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Learning objectives

Become familiar with two important properties 
of Laplace equation:

• the maximum principle 

• the rotational invariance.

Be able to solve the equation in series form 
in rectangles, circles (incl. Poisson formula), 
and related shapes.

Become aware of key properties of the solutions, 
such as the mean value property.
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1. Reminder

2. Laplace’s equation

3. Rectangles and cubes

4. Poisson’s formula

5. Circles, wedges and annuli

Outline

1. Introduction to Laplace’s equation

2. Maximum and minimum principle

3. Invariance and fundamental solutions

4. Rectangles and cubes

5. Poisson’s formula

6. Circles (exterior of), wedges and annuli



1 – Introduction to Laplace’s equation

In this section, we introduce Laplace’s equation and show its practical 
relevance (Section 6.1 in Strauss, 2008). 
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For a stationary process, both the diffusion and 
the wave equations reduce to the Laplace equation

If a diffusion or wave process is stationary 
(independent of time), then ut ≡ 0 and utt ≡ 0.

Therefore, both the diffusion and the wave 
equations reduce to the Laplace equation:

• in 1D:

• in 2D:

• in 3D:

A solution of the Laplace equation is called a 
harmonic function.
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Two particular cases

In 1D, 

• we have simply uxx = 0;

• therefore, the only harmonic functions in 1D 
are u(x) = A + B x ;

• this is so simple that it hardly gives a clue 
to what happens in higher dimensions.

The inhomogeneous version of Laplace’s equation

with f a given function, is called Poisson’s equation.
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Laplace’s and Poisson’s equations are ubiquitous 
in Physics and Engineering applications

Example 1: steady fluid flow

• Assume that the flow is steady and 
irrotational (no eddies) so that rot v = 0, 
where v = v(x, y, z) is the flow velocity.

• Hence, v = − grad f , with f a scalar function 
(called velocity potential)

• Assume that the flow is incompressible, 
without sources nor sinks. Then div v = 0.

• Again, the potential is governed by Laplace’s 
equation: Df = − div v = 0.
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Laplace’s and Poisson’s equations are ubiquitous 
in Physics and Engineering applications

Example 2: electrostatics

• We have rot E = 0 and div E = 4 p r,
where r is the charge density.

• rot E = 0 implies that E can be written as: 
E = − grad f , with f a scalar function 
(called electric potential).

• Therefore,

which is Poisson’s equation (with f = − 4 p r).

Also, in 
classical 
theory of 
gravitation, 
Poisson’s 
equation 
relates the 
mass density 
with the 
gravitational 
potential.
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Basic mathematical problem of interest here

Solve Laplace’s or Poisson’s equation in a given 
domain D with a condition on boundary bdy D:

Du = f in         D

with u = h or     un = h

or     un + a u = h on bdy D.

D

n
n

n
n

bdy D

E.g.
• temperature, 
• displacement

E.g.
• flux
• reaction force



2 – Maximum and minimum principle

In this section, we introduce the maximum and minimum principle 
and, as a consequence, demonstrate the unicity of the solution of the 
Dirichlet problem (Section 6.1 in Strauss, 2008). 
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Maximum principle: a harmonic function is 
its biggest and its smallest on the boundary

For Laplace’s equation, the maximum principle is:

• Let D be a connected bounded open set 
(in 2D or 3D).

• Let either u(x, y) or u(x, y, z) be a harmonic
function in D

• Let u(x, y) or u(x, y, z) be continuous
on D ∪ (bdy D). 

• Then the maximum and the minimum values 
of u are attained on bdy D and nowhere 
inside (unless u ≡ constant).

Open set
= a set w/o 
its boundary
= domain 
= region
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Maximum principle: a harmonic function is 
its biggest and its smallest on the boundary

We use the following notations:

• x = (x, y) in 2D or x = (x, y, z) in 3D. 

• |x| = (x2 + y2)1/2 or |x| = (x2 + y2 + z2)1/2.

The maximum principle asserts that there are points 
xM and xm on bdy D such 
that u(xm) ≤ u(x) ≤ u(xM) 

for all x ∈ D.

There could be several such points on the boundary.

In contrast, there are no points inside D with this 
property (unless u ≡ constant). 

D

xm

xM
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Main idea underpinning the maximum principle

The overall idea behind the demonstration of the 
maximum principle is the following (in 2D).

• At a maximum point inside D, we would have 
uxx ≤ 0 and uyy ≤ 0. So uxx + uyy ≤ 0. 

• At most maximum points, uxx < 0 and uyy < 0, 
which would contradict Laplace’s equation. 

However, 

• since it is possible that uxx = uyy = 0 

at a maximum point …

• we have to work a little harder to get a proof!
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3-step demonstration of the maximum principle

Let

• ϵ > 0. 

• v(x) = u(x) + ϵ |x|2. 

Then (in 2D)

Dv = Du + ϵ D (x2 + y2) = 0 + 4 ϵ > 0 in  D.

If v has an interior maximum point, this would hold:

Dv = vxx + vyy ≤ 0.

Since this result is in contradiction with the previous 
inequality, v(x) has no interior maximum in D.
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3-step demonstration of the maximum principle

Function v(x) being continuous, it must have a 
maximum somewhere in the closure D = D ∪ bdy D. 

Let us assume that the maximum 
of v(x) is attained at x0 ∈ bdy D. 

Then, for all x ∈ D,

u(x) ≤ v(x) ≤ v(x0) = u(x0) + ϵ |x0|
2

and 

u(x0) + ϵ |x0|
2 ≤ max u + ϵ l2,

with l the greatest distance from bdy D to the origin.



The closure is the 
union of the domain 
and its boundary

bdy D
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3-step demonstration of the maximum principle

Since 

u(x) ≤ u(x0) + ϵ |x0|
2 ≤ max u + ϵ l2,

is true for any ϵ > 0, we have

u(x) ≤ max u      for all x ∈ D. 

This maximum is attained at some point xM ∈ bdy D. 

Consequently, u(x) ≤ u(xM) for all x ∈ D, 
which is the desired conclusion!

A similar demonstration applies for a minimum (xm).



bdy D

bdy D

The absence of a 
maximum inside D
will be proved later
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Intuitive visualization of the maximum-minimum 
principle

Consider the case of a membrane (or a soap film) 
extended over a rigid closed frame. 

If we give the initially plane 
frame a small transverse 
deformation, we do not 
expect the membrane to 
bulge either upwards or downwards beyond the 
frame, unless external forces are applied. 

Similarly, in the realm of thermal steady state, the 
temperature attains its maximum and minimum 
values at the boundaries of the region.
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Uniqueness of the Dirichlet problem

To prove the uniqueness, consider two solutions 
u and v, so that

Let us subtract the equations and let w = u − v. 

By the maximum principle, since w = 0 on bdy D,

Therefore, both the maximum and minimum of w(x)

are zero. This means that w ≡ 0 and u ≡ v.

Note that 
uniqueness 
does not 
hold for all 
types of BC. 
E.g. 
a solution 
of the 
Neumann 
problem is 
determined 
uniquely 
with an 
additive 
constant



3 – Invariance and fundamental solutions

In this section, we introduce invariance properties of Laplace’s 
equation in 2D and 3D and derive particular solutions which have the 
same invariance properties (Section 6.1 in Strauss, 2008). 
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Invariance in 2D: Laplace equation is invariant 
under all rigid motions (translations, rotations)

A translation in the plane is a transformation

x' = x + a               y' = y + b.

Invariance under translations means simply that

uxx + uyy = ux'x' + uy'y' .

A rotation by an angle a is given by

x' = x cos a + y sin a

y' = − x sin a + y cos a.

Let us use the chain rule …
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Invariance in 2D: Laplace equation is invariant 
under all rigid motions (translations, rotations)

A rotation by an angle a is given by

x' = x cos a + y sin a

y' = − x sin a + y cos a.

Applying the chain rule to u(x', y'), we calculate

By adding, we get: 

uxx + uyy = ux'x' + uy'y' .
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Invariance in 2D: Laplace equation is invariant 
under all rigid motions (translations, rotations)

Interpretation: in engineering the laplacian D is a 
model for isotropic physical situations, in which 
there is no preferred direction.

The rotational invariance suggests that the 2D 
laplacian

should take a particularly simple form in polar 
coordinates.

Let us use the transformation 

x = r cos θ y = r sin θ
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Invariance in 2D: Laplace equation is invariant 
under all rigid motions (translations, rotations)

Applying the chain rule with 

x = r cos θ y = r sin θ

we get:

and we end up with:
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Invariance in 2D: Laplace equation is invariant 
under all rigid motions (translations, rotations)

We investigate the existence of harmonic functions 
that themselves are rotationally invariant: u(r, q ). 

In 2D, this means that we use polar coordinates (r, q) 

and look for solutions u(r) : 

This ODE is easy to solve:

(rur)r = 0,       rur = c1,       u = c1ln r + c2.

This function ln r will play a central role later.
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The 3D laplacian is also invariant under rigid motion

A similar demonstration as in the 2D case can be 
elaborated using vector-matrix notation:

x' = B x

where B is an orthogonal matrix ( BTB = BBT = I ).

See details in the textbook.

For the 3D laplacian, 

it is also natural to use spherical coordinates (r, θ, f).
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The 3D laplacian is also invariant under rigid motion

The laplacian in spherical coordinates writes:

Let us look for harmonic functions in 3D 
which do not change under rotation …

Polar angle, 
colatitude  

Longitude,
azimuthal angle
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The 3D laplacian is also invariant under rigid motion

Harmonic functions which do not change under 
rotation, i.e. which depend only on r satisfy the ODE

So (r2ur)r = 0. It has the solutions r2ur = c1. 
That is, u = − c1r

−1 + c2. 

This important harmonic function

is the analog of the 2D function ln(x2 + y2)1/2.



4 – Rectangles and cubes

In this section, we solve Laplace equation in a rectangle by separating 
variables and we provide an overview of the solution of the Dirichlet
problem in a cube (Section 6.2 in Strauss, 2008). 
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Laplace equation can be solved in particular 
geometries by separating the variables

The general procedure is the same as in Lecture 6.

1. Look for separated solutions of the PDE.

2. Put in the homogeneous boundary conditions 
to get the eigenvalues. This is the step which is 
dependent on the considered geometry.

3. Sum the series.

4. Put in the inhomogeneous (initial or) boundary 
conditions.
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Laplace equation can be solved in particular 
geometries by separating the variables

Let us consider

D2u = uxx + uyy = 0      in D

where D is the rectangle {0 < x < a, 0 < y < b}.

On each side of the rectangle, one of the standard 
boundary conditions is prescribed:

• Dirichlet

• Neumann

• or Robin.
x

y

a

b

D
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Example 1

Let us consider the following BCs:

If we call the solution u with data (g, h, j, k), 
then u = u1 + u2 + u3 + u4 where

• u1 has data (g, 0, 0, 0), 

• u2 has data (0, h, 0, 0), and so on …

x

y

D

u = g(x)

uy + u = h(x)

ux = k(y)u = j(y)
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Example 1
Step 1: Look for separated solutions of the PDE

For simplicity, let’s assume that h = 0, j = 0, k = 0

We separate the variables: u(x, y) = X(x) Y(y). 

We get:

x

y

D

u = g(x)

uy + u = 0

ux = 0u = 0





33

Example 1
Step 2: Use the homogeneous BCs  eigenvalues

Since X''(x) / X = − Y'' (y) / Y(y), each side of this 
equation must be a constant (say − l):

• X''(x) + l X = 0  for 0 ≤ x ≤ a

with X(0) = 0  and X'(a) = 0

• Y''(x) − l Y = 0  for 0 ≤ y ≤ b

with Y'(0) + Y(0) = 0  and Y(b) = …

x

y

a

b

D

x

y

D

u = g(x)

uy + u = 0

ux = 0u = 0
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Example 1
Step 2: Use the homogeneous BCs  eigenvalues

The solution for X(x) verifying X''(x) + l X = 0  

for 0 ≤ x ≤ a, with X(0) = 0  and X'(a) = 0, writes:

and 

x

y

a

b

D

x

y

D

u = g(x)

uy + u = 0

ux = 0u = 0
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Example 1
Step 2: Use the homogeneous BCs  eigenvalues

The solution for Y(y) verifying Y''(y) − l Y = 0  

for  0 ≤ y ≤ b writes (with bn = ln
1/2):

The BC Y'(0) + Y(0) = 0 implies B bn + A = 0.

Since the modes may be multiplied by any arbitrary 
constant, we may choose B = − 1, so that A = bn .

x

y

a

b

D

x

y

D

u = g(x)

uy + u = 0

ux = 0u = 0
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Example 1
Step 3: Sum the series

Therefore, the sum

is a harmonic function in D that satisfies all three 
homogeneous BCs.

In the rectangle, this function is also bounded.

x

y

a

b

D

x

y

D

u = g(x)

uy + u = 0

ux = 0u = 0
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Example 1
Step 4: Put in the inhomogeneous BCs

The remaining BC u(x, b) = g(x) requires that

for 0 < x < a. 

This is simply a Fourier series in the eigenfunctions
sin βnx.

From Fourier series theory, the coefficients An

are given by the formula:
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Example 2: Dirichlet problem in a 3D “box” 
{0 < x < a, 0 < y < b, 0 < z < c}

Consider the particular case of a cube:

To solve,

• separate variables:

• use the five homogeneous BCs
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Example 2: Dirichlet problem in a 3D “box” 
{0 < x < a, 0 < y < b, 0 < z < c}

Evaluating the eigenfunctions and eigenvalues gives:

Plugging the inhomogeneous BC at x = π leads to a 
double Fourier sine series in the variables y and z:

Hence the solution is expressed as 
a doubly infinite series!







5 – Poisson’s formula

In this section, we consider the Dirichlet problem in a disk and we find 
a closed form of the solution, namely the Poisson formula. We show 
that this result has several important consequences, including the 
mean value property of harmonic functions (Section 6.3 in Strauss, 
2008). 
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Dirichlet problem for a disk of radius a

Let us consider the Dirichlet problem

We solve again by separating 
the variables in polar coordinates:
u(r, q ) = R(r) Q(q ):
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Dirichlet problem for a disk of radius a

Dividing by R Q and multiplying by r2, we find that

For Q(q ), periodic BCs are required:

Q(q + 2p ) = Q(q )     for − ∞ ≤ q ≤ + ∞

Thus (with l = n2): 

or l = 0 with     Q(q ) = A.
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Dirichlet problem for a disk of radius a

The equation for R (Euler type):

r2 R'' + r R' − l R = 0

has solutions of the form R(r) = rα.

Since λ = n2, it reduces to

α (α − 1) rα + α rα − n2rα = 0

Hence, α = ± n. Thus R(r) = C rn + D r−n

and we have the separated solutions:

for n = 1, 2, 3, … 
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Dirichlet problem for a disk of radius a

In case n = 0, we also have a second linearly 
independent solution (besides R = constant):

R(r) = ln r (obtained from simple calculus)

So we also have the solutions: u = C + D ln r.

Similarly to prescribing a BC at r = 0, we require that 
the considered harmonic functions are bounded. 

By rejecting the obtained harmonic functions which 
are infinite at the origin (r−n and ln r), we get:
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Dirichlet problem for a disk of radius a

Finally, we prescribe the inhomogeneous BC at r = a:

This is precisely the full Fourier series for h(θ), 
so that the full solution of our problem is

with
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Dirichlet problem for a disk of radius a

Amazingly, this series can be summed explicitly!

Indeed, using geometric series of complex numbers, 
it is possible to show that the solution

writes in the form of Poisson’s formula:

It expresses any harmonic function inside a circle 
in terms of its boundary values.
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Mathematical statement of Poisson’s formula

Let h(f) = u(x') be any continuous function on the 
circle C = bdy D. 

Then the Poisson formula 

provides the only harmonic function in D for which

Hence, u(x) is a continuous function on D = D ∪ C. 

It is also differentiable to all orders inside D.
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Poisson formula has several key consequences

MEAN VALUE PROPERTY

Let u be a harmonic function in a disk D, 
continuous in its closure (circumference).

Then the value of u at the center of D equals the 
average of u on its circumference.

Proof: 

• Consider the origin 0 at the center of the circle.

• Put r = 0 in Poisson’s formula:

This is the average of u on the circumference |x'| = a.
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Poisson formula has several key consequences

MAXIMUM PRINCIPLE

Poisson formula enables deriving a complete proof 
of the strong form of the maximum principle (i.e. 
the maximum is not in the domain; but only on the 
boundary, unless the harmonic function is 
constant).

DIFFERENTIABILITY

Let u be a harmonic function in any open set D of 
the plane. Then u(x) = u(x, y) possesses all partial 
derivatives of all orders in D.



Take-home messages
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Take-home messages

A solution of the Laplace equation is called a 
harmonic function.

The inhomogeneous version of Laplace’s equation 
is called Poisson’s equation.

Laplace’s and Poisson’s equations are of broad 
interest in physics and in engineering.

The maximum and the minimum values of a 
harmonic function u are attained on the boundary 
of the considered domain (unless u ≡ constant).
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Take-home messages

We have shown the uniqueness of the solution of 
the Dirichlet problem (not for Neumann problem).

Laplace equation is invariant under all rigid motions 
(translations, rotations).

In engineering the laplacian is a model used for 
isotropic physical situations (no preferred direction).

We have found these rotationnally invariant 
harmonic functions:

ln(x2 + y2)1/2 (2D)  and                                              (3D)
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Take-home messages

By separating variables, we get the solution of 
Laplace problems in various geometries, in the form

• of Fourier series in a rectangle (2D)

• of double Fourier series in a box (3D)

The solution of the Dirichlet problem in a circle 
takes a closed form, called Poisson formula. 

Poisson formula has several important 
consequences on the properties of harmonic 
functions, including their “mean value property”.


