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Learning objectives of this lecture

Apply the finite difference method to Laplace’s
equation

Understand why iterative linear solvers are useful
in this context

Understand the basics of the finite element
method



Outline

1. Approximations of Laplace’s equation

2. Finite Element Method
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1 —Approximations of Laplace’s equation



Finite differences for the Laplace equation

‘r

Let’s consider Laplace’s equation in two
dimensions:

Uxy + Uyy =0

Approximating both terms with centered
differences leads to

Ujt1k — 2Ujk + Uj—1k L Wikt = 2uj i+ Ujk—1

(Ax)> (Ay)? =0

with u; x an approximation of u(; Ax, k_Ay)



Finite differences for the Laplace equation

Choosing Ax = Ay, we get

1
Wi = zUjp1 e Fuj_r ket Ujkpr +Ujr—1)

Thus u; , is the average of the values at the four
neighboring grid points.

The discrete scheme thus has the same mean value
property as the Laplace equation!



Finite differences for the Laplace equation

A solution u; , cannot take its maximum or
minimum value at an interior point, unless it is a
constant: otherwise it couldn’t be the average of its
neighbors.

Thus the maximum and minimum values can be
taken only at the boundary — we thus recover the
maximum principle!



Finite differences for the Laplace equation

To solve the Dirichlet problem for u,, + u,,=0in D

with given boundary values, we draw a grid

covering D and approximate D by a union of
squares:




Finite differences for the Laplace equation

In contrast to time-dependent problems, no
marching method is readily available: if we have N
interior grid points, we obtain a linear system of N
linear equations in N unknowns.

The system matrix can become very large, but it is
non singular

very sparse (many entries are zero)



Finite differences for the Laplace equation

‘r

For example, multiplying

1
Uik = zWjgr e+ Uj—rp+ Ujirr +Ujr—1)

by 4 leads to the following matrix system for a grid with
4-by-4 interior points:

[ 4 -1 ~1
~1 4 -1 ~1
-1 4 -1 ~1
1 4 ~1
—1 4 -1 —1
-1 -1 4 -1 ~1
~1 -1 4 -1 ~1
~1 1 4 ~1
—1 4 -1 —1
~1 ~1 4 -1 ~1
~1 1 4 -1 ~1
~1 -1 4 ~1
—1 R
~1 1 4 -1
~1 -1 4 -1
~1 -1 4

Ui

U1
u3 1
ug 1
uip
%)
U3
Us
u13
uz3
u33
U3
U4
U4
U3 4

L u474 .

- by 5

b3
b4
by
12%)
b3»
bsp
bi3
by3

b4z
b4
bo 4

L b44 -
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Jacobi iteration

Instead of direct solution methods (LU
factorization), various iterative methods can be

designed.

Jacobi iteration: starting from an initial guess ui.l,)c,

successively solve

(n+1) _ 1], (n) (n) (n) (n)
u [”j+1,k TU T U T uj,k—l]

ko T4

Convergence analysis and matrix form: cf. your
numerical analysis class from last year.



Jacobi iteration

PS:

(n+1) __ 1],,(0) (n) (n) (n)
“ik T Z[”Hl,k TUj L T Wk T uj,k—l]

is actually the same as as solving the 2D diffusion
equation v, = v,, +v,, using centered differences
for v, and v,, and using the forward difference for
v, With Ax = Ay and Ar = (Ax)2/4.

In effect, the Jacobi iteration is solving the Laplace
problem by taking the limit of the discretized
diffusion equation solution v(x,f) as t — ©C



Gauss-Seidel method

If we compute uﬁ."k_Fl) one row at a time starting at

the bottom row, and going left to right, by directly
using any computed value, we get the Gauss-Seidel

method:

(n+1) _ 1], (n) (n+1) (n) (n+1)
Uik Z[ Ui, TU;_ 1k+uj,k+1+uj,k—1]

< 1



What’s next?

These are all so-called stationary iterative methods,
whose general matrix form for solving Ax = b is

X, =x, 1+ K ! (b—Ax,_1)

If A is decomposed into its diagonal, lower

triangular and upper triangular parts D, L and U,
we have

Jacobi: K=D
Gauss-Seidel: K=D + L



What’s next?

Next week we will introduce more general, non-
stationary methods, whose general form is

Xy = Xp— 1—|—ZK b Axk)OCkn 1

k<n

We will study in more detail the Congugate
Gradient method, which is part of the family of so-
called Krylov subspace methods.



[{ 'S

2 — Finite Element Method
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A simple 1D example

Consider the following (ordinary) differential
equation
d du
o (M@a) = f(x)

where a(x) and f(x) are given functions.

Let’s try to solve the boundary value problem that
consists in solving the above equation on an
interval D = [0, L] with homogenous Dirichlet
boundary conditions #(0) = u(L) = 0 on both

’ extremities.
%



A simple 1D example

Recall the introduction to distributions from the
previous lecture.

Introducing smooth test functions v(x) vanishing on
0 and L, we reformulate the problem as finding

u(x) such that

— /OL % (a(x)%) v(x)dx = /()Lf(x)v(x) dx

holds for all test functions v(x). This is only valid in
the classical sense if a(x) is smooth enough.

& What if a(x) is only piece-wise continuous?



A simple 1D example

We can proceed exactly as in the last lecture when

we considered differential equations in the sense
of distributions!

Integrating by parts leads to

L du dv
/ dxdxdx/b/ / "

€. L dudy
) == dx =
/a dx dx r /f

g which is the weak form of the problem.
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A simple 1D example

The finite element method then consists in

- Discretizing the domain D into several elements
(here line segments)

- Approximating the solution u(x) by a linear

combination of basis functions (usually
piecewise polynomials), with local support on

elements

- Choosing a finite number of test functions
(usually the same as the basis functions used to
approximate u(x))



A simple 1D example

For our problem, we can e.g. choose piecewise linear
functions v,(x) and write: u(x) = U;vi(x) + - -- + Uyvy(x)

Solution4 ===+ True solution
—— Approximate solution

Nodal value

) Y

6
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A simple 1D example

Using the N basis functions also as test functions,

becomes

dv; dv;

N L I
;Ui/o a(x)EEdXZ/Of(x)vj(x)dx (j=1,...

This is a system of N linear equations in the N
unknowns Uy, ..., Uy:

N
- YomUi=f  (G=1,....N)
i=1
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A simple 1D example

The entries of the system matrix and the right hand
side are respectively

L dv;d L
mj= [ a@ S ax = | v dy

With piecewise linear basis and test functions, the
system matrix is very sparse: m;; =0 ifiand j are
not neighboring nodes!

(The matrix is actually the same as for a centered
finite difference scheme if a(x) is a constant.)



Another 1D example

Consider solving the diffusion problem

U; = Ky + f(x,1); u=0atx=0,l; u=¢x)attr=20

Multiplying the diffusion equation by any function
v(x) that vanishes on the boundary and integrating

by parts, we get:

d [ la d [
'R i uvdx:—/c/o %%dx—l—/o f(x,H)v(x)dx

Let’s partition the interval [0, /] into [/ equal

subintervals, and assign piecewise linear basis
function v, (x) to each of the N =1 - 1 interior

- .
& vertices.
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Another 1D example

We look for a solution of the form

N
u(x, )= "Ui(1) v;(x)
i=1

and we only require the weak form to hold for v =
Vi, ..., Vy. Then

N

l dU, N ldU,‘ de !
Z(./o vivjdx> T —KZ(/O o de)U,-(t) —|—/0f(x, Hv;j(x)dx

i=1 i=1

This is a system of ODEs for U (t), ..., Uy (t).
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Another 1D example

If we define the entries of vectors U and F as

[
uj =Uj, fj:/O flx,t)vi(x)dx
and entries of matrices K and M as

! !
dv; dv;
k,-j:/ viv; dx, mij:/ 7 ia,’x
0 0 dx dx

the system of N ODEs in N unknowns takes the
simple vector form

dU
K— = —«kMU((t) + F(1)
> dt
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Another 1D example

M is called the stiffness matrix, K the mass matrix, and
F the forcing vector.

One can easily show that in this 1D problem with unit
length elements, we get

2 -1 0 0 10 - 0
1 2 1
v |1 2 -~ ol _ls 5 & - O
1 2
0 0o -1 2 0 o LI Z
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Another 1D example

The system of ODEs can be solved e.g. with the
backward Euler method, using the initial condition

Ui(0) = b; = / B0 (x) dx
0

leading to

K|:U(p+1) N §400)

= ] = —kMUPTY 4 F(t,,)

l.e.
(K +kAtMTUPTY = KUY + AtF(t,11)

< which is solved recursively for u®", U@,

U )



Generalization to higher dimensions

The generalization is natural: higher dimensional

domains are subdivided into simple polygons (in
2D) or polyhedra (in 3D)

In addition to the rigorous handling of
discontinuities, the method then also allows to
handle curved or irregularly shaped domains —

which are not easily handled with finite
differences.
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Generalization to higher dimensions

Let’s consider the Dirichlet problem for Poisson’s
equation in the plane
—Au=f mD, u=0 onbdyD

We proceed as in 1D: restate the problem as
finding u such that

—//DAuvdxdyz//vadxdy

holds for any test function v (vanishing on bdy D).
Recalling that A := V -V and integrating by parts,
we get:

& /Vu Vvdxdy — //D/VM / fvdxdy
bnd 20



Generalization to higher dimensions

We then triangulate the domain with N interior
nodes

N=1

and approximate

A

‘ u(x,y) ~uy(x,y) =Uvi(x,y)+---+Uyvn(x,y)
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Generalization to higher dimensions

The simplest basis functions are again piecewise
linear: a basis function v; (x,y) is equal to 1 at “its”
node i and to equal O at all the other nodes

Vi (x,y)
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Generalization to higher dimensions

Using the N basis functions also as test functions,

// Vu-Vvdxdy:// fvdxdy
D D

Becomes

i;Ui(ngi'ijdxdy) :gfvjdxdy

This is a system of N linear equations (j =1, ..., N)
in the N unknowns Uy, ..., Uy.

‘r
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Generalization to higher dimensions

Denoting
m,-j=//Vv,--ijdxdy and f}I/ fvjdxdy

D D
the system again takes the form

N
Zm,-le-:fj (]:1,,N)
i=1

Also notice that, at a node V, = (x;, y;),
unXi, yi) = Urvr(xg, yo) + - - - + Uyvn (X, yi) = Ui
since v; (x;, y;) equals O fori # k and equals 1 fori =«%.

Thus the coefficients are precisely the values of the
& approximate solution at the vertices.

34



Other generalizations

High-order basis functions

Different basis and test functions (“Petrov-
Galerkin” methods)

Non-Lagrange basis functions (associated e.g.
with edges of the mesh)

Curved meshes

Adaptive mesh refinement
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Take-home messages

- Approximations of Laplace’s equation using
finite differences and finite elements lead to
sparse systems of linear equations

- Finite element methods provide a general
mathematical framework to handle more
complicated cases: discontinuities, curved or
complex geometries, local refinements, ...



Next week

We will start Part 2 of the course on

“Complements of linear algebra” by examining
the Conjugate Gradient (CG) method

CG is a powerful method to solve linear systems
iteratively; it is in particular well-suited for the
very large sparse matrices originating from the
approximation of PDEs



