumann
boundary conditions on (0, l). We write it as

φ(x) = 1
2

A0 +
∞∑

n=1

An cos
nπx

l
. (6)

Again we can verify the magical fact that

∫ l

0
cos

nπx
l

cos
mπx

l
dx = 0 if m ̸= n

where m and n are nonnegative integers. (Verify it!) By exactly the same
method as above, but with sines replaced by cosines, we get

∫ l

0
φ(x) cos

mπx
l

dx = Am

∫ l

0
cos2 mπx

l
dx = 1

2
lAm

if m ̸= 0. For the case m = 0, we have

∫ l

0
φ(x) · 1 dx = 1

2
A0

∫ l

0
12 dx = 1

2
lA0.

Therefore, for all nonnegative integers m, we have the formula for the coeffi-
cients of the cosine series

Am = 2
l

∫ l

0
φ(x) cos

mπx
l

dx . (7)

[This is the reason for putting the 1
2 in front of the constant term in (6).]
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Sketch of first few functions sin(π x/l), sin(2π x/l), ... 
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Plugging the form (4) into the wave equation (1), we get

X (x)T ′′(t) = c2 X ′′(x)T (t)

or, dividing by −c2 X T ,

− T ′′

c2T
= − X ′′

X
= λ.

This defines a quantity λ, which must be a constant. (Proof: ∂λ/∂x = 0 and
∂λ/∂t = 0, so λ is a constant. Alternatively, we can argue that λ doesn’t
depend on x because of the first expression and doesn’t depend on t because
of the second expression, so that it doesn’t depend on any variable.) We will
show at the end of this section that λ > 0. (This is the reason for introducing
the minus signs the way we did.)

So let λ = β2, where β > 0. Then the equations above are a pair of
separate (!) ordinary differential equations for X(x) and T(t):

X ′′ + β2 X = 0 and T ′′ + c2β2T = 0. (5)

These ODEs are easy to solve. The solutions have the form

X (x) = C cos βx + D sin βx (6)

T (t) = A cos βct + B sin βct, (7)

where A, B, C, and D are constants.
The second step is to impose the boundary conditions (2) on the separated

solution. They simply require that X(0) = 0 = X(l). Thus

0 = X (0) = C and 0 = X (l) = D sin βl.

Surely we are not interested in the obvious solution C = D = 0. So we must
have βl = nπ , a root of the sine function. That is,

λn =
(nπ

l

)2
, Xn(x) = sin

nπx
l

(n = 1, 2, 3, . . .) (8)

are distinct solutions. Each sine function may be multiplied by an arbitrary
constant.

Therefore, there are an infinite (!) number of separated solutions of (1)
and (2), one for each n. They are

un(x, t) =
(

An cos
nπct

l
+ Bn sin

nπct
l

)
sin

nπx
l

(n = 1, 2, 3, . . . ), where An and Bn are arbitrary constants. The sum of solutions
is again a solution, so any finite sum

u(x, t) =
∑

n

(
An cos

nπct
l

+ Bn sin
nπct

l

)
sin

nπx
l

(9)

is also a solution of (1) and (2).

86 CHAPTER 4 BOUNDARY PROBLEMS

Formula (9) solves (3) as well as (1) and (2), provided that

φ(x) =
∑

n
An sin

nπx
l

(10)

and

ψ(x) =
∑

n

nπc
l

Bn sin
nπx

l
. (11)

Thus for any initial data of this form, the problem (1), (2), and (3) has a simple
explicit solution.

But such data (10) and (11) clearly are very special. So let’s try (following
Fourier in 1827) to take infinite sums. Then we ask what kind of data pairs
φ(x), ψ(x) can be expanded as in (10), (11) for some choice of coefficients An,
Bn? This question was the source of great disputes for half a century around
1800, but the final result of the disputes was very simple: Practically any (!)
function φ(x) on the interval (0, l) can be expanded in an infinite series (10).
We will show this in Chapter 5. It will have to involve technical questions
of convergence and differentiability of infinite series like (9). The series in
(10) is called a Fourier sine series on (0, l). But for the time being let’s not
worry about these mathematical points. Let’s just forge ahead to see what
their implications are.

First of all, (11) is the same kind of series for ψ(x) as (10) is for φ(x).
What we’ve shown is simply that if (10), (11) are true, then the infinite series
(9) ought to be the solution of the whole problem (1), (2), (3).

A sketch of the first few functions sin(πx/ l), sin(2πx/ l), . . . is shown
in Figure 1. The functions cos(nπct/ l) and sin(nπct/ l) which describe the

Figure 1
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The functions cos(nπ ct/l) and sin(nπ ct/l) which 
describe the behavior in time have a similar form. 
The coefficients of t inside the sines and cosines, 
namely nπ c/l, are called the (angular) frequencies. 
For the vibrating string, remember that                       : 
the frequencies are thus

The “fundamental” note of the string is the smallest of 
these,               . . The “overtones” are exactly the 
double, the triple, and so on, of the fundamental!
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depend on x because of the first expression and doesn’t depend on t because
of the second expression, so that it doesn’t depend on any variable.) We will
show at the end of this section that λ > 0. (This is the reason for introducing
the minus signs the way we did.)

So let λ = β2, where β > 0. Then the equations above are a pair of
separate (!) ordinary differential equations for X(x) and T(t):
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These ODEs are easy to solve. The solutions have the form

X (x) = C cos βx + D sin βx (6)
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solution. They simply require that X(0) = 0 = X(l). Thus
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are distinct solutions. Each sine function may be multiplied by an arbitrary
constant.

Therefore, there are an infinite (!) number of separated solutions of (1)
and (2), one for each n. They are

un(x, t) =
(

An cos
nπct

l
+ Bn sin

nπct
l

)
sin

nπx
l

(n = 1, 2, 3, . . . ), where An and Bn are arbitrary constants. The sum of solutions
is again a solution, so any finite sum

u(x, t) =
∑
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(
An cos

nπct
l

+ Bn sin
nπct

l

)
sin

nπx
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(9)

is also a solution of (1) and (2).
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behavior in time have a similar form. The coefficients of t inside the sines
and cosines, namely nπc/ l, are called the frequencies. (In some texts, the
frequency is defined as nc/2l.)

If we return to the violin string that originally led us to the problem (1),
(2), (3), we find that the frequencies are

nπ
√

T
l
√

ρ
for n = 1, 2, 3, . . . (12)

The “fundamental” note of the string is the smallest of these, π
√

T /(l
√

ρ). The
“overtones” are exactly the double, the triple, and so on, of the fundamental!
The discovery by Euler in 1749 that the musical notes have such a simple
mathematical description created a sensation. It took over half a century to
resolve the ensuing controversy over the relationship between the infinite
series (9) and d’Alembert’s solution in Section 2.1. !

The analogous problem for diffusion is

DE: ut = kuxx (0 < x < l, 0 < t < ∞) (13)
BC: u(0, t) = u(l, t) = 0 (14)
lC: u(x, 0) = φ(x). (15)

To solve it, we separate the variables u = T(t)X(x) as before. This time we get

T ′

kT
= X ′′

X
= −λ = constant.

Therefore, T(t) satisfies the equation T ′ = −λkT , whose solution is T (t) =
Ae−λkt . Furthermore,

−X ′′ = λX in 0 < x < l with X (0) = X (l) = 0. (16)

This is precisely the same problem for X(x) as before and so has the same
solutions. Because of the form of T(t),

u(x, t) =
∞∑

n=1

Ane−(nπ/ l)2kt sin
nπx

l
(17)

is the solution of (13)–(15) provided that

φ(x) =
∞∑

n=1

An sin
nπx

l
. (18)

Once again, our solution is expressible for each t as a Fourier sine series in x
provided that the initial data are.

14 CHAPTER 1 WHERE PDEs COME FROM

displacement, and there is no horizontal motion. The horizontal com-
ponents of Newton’s law again give constant tension T . Let D be any
domain in the xy plane, say a circle or a rectangle. Let bdy D be its
boundary curve. We use reasoning similar to the one-dimensional case.
The vertical component gives (approximately)

F =
∫

bdy D
T

∂u
∂n

ds =
∫∫

D

ρutt dx dy = ma,

where the left side is the total force acting on the piece D of the mem-
brane, and where ∂u/∂n = n · ∇u is the directional derivative in the
outward normal direction, n being the unit outward normal vector on
bdy D. By Green’s theorem (see Section A.3 in the Appendix), this can
be rewritten as

∫∫

D

∇ · (T ∇u) dx dy =
∫∫

D

ρutt dx dy.

Since D is arbitrary, we deduce from the second vanishing theorem in
Section A.1 that ρutt = ∇ · (T ∇u). Since T is constant, we get

utt = c2∇ · (∇u) ≡ c2(uxx + uyy), (6)

where c =
√

T/ρ as before and ∇ · (∇u) = div grad u = uxx + uyy is
known as the two-dimensional laplacian. Equation (6) is the two-
dimensional wave equation. !

The pattern is now clear. Simple three-dimensional vibrations obey the
equation

utt = c2(uxx + uyy + uzz). (7)

The operator l = ∂2/∂x2 + ∂2/∂y2 + ∂/∂z2 is called the three-dimensional
laplacian operator, usually denoted by # or ∇2. Physical examples described
by the three-dimensional wave equation or a variation of it include the vi-
brations of an elastic solid, sound waves in air, electromagnetic waves (light,
radar, etc.), linearized supersonic airflow, free mesons in nuclear physics, and
seismic waves propagating through the earth.

Example 4. Diffusion
Let us imagine a motionless liquid filling a straight tube or pipe and
a chemical substance, say a dye, which is diffusing through the liquid.
Simple diffusion is characterized by the following law. [It is not to
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behavior in time have a similar form. The coefficients of t inside the sines
and cosines, namely nπc/ l, are called the frequencies. (In some texts, the
frequency is defined as nc/2l.)
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“overtones” are exactly the double, the triple, and so on, of the fundamental!
The discovery by Euler in 1749 that the musical notes have such a simple
mathematical description created a sensation. It took over half a century to
resolve the ensuing controversy over the relationship between the infinite
series (9) and d’Alembert’s solution in Section 2.1. !

The analogous problem for diffusion is

DE: ut = kuxx (0 < x < l, 0 < t < ∞) (13)
BC: u(0, t) = u(l, t) = 0 (14)
lC: u(x, 0) = φ(x). (15)

To solve it, we separate the variables u = T(t)X(x) as before. This time we get

T ′

kT
= X ′′

X
= −λ = constant.

Therefore, T(t) satisfies the equation T ′ = −λkT , whose solution is T (t) =
Ae−λkt . Furthermore,

−X ′′ = λX in 0 < x < l with X (0) = X (l) = 0. (16)

This is precisely the same problem for X(x) as before and so has the same
solutions. Because of the form of T(t),

u(x, t) =
∞∑

n=1

Ane−(nπ/ l)2kt sin
nπx

l
(17)

is the solution of (13)–(15) provided that

φ(x) =
∞∑

n=1

An sin
nπx

l
. (18)

Once again, our solution is expressible for each t as a Fourier sine series in x
provided that the initial data are.
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*Reminder on the convergence of series

1. An infinite series                       converges to f (x)
pointwise in (a, b) if it converges to f (x) for 
each a < x < b. That is, for each a < x < b we 
have

2. The series converges in the mean-square (or L2) 
sense to f (x) in (a, b) if

Â•
n=1 fn(x)
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a < x < b we have∣∣∣∣∣ f (x) −
N∑

n=1

fn(x)

∣∣∣∣∣ → 0 as N → ∞. (5)

Definition. We say that the series converges uniformly to f (x) in [a, b] if

max
a≤x≤b

∣∣∣∣∣ f (x) −
N∑

n=1

fn(x)

∣∣∣∣∣ → 0 as N → ∞. (6)

(Note that the endpoints are included in this definition.) That is, you take the
biggest difference over all the x’s and then take the limit.

The two preceding concepts of convergence are also discussed in Section
A.2. A third important concept is the following one.

Definition. We say the series converges in the mean-square (or L2) sense
to f (x) in (a, b) if

∫ b

a

∣∣∣∣∣ f (x) −
N∑

n=1

fn(x)

∣∣∣∣∣

2

dx → 0 as N → ∞. (7)

Thus we take the integral instead of the maximum. (The terminology L2 refers
to the square inside the integral.)

Notice that uniform convergence is stronger than both pointwise and L2

convergence (see Exercise 2.) Figure 1 illustrates a typical uniformly conver-
gent series by graphing both f (x) and a partial sum for large N.

Example 1.

Let fn(x) = (1 − x)xn−1 on the interval 0 < x < 1. Then the series is
“telescoping.” The partial sums are

N∑

n=1

fn(x) =
N∑

1

(xn−1 − xn) =1 − x N → 1 as N → ∞

Figure 1
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*Reminder on the convergence of classical 
Fourier series (sine, cosine or full)

1. The Fourier series converges to f (x) in the mean-
square (or L2) sense in (a, b) provided only that 
f (x) is any function for  which

2. The Fourier series converges to f (x) pointwise 
on (a, b) provided that f (x) is a continuous 
function on a ≤ x ≤ b  and f ′(x) is piecewise 
continuous on a ≤ x ≤ b. 
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because
∫ Nl

0

1
(1 + y2)2

dy →
∫ ∞

0

1
(1 + y2)2

dy.

So the series does not converge in the mean-square sense. Also, it does
not converge uniformly because

max
(0, l)

1
1 + N 2x2

= N ,

which obviously does not tend to zero as N → ∞. !

CONVERGENCE THEOREMS

Now let f (x) be any function defined on a ≤ x ≤ b. Consider the Fourier series
for the problem (1) with any given boundary conditions that are symmetric. We
now state a convergence theorem for each of the three modes of convergence.
They are partly proved in the next section.

Theorem 2. Uniform Convergence The Fourier series ! An Xn(x) con-
verges to f (x) uniformly on [a, b] provided that

(i) f (x), f ′(x), and f ′′(x) exist and are continuous for a ≤ x ≤ b and
(ii) f (x) satisfies the given boundary conditions.
Theorem 2 assures us of a very good kind of convergence provided that

the conditions on f (x) and its derivatives are met. For the classical Fourier
series (full, sine, and cosine), it is not required that f ′′(x) exist.

Theorem 3. L2 Convergence The Fourier series converges to f (x) in
the mean-square sense in (a, b) provided only that f (x) is any function for
which

∫ b

a
| f (x)|2 dx is finite. (8)

Theorem 3 assures us of a certain kind of convergence under a very weak
assumption on f (x). [We could even use the very general Lebesgue inte-
gral here instead of the standard (Riemann) integral encountered in calculus
courses. In fact, the Lebesgue integral was invented in order that Theorem 3
be true for the most general possible functions.]

Third, we present a theorem that is intermediate as regards the hypotheses
on f (x). It requires two more definitions. A function f (x) has a jump discon-
tinuity at a point x = c if the one-sided limits f (c+) and f (c−) exist but are not
equal. [It doesn’t matter what f (c) happens to be or even whether f (c) is defined
or not.] The value of the jump discontinuity is the number f (c+) − f (c−).
See Figure 3 for a function with two jumps.

A function f (x) is called piecewise continuous on an interval [a, b] if it
is continuous at all but a finite number of points and has jump discontinuities
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*Reminder on the convergence of classical 
Fourier series (sine, cosine or full)

3. More generally, if f (x) itself is only piecewise 
continuous on a ≤ x ≤ b and f ′(x) is also 
piecewise continuous on a ≤ x ≤ b, then the 
Fourier series converges at every point x. At a 
jump discontinuity the series converges to the 
average of the limits from the right and from 
the left. 5.4 COMPLETENESS 129

Figure 3

at those points. Another way to say this is that at every point in the inter-
val (including the endpoints) the one-sided limits f (c+) and f (c−) exist;
and except at a finite number of points they are equal. For these definitions,
see also Section A.1. A typical piecewise continuous function is sketched in
Figure 3. The function Q(x, 0) in Section 2.4 is an example of a piecewise
continuous function.

Theorem 4. Pointwise Convergence of Classical Fourier Series
(i) The classical Fourier series (full or sine or cosine) converges to f (x)

pointwise on (a, b) provided that f (x) is a continuous function on
a ≤ x ≤ b and f ′(x) is piecewise continuous on a ≤ x ≤ b.

(ii) More generally, if f (x) itself is only piecewise continuous on a ≤
x ≤ b and f ′(x) is also piecewise continuous on a ≤ x ≤ b, then the
classical Fourier series converges at every point x(−∞ < x < ∞).
The sum is

∑

n

An Xn(x) = 1
2 [ f (x+) + f (x−)] for all a < x < b. (9)

The sum is 1
2 [ fext(x+) + fext(x−)] for all −∞ < x < ∞, where

fext(x) is the extended function (periodic, odd periodic, or even pe-
riodic).

Thus at a jump discontinuity the series converges to the average of the
limits from the right and from the left. In the case of the Fourier sine (or
cosine) series on (0, l), the extended function fext(x) is the odd (or even)
function of period 2l. For the full series on (−l, l), it is the periodic extension.
The extension is piecewise continuous with a piecewise continuous derivative
on (−∞, ∞).

It is convenient to restate Theorem 4 directly for functions that are al-
ready defined on the whole line. By considering the periodic, even, and odd
extensions of functions, Theorem 4 is equivalent to the following statement.

Theorem 4∞. If f (x) is a function of period 2l on the line for which
f (x) and f ′(x) are piecewise continuous, then the classical full Fourier series
converges to 1

2 [ f (x+) + f (x−)] for −∞ < x < ∞.
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2 – Diffusion equation with Dirichlet conditions
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Diffusion equation with Dirichlet conditions

The analogous problem for diffusion is

We separate the variables u = T(t) X(x) as before, 
which leads to:

4.1 SEPARATION OF VARIABLES, THE DIRICHLET CONDITION 87

behavior in time have a similar form. The coefficients of t inside the sines
and cosines, namely nπc/ l, are called the frequencies. (In some texts, the
frequency is defined as nc/2l.)

If we return to the violin string that originally led us to the problem (1),
(2), (3), we find that the frequencies are

nπ
√

T
l
√

ρ
for n = 1, 2, 3, . . . (12)

The “fundamental” note of the string is the smallest of these, π
√

T /(l
√

ρ). The
“overtones” are exactly the double, the triple, and so on, of the fundamental!
The discovery by Euler in 1749 that the musical notes have such a simple
mathematical description created a sensation. It took over half a century to
resolve the ensuing controversy over the relationship between the infinite
series (9) and d’Alembert’s solution in Section 2.1. !

The analogous problem for diffusion is

DE: ut = kuxx (0 < x < l, 0 < t < ∞) (13)
BC: u(0, t) = u(l, t) = 0 (14)
lC: u(x, 0) = φ(x). (15)

To solve it, we separate the variables u = T(t)X(x) as before. This time we get

T ′

kT
= X ′′

X
= −λ = constant.

Therefore, T(t) satisfies the equation T ′ = −λkT , whose solution is T (t) =
Ae−λkt . Furthermore,

−X ′′ = λX in 0 < x < l with X (0) = X (l) = 0. (16)

This is precisely the same problem for X(x) as before and so has the same
solutions. Because of the form of T(t),

u(x, t) =
∞∑

n=1

Ane−(nπ/ l)2kt sin
nπx

l
(17)

is the solution of (13)–(15) provided that

φ(x) =
∞∑

n=1

An sin
nπx

l
. (18)

Once again, our solution is expressible for each t as a Fourier sine series in x
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Diffusion equation with Dirichlet conditions

For X(x) we get
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Diffusion equation with Dirichlet conditions

We thus obtain the solution

which is solution of the stated diffusion problem 
provided that 

The solution is thus expressible again for each t as a 
Fourier sine series in x provided that the initial data 
are.
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Diffusion equation with Neumann conditions

Consider

The eigenfunctions are the solution X(x) of

other than the trivial solution                 .
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4.2 THE NEUMANN CONDITION 89

EXERCISES

1. (a) Use the Fourier expansion to explain why the note produced by a
violin string rises sharply by one octave when the string is clamped
exactly at its midpoint.

(b) Explain why the note rises when the string is tightened.
2. Consider a metal rod (0 < x < l), insulated along its sides but not at its

ends, which is initially at temperature = 1. Suddenly both ends are plunged
into a bath of temperature = 0. Write the differential equation, boundary
conditions, and initial condition. Write the formula for the temperature
u(x, t) at later times. In this problem, assume the infinite series expansion

1 = 4
π

(
sin

πx
l

+ 1
3

sin
3πx

l
+ 1

5
sin

5πx
l

+ · · ·
)

3. A quantum-mechanical particle on the line with an infinite potential out-
side the interval (0, l) (“particle in a box”) is given by Schrödinger’s
equation ut = iuxx on (0, l) with Dirichlet conditions at the ends. Separate
the variables and use (8) to find its representation as a series.

4. Consider waves in a resistant medium that satisfy the problem

utt = c2uxx − rut for 0 < x < l
u = 0 at both ends

u(x, 0) = φ(x) ut (x, 0) = ψ(x),

where r is a constant, 0 < r < 2πc/ l. Write down the series expansion
of the solution.

5. Do the same for 2πc/ l < r < 4πc/ l.
6. Separate the variables for the equation tut = uxx + 2u with the boundary

conditions u(0, t) = u(π, t) = 0. Show that there are an infinite number
of solutions that satisfy the initial condition u(x, 0) = 0. So uniqueness
is false for this equation!

4.2 THE NEUMANN CONDITION

The same method works for both the Neumann and Robin boundary conditions
(BCs). In the former case, (4.1.2) is replaced by ux (0, t) = ux (l, t) = 0. Then
the eigenfunctions are the solutions X(x) of

−X ′′ = λX, X ′(0) = X ′(l) = 0, (1)

other than the trivial solution X (x) ≡ 0.
As before, let’s first search for the positive eigenvalues λ = β2 > 0. As

in (4.1.6), X (x) = C cos βx + D sin βx , so that

X ′(x) = −Cβ sin βx + Dβ cos βx .
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Diffusion equation with Neumann conditions

1. Let’s first search for the positive eigenvalues

As before,                                             , so that 

Neumann B.C. on the left:

Neumann B.C. on the right: 

since we don’t want           
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into a bath of temperature = 0. Write the differential equation, boundary
conditions, and initial condition. Write the formula for the temperature
u(x, t) at later times. In this problem, assume the infinite series expansion

1 = 4
π

(
sin

πx
l

+ 1
3

sin
3πx

l
+ 1

5
sin

5πx
l

+ · · ·
)

3. A quantum-mechanical particle on the line with an infinite potential out-
side the interval (0, l) (“particle in a box”) is given by Schrödinger’s
equation ut = iuxx on (0, l) with Dirichlet conditions at the ends. Separate
the variables and use (8) to find its representation as a series.

4. Consider waves in a resistant medium that satisfy the problem

utt = c2uxx − rut for 0 < x < l
u = 0 at both ends

u(x, 0) = φ(x) ut (x, 0) = ψ(x),

where r is a constant, 0 < r < 2πc/ l. Write down the series expansion
of the solution.

5. Do the same for 2πc/ l < r < 4πc/ l.
6. Separate the variables for the equation tut = uxx + 2u with the boundary

conditions u(0, t) = u(π, t) = 0. Show that there are an infinite number
of solutions that satisfy the initial condition u(x, 0) = 0. So uniqueness
is false for this equation!

4.2 THE NEUMANN CONDITION

The same method works for both the Neumann and Robin boundary conditions
(BCs). In the former case, (4.1.2) is replaced by ux (0, t) = ux (l, t) = 0. Then
the eigenfunctions are the solutions X(x) of

−X ′′ = λX, X ′(0) = X ′(l) = 0, (1)

other than the trivial solution X (x) ≡ 0.
As before, let’s first search for the positive eigenvalues λ = β2 > 0. As

in (4.1.6), X (x) = C cos βx + D sin βx , so that

X ′(x) = −Cβ sin βx + Dβ cos βx .90 CHAPTER 4 BOUNDARY PROBLEMS

The boundary conditions (1) mean first that 0 = X ′(0) = Dβ, so that D = 0,
and second that

0 = X ′(l) = −Cβ sin βl.

Since we don’t want C = 0, we must have sin βl = 0. Thus β = π/ l, 2π/ l,
3π/ l, . . . . Therefore, we have the

Eigenvalues:
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)2
,

(
2π
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)2

, · · · (2)

Eigenfunctions: Xn(x) = cos
nπx

l
(n = 1, 2, . . .) (3)

Next let’s check whether zero is an eigenvalue. Set λ = 0 in the ODE (1).
Then X ′′ = 0, so that X (x) = C + Dx and X ′(x) ≡ D. The Neumann bound-
ary conditions are both satisfied if D = 0. C can be any number. Therefore,
λ = 0 is an eigenvalue, and any constant function is its eigenfunction.

If λ < 0 or if λ is complex (nonreal), it can be shown directly, as in the
Dirichlet case, that there is no eigenfunction. (Another proof will be given in
Section 5.3.) Therefore, the list of all the eigenvalues is

λn =
(nπ

l

)2
for n = 0, 1, 2, 3, . . . . (4)

Note that n = 0 is included among them!
So, for instance, the diffusion equation with the Neumann BCs has the

solution

u(x, t) = 1
2

A0 +
∞∑

n=1

Ane−(nπ/ l)2kt cos
nπx

l
. (5)

This solution requires the initial data to have the “Fourier cosine expansion”

φ(x) = 1
2

A0 +
∞∑

n=1

An cos
nπx

l
. (6)

All the coefficients A0, A1, A2, . . . are just constants. The first term in (5) and
(6), which comes from the eigenvalue λ = 0, is written separately in the form
1
2 A0 just for later convenience. (The reader is asked to bear with this ridiculous
factor 1

2 until Section 5.1 when its convenience will become apparent.)
What is the behavior of u(x, t) as t → +∞? Since all but the first term in

(5) contains an exponentially decaying factor, the solution decays quite fast to
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Section 5.3.) Therefore, the list of all the eigenvalues is

λn =
(nπ

l

)2
for n = 0, 1, 2, 3, . . . . (4)

Note that n = 0 is included among them!
So, for instance, the diffusion equation with the Neumann BCs has the

solution

u(x, t) = 1
2

A0 +
∞∑

n=1

Ane−(nπ/ l)2kt cos
nπx

l
. (5)

This solution requires the initial data to have the “Fourier cosine expansion”

φ(x) = 1
2

A0 +
∞∑

n=1

An cos
nπx

l
. (6)

All the coefficients A0, A1, A2, . . . are just constants. The first term in (5) and
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2 until Section 5.1 when its convenience will become apparent.)
What is the behavior of u(x, t) as t → +∞? Since all but the first term in

(5) contains an exponentially decaying factor, the solution decays quite fast to
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Diffusion equation with Neumann conditions
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Wave equation with Neumann conditions

We could solve the wave equation with Neumann 
conditions in exactly the same way. 

The zero eigenvalue leads to:

• X(x) being constant

• and

which has the solution                          .

Therefore, the complete solution writes

4.2 THE NEUMANN CONDITION 91

the first term 1
2 A0, which is just a constant. Since these boundary conditions

correspond to insulation at both ends, this agrees perfectly with our intuition
of Section 2.5 that the solution “spreads out.” This is the eventual behavior
if we wait long enough. (To actually prove that the limit as t → ∞ is given
term by term in (5) requires the use of one of the convergence theorems in
Section A.2. We omit this verification here.)

Consider now the wave equation with the Neumann BCs. The eigenvalue
λ = 0 then leads to X(x) = constant and to the differential equation T ′′(t) =
λc2T (t) = 0, which has the solution T (t) = A + Bt . Therefore, the wave
equation with Neumann BCs has the solutions

u(x, t) = 1
2

A0 + 1
2

B0t

+
∞∑

n=1

(
An cos

nπct
l

+ Bn sin
nπct

l

)
cos

nπx
l

. (7)

(Again, the factor 1
2 will be justified later.) Then the initial data must satisfy

φ(x) = 1
2

A0 +
∞∑

n=1

An cos
nπx

l
(8)

and

ψ(x) = 1
2

B0 +
∞∑

n=1

nπc
l

Bn cos
nπx

l
. (9)

Equation (9) comes from first differentiating (7) with respect to t and then
setting t = 0. !

A “mixed” boundary condition would be Dirichlet at one end and Neu-
mann at the other. For instance, in case the BCs are u(0, t) = ux (l, t) = 0, the
eigenvalue problem is

−X ′′ = λX X (0) = X ′(l) = 0. (10)

The eigenvalues then turn out to be (n + 1
2 )

2
π2/ l2 and the eigenfunctions

sin[(n + 1
2 )πx/ l] for n = 0, 1, 2, . . . (see Exercises 1 and 2). For a discussion

of boundary conditions in the context of musical instruments, see [HJ].
For another example, consider the Schrödinger equation ut = iuxx in

(0, l) with the Neumann BCs ux (0, t) = ux (l, t) = 0 and initial condition
u(x, 0) = φ(x). Separation of variables leads to the equation

T ′

iT
= X ′′

X
= −λ = constant,
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Wave equation with Neumann conditions

The initial data must satisfy:

Check the details as an exercise!
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Take-home messages

The method of separation of variables allowed us 
to find explicit solutions of the wave equation and 
the diffusion equation in bounded domains, 
with homogeneous Dirichlet or Neumann 
boundary conditions.

The solution involves Fourier series, 
in terms of (an infinite number of) eigenfunctions 
(or “normal modes”).

Robin boundary conditions are a bit more 
demanding: you will examine them in exercises.



35

Next lecture: Laplace equation

Important properties

• maximum principle

• rotational invariance

• mean value

Solution in series form for simple geometrical 
domains (rectangle, disk)


