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What is new with nonlinear PDEs?

The superposition principle ceases to hold.
Therefore, methods such as those based on 
summing eigenfunctions may no more be used. 

Additionally, new phenomena occur, 
such as shock waves, solitons …

Site view and computation of a hydraulic jump at Nisramont dam, Belgium
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Shock waves are modeled 
by nonlinear hyperbolic PDEs

The simplest type of nonlinear hyperbolic PDE is 
the first-order equation

ut + a(u) ux = 0

Another example is the system of equations 
governing fluid motion (Euler equations), 
written here in 1D:

rt + (r v )x = 0

vt + v vx + r−1 [ f (r) ]x = 0

with v the flow velocity and r the fluid density.
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Learning objectives

Be able to solve nonlinear 1st order PDEs 
using the characteristics

Become familiar with new concepts such as
• rarefaction waves (or expansion waves), 
• shock waves, 
• distributions, 
• test functions,
• weak solutions …

Learn how to compute shock waves, 
using Rankine–Hugoniot formula



6

1. Reminder: first-order linear equations

2. Typical example of a nonlinear PDE

3. General 1st order nonlinear PDE

a. Rarefaction waves

b. Weak solutions

c. Shock waves

4. Solitonsstems of equations

Outline

1. Reminder: first-order linear equations

2. Typical example of a nonlinear PDE

3. General 1st order nonlinear PDE

a. Rarefaction waves

b. Weak solutions

c. Shock waves

4. Solitons



1 – Reminder: first order linear PDEs
In this section, we briefly review the resolution 
of 1st order linear PDEs (Section 14.1 in Strauss, 2008). 
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Reminder: first-order linear equations

Consider the equation

b(x, t) ut + a(x, t) ux = 0.

Note that b(x, t) may be taken equal to 1 without 
any loss of generality.

In Lecture 1, we showed that the directional 
derivative of u is zero along the direction 

dx/dt = a(x, t)

i.e. u(x, t) is a constant along characteristic curves 
defined as the solutions of the ODE dx/dt = a(x, t).
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Reminder: first-order linear equations

Indeed, 
• consider the characteristic curves, which are 

defined as the solutions of dx/dt = a(x, t);
• every point (x0, t0) in the (x, t) plane has a 

unique characteristic curve passing through it, 
because the ODE can be uniquely solved with 
the initial condition x(t0) = x0; 

• along such a curve (parametrized by t) we 
calculate:
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Reminder: first-order linear equations

Thus u(x(t), t) is constant along each characteristic 
curve: u(x(t), t) = u(x0, t0). 

Example Let us solve the PDE

ut + ex+t ux = 0.

The characteristic equation is dx/dt = ex+t.

It can be integrated along the characteristic, 
between the point (x0, t0) and any other point (x, t): 

with C a constant determined by the values x0, t0.

x

t

(x0, t0)

(x, t)

0 0

x tx t

x t
e dx e dt   0 0x tx te e e e C    
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Reminder: first-order linear equations

Thus u(x(t), t) is constant along each characteristic 
curve: u(x(t), t) = u(x0, t0). 

Example Let us solve the PDE

ut + ex+t ux = 0.

The characteristic equation is dx/dt = ex+t.

x

t

(x0, t0)

(x, t)

x te e C  

e−x + et = C5

e−x + et = C4

e−x + et = C3

e−x + et = C2

e−x + et = C1
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Reminder: first-order linear equations

Since u is a constant along each characteristic, the 
general solution is 

u(x, t) = f (C) = f ( e−x + et )

with f an arbitrary differentiable function.

Next, f can be determined based on an IC u(x0, t0).

u(x0, t0)

x te e C  

e−x + et = C5

e−x + et = C4

e−x + et = C3

e−x + et = C2

e−x + et = C1



2 – Typical example of a nonlinear PDE
In this section, we use a typical example of nonlinear 1st order PDE to 
highlight to which extent the procedure used for linear 1st order PDEs 
can still be applied in the nonlinear case; and we point out the 
possible occurrence of discontinuous solutions which require a more 
general approach (Section 14.1 in Strauss, 2008). 
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Typical example of nonlinear equation

The nonlinear equation

ut + u ux = 0.

is similar in nature to the basic equation of fluids. 

We use the geometric method: the characteristic 
curves are given by solutions of the ODE

Since the PDE is nonlinear, 
the characteristic equation depends now 
on the unknown function u(x, t) itself!
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What do we know about the characteristic curves?

Since we do not know yet the solution u(x, t), 
we cannot determine the characteristic curves;

BUT we know that u remains a constant on each of 
them, since (using the chain rule):

Hence, the slope of the characteristic curves 
dx/dt = u(x, t) is also a constant for each of them.

These observations have important consequences …
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Three important properties of the characteristic 
curves for ut + u ux = 0

Each characteristic curve is a straight line: 
each solution u(x, t) has a family of straight lines 
(of various slopes) as its characteristics.

The solution is constant on each such line.

The slope of each such line is equal to the value 
of u(x, t) on it.






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Can two different characteristic lines intersect? 
What would this mean?

Suppose now that we ask for a solution of the PDE 
that satisfies the initial condition (on the line t = 0):

u(x, 0) = f (x).

Then, by , 
• the characteristic line that passes through (x0, 0)

has a slope equal to f (x0).

• similarly, the characteristic line through (x1, 0) 
has a slope equal to f (x1).
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Can two different characteristic lines intersect? 
What would this mean?

If the two lines intersect, we are in trouble!

• u = f(x0) on one line and u = f(x1) on the other, 

• so that f (x0) should be equal to f (x1)
(as the value of u should be unique)

• which is impossible since the slopes differ!
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Which is the way out?

A general and practical 
option is to extend the 
very notion of solution 
to allow discontinuities. 

This leads to the theory of 
shock waves, which occur in 
blasts, traffic flow, water 
waves, supersonic flights …

Blast pressure around a helmet
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Which is the way out?

An alternate option is to avoid any such intersection 
of characteristic lines.

This will be ensured for t ≥ 0 provided that
the function f (x) is increasing for all x.

x

t

u(x, 0) = f (x)
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Formula for the solution of ut + u ux = 0, 
where it exists and in the absence of shock 

Consider the characteristic line passing through 
(x0, 0) and (x, t).

Its slope is
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Formula for the solution of ut + u ux = 0, 
where it exists and in the absence of shock

Consider the characteristic line passing through 
(x0, 0) and (x, t).

Its slope is

So that

which gives x0 implicitly as a function of (x, t).

Then the solution writes:     u(x, t) = f ( x0(x, t) )
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Example: closed form solution 
for a particular initial condition

Let the initial function be f (x) = x2 (for x > 0).

The slope of the characteristics is given by

x − x0 = t f (x0) = t (x0)2

or t (x0)2 + x0 − x = 0.

We solve this equation explicitly for x0:

for t ≠ 0.
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Example: closed form solution 
for a particular initial condition

Hence, the solution of the PDE writes (for t ≠ 0):

This formula is supposed to verify u(x, 0) = x2, 
but it is not defined along the line t = 0.  

So we require:
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Example: closed form solution 
for a particular initial condition

With the plus sign, this expression tends to infinity 
when t tends to zero, so it cannot be a solution. 

With the minus sign, we use L’Hôpital’s rule twice 
(with x constant) to calculate the limit as

as it should be!

Therefore, the unique solution is (for 1 + 4 t x ≥ 0)

t → 0 t → 0
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Example: closed form solution 
for a particular initial condition

And the characteristics look like this:

Therefore, the unique solution is (for 1 + 4 t x ≥ 0)



3 – General 1st order nonlinear PDE
In this section, we consider a general 1st order nonlinear PDE to 
introduce key concepts such as rarefaction (or expansion) waves, 
weak solutions and shock waves. We also detail the computation of 
the jump discontinuity at shock waves using Rankine-Hugoniot
formula (Section 14.1 in Strauss, 2008). We resort to the notion of 
distribution (Section 12.1 in Strauss, 2008).



28

Properties of the characteristic lines 
for the general first-order nonlinear PDE

Let’s return now to the general equation

ut + a(u) ux = 0.

The characteristic curves are the solutions of

Calling such a curve x = x(t), we observe that

Therefore, here also, the characteristics are straight 
lines and the solution is constant along them.
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Provided that the characteristics do not intersect, 
we can solve the initial value problem (IVP)

Consider the initial condition u(x, 0) = f (x). 

The characteristic line through (x, t) and (z, 0) 
has the “slope”:

Hence,                x − z = t a(f (z)).
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Provided that the characteristics do not intersect, 
we can solve the initial value problem (IVP)

Here also, expression x − z = t a(f (z)) gives z
implicitly as a function of x and t. We note it z(x, t).

Consequently, the solution of the IVP is:

u(x, t) = u(z, 0) = f ( z(x, t) )

No pair of characteristic lines intersect if the slope 
is increasing as a function of the intercept:

a( f (z) ) ≤ a(f (w) ) for z ≤ w.

i.e. the lines spread out for t > 0. Such a solution is 
called an expansion wave or rarefaction wave.
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Let’s take a close look at a specific example, 
by considering a(u) = u and f (x) = ( 1 + x2 )–1

x − x0 = t ( 1 + x0
2 )–1
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How does the solution look like 
when characteristic lines intersect?

Because the wave speed a(u) depends on u, 
some parts of the wave move faster than others. 

Therefore, it may happen that the “crest” of a wave 
moves faster and “overtakes” the smaller, slower 
part of the wave, leading to a 3-value “solution.” 

Mathematically speaking, where a shock wave 
occurs, the solution u(x, t) has a jump discontinuity.

E.g. breaking 
of water 
waves on the 
beach …
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What is the meaning of the PDE if the solution is 
not even continuous, let alone differentiable?

We need to introduce a “generalized” type of 
solution of the PDE …

Therefore, to accommodate discontinuous
solutions of 

ut + a(u) ux = 0

we will ask the equation to be valid in the sense 
of distributions.

A solution of this type will be called 
a weak solution.
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Concept of distribution

While a function is a rule that assigns numbers to 
numbers, a distribution is a rule (or transformation 
or functional) that assigns numbers to functions.

Number Function Number

Function Distribution Number
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Concept of distribution

While a function is a rule that assigns numbers to 
numbers, a distribution is a rule (or transformation 
or functional) that assigns numbers to functions.

To come up with a more formal definition, we 
introduce the notion of test function.

A test function f (x) is a real C∞ function 
(a function all of whose derivatives exist) 
that vanishes outside a finite interval. 

Thus f : ℝ → ℝ is defined and differentiable for all 
−∞ < x < ∞ and f (x) ≡ 0 for x large and for x small.
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Formal definition of a distribution

Let ⅅ denote the collection of all test functions. 

Definition   A distribution f is a functional (a rule): 
ⅅ → ℝ which is linear and continuous in the sense 
described below. 

If f  ⅅ is a test function, then we note the 
corresponding real number by (f , f).

By linearity we mean that

(f, a f + b ψ) = a(f, f) + b(f, ψ)

for all constants a, b and all test functions f, ψ.
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Formal definition of a distribution

By continuity we mean the following. 

If {fn} is a sequence of test functions that 
• vanish outside a common interval 
• and converge uniformly to a test function f, 

and if all their derivatives do as well, 

then

( f, fn) → ( f, f)    as n → ∞.

A distribution f may be noted as: f (  (f, f).f
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Example: the so-called “delta function”

The so-called “delta function”, noted δ, is supposed 
to be infinite at x = 0, zero at all x ≠ 0 and have an 
integral equal to 1. This is not truly a function …

It is common to use the following notation (which 
is only a notation!):

Actual definition   The “delta function” is the rule 
that assigns the number f (0) to the function f (x).

According to this definition, the so-called “delta 
function” is actually a distribution f f (0) !!!f
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Example 2: The source function for diffusion

The source function for the diffusion equation 
on the whole line is

for t > 0.

In Lecture 5, we proved that 

as t → 0.

Because for each t we may consider the function 
S(x, t) as a distribution, this means that

S(x, t) → δ(x) as t → 0.

  2 41
,

2
x ktS x t e

kt


     , 0S x t x dxf f




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The derivative of a distribution always exists 
and is another distribution

Motivation:  Let f (x) be any C1 function and f (x)
any test function. Integration by parts shows that

since f (x) = 0 for large |x|.

Definition: For any distribution f, its derivative f ' is

( f ', f ) = − ( f, f') for all test functions f (x).

It is possible to show that
• f ' satisfies the linearity and continuity properties, 
• and that most of the ordinary rules of  differentiation 

are valid for distributions.
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The derivative of a distribution enables a 
generalization of the concept of derivatives

Example  The Heaviside function (or step function) 
is defined by 

• H(x) = 1 for x > 0, 
• and H(x) = 0 for x < 0. 

For any test function, 

Thus

H' = δ.

       

     
00

, ,

0

H H H x x dx

x dx x

f f f

f f f





 

     

    




x

H(x)
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What does it mean that a PDE is valid “in the sense 
of distributions”?

Let us note A'(u) = a(u). Then, equation 
ut + a(u) ux = 0 can be written as (conservative form)

ut + [A(u)]x = 0. 

The PDE being valid “in the sense of distributions” 
means precisely that

for any test function y (x, t) defined in the half-plane. 

A solution u of this type is called a weak solution.

 
0

0t xu A u dx dty y
 


    



43

We demonstrate in four steps that the solution 
at the shock can be computed using jump relations

Suppose that the jump discontinuity, called a shock, 
occurs along the curve x = ξ (t). 

Because it is a jump, the limits u+(t) = u(x+, t) and 
u−(t) = u(x−, t) from the right and the left exist. 

We assume that the solution is smooth elsewhere. 

The speed of the shock is s(t) = dξ/dt, which is the 
reciprocal of the slope.

x

t

u+
u−

x = x (t)
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We demonstrate in four steps that the solution 
at the shock can be computed using jump relations

We split the inner integral in

into two pieces around ξ (t):

x

t

u+
u−

x = x (t)

 
0

0t xu A u dx dty y
 


    

  

 
 

0

0
0

t

t x

t xt

u A u dx dt

u A u dx dt

x

x

y y

y y





 

  

    

 
 


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We demonstrate in four steps that the solution 
at the shock can be computed using jump relations

On each piece separately (where the function is C1), 
we intend to apply the divergence theorem:

    

  

   
 

 
 

0

0

0

0
0

t

t x

t

t x

t xt

t xt

u A u dx dt

u A u dx dt

u A u dx dt

u A u dx dt

x

x

x

x

y y

y y

y y

y y









 

 

   

   

    

    

 
 

 

 


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We demonstrate in four steps that the solution 
at the shock can be computed using jump relations

On each piece separately (where the function is C1), 
the divergence theorem leads to:

where (nx, nt) denotes the unit vector normal to the 
shock curve, which points to the right.

Since ut + A(u)x = 0 in the ordinary sense in both 
regions separately, the double integrals vanish.

 
 

 
 

 
 

 
 

0

0
0

t

t x t x
x t

t x t xt
x t

u n A u n dl u A u dx dt

u n A u n dl u A u dx dt

x

x

x
x

y y y

y y y

 




  



    

      

  

  

 
 

 t x

x t

t x
u n A u n d u A ul

x

y y 



    
 

 
 

 

0

t

x

x t
xt t

dx dt

u n A u n d ul A u

x

x

y

y y





 



     

 

  0
0

t
dx dt

x
y

 
 





47

We demonstrate in four steps that the solution 
at the shock can be computed using jump relations

Hence, it remains

Because the test function y is arbitrary, 
the following relation must hold:

or

This is the Rankine–Hugoniot formula for the speed 
of the shock wave.

 
 

 
 x t

t x t x

x t

u n A u n u n A u ndl dl
x x

y y   

 

       

   t x t xu n A u n u n A u n     

     t

x

A u A u n
s t

u u n

 

 


  





x

t

x = x (t)
nt

nx
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We demonstrate in four steps that the solution 
at the shock can be computed using jump relations



x

t

x = x (t)
dt

dx
nt

nx

  ?
d

s t
dt

x
 

dt  nx

dx  – nt

  t

x

nd
s t

dt n

x
  



4 – Solitons
In this section, we briefly depict the concept of soliton, which is a 
remarkably stable wave solution of a nonlinear PDE (Section 14.2 in 
Strauss, 2008). 
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A soliton is a localized traveling wave solution 
of a nonlinear PDE that is remarkably stable. 

Dispersive tail 
which gradually 
disappears

One PDE that has solitons as solutions is the 
Korteweg–deVries (KdV) equation

ut + 6 u ux + uxxx = 0 ( − ∞ < x < ∞ ).

It describes water waves in a channel.

It also appears in several 
other branches of physics 
(e.g. as a mathematical model 
of a stable elementary particle).

The explanation of soliton stability lies in a 
complicated relationship with a linear equation!
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Example: solitary wave in a laboratory flume

Lab experiment of solitary impulse wave (ETHZ, Courtesy of Prof. W. Hager)
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Example: solitary wave in a laboratory flume

Lab experiment of solitary impulse wave (ETHZ, Courtesy of Prof. W. Hager)

t = t1

t = t2

t = t3
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Take-home messages

For nonlinear PDE, the principle of superposition 
ceases to hold.

For nonlinear 1st order PDEs,

• the method of characteristics works, 
as it does for linear transport equations,
as long as the characteristics do not intersect;

• each characteristic curve is a straight line;

• the solution u(x, t) remains constant
on each characteristic line.
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Take-home messages

In nonlinear PDEs, the wave speed depends on the 
solution itself, so that characteristics may intersect.

Therefore, shock waves may occur when a faster 
part of the wave tends to overtake a slower part.

This leads to a jump discontinuity in the solution.

To accommodate discontinuous solutions, the PDE 
is regarded in the sense of distributions.

A solution of this type is called a weak solution.

It verifies Rankine–Hugoniot formula at the jump.
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