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Learning objectives of this lecture

Learn about iterative methods for solving systems
of linear equations

Understand the conjugate gradients iteration

Understand the principle of preconditioning



Outline

1. Overview of iterative methods
2. Conjugate Gradients

3. Preconditioning
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1 — Overview of iterative methods

(Lecture 32 in Trefethen & Bau, 1997)



Why iterate?

We wish to solve a nonsingular system of linear
equations

Ax=0>b
with A € C™™ |
For general (dense) matrices A4, direct methods

(Gaussian elimination, LU factorization) take &' (m>)

operations — which rapidly becomes intractable for
large m.



Sparsity and black boxes

Can this bottleneck be beaten?

For sparse matrices such as those resulting from
PDE approximations, direct methods suffer from
fill-in and iterative methods provide a path
forward.

Iterative methods require nothing more than the
ability to determine Ax for any x, which on a
computer can be done by a “black box”.

For a sparse matrix it is e.g. easy to design a
procedure that will compute Ax in&(vm) instead
of &(m*)operations.



Projection into Krylov subspaces

Compared to the stationary iterative methods that
we recalled last week, modern iterative methods
are based on the idea of projecting an m-
dimensional problem into a lower-dimensional
Krylov subspace, spanned by the vectors b, Ab, A2b,
A3b, ...

These vectors can be computed by the “black box”
in the form b, Ab, A(Ab), A(A(AD)), ...



Why use Krylov subspaces?
Recall the Cayley-Hamilton theorem

Let A € C™*™ with characteristic polynomial
p(A) =det(Al—A)
= A" e A" e A+ e
Then
p(A) =A"+cp 1 A" 1+ A4 ol =0



Why use Krylov subspaces?
Recall the Cayley-Hamilton theorem

Multiplying p(4A) = 0 by x , we get:
A"x 4+ ¢ (A" x4 i Ax+cpx =0

If Ax = b, this entails
A" btrce, (A" b+ o4 cb+cox =0
= X = —cal(clb+02Ab+ ooty (ATT?D +Am_1b)
and thus
x e (b,Ab,--- A" *b, A" 1p)

& :



Projection into Krylov subspaces

There exist many Krylov subspace methods, for
either solving linear systems or eigenvalue

problems
Ax=0> Ax = Ax
A= A* CG Lanczos
GMRES,
A#£A" CGN, Arnoldi
) BCG, ...

ér



2 — Conjugate Gradients

(Lecture 38 in Trefethen & Bau, 1997)
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Conjugate Gradients

|H

Conjugate Gradients (CG) is the “original” Krylov
subspace method, discovered by Hestenes and

Stiefel in 1952.

It is probably the most famous Krylov subspace
method, and one of the mainstays of scientific

computing.
Other Krylov subspace methods include:

Arnoldi, Lanczos, GMRES, BiCGSTAB, QMR,
MINRES...

CG solves symmetric definite systems amazingly
quickly if the eigenvalues are well distributed

%



Some definitions

Let A € R™"™ be a real symmetric positive definite
(SPD) matrix.

We wish to solve a nonsingular system of equations
Ax=0b
with exact solution x, = A~ 'b.

Let %, = (A, b) denote the nth Krylov subspace
generated by b, defined as

Jn = (b,Ab,... A" D)

J, is thus spanned by the images of b under the
& first n powers of A4, starting with n = 0.



Minimizing the A-norm of the error

Since 4 is SPD, all its eigenvalues are positive, or
equivalently x’ Ax > 0 for every nonzero x € R™.

Then the function ||.||4 defined by

x]|4a = VT Ax

isanormin R".

Indeed: ||x||4 >0, and ||x||4 =0 only if x =0
x+ylla < lxlla+1[y]]a
ox||a = || |x] [
g The norml-lla is called the “4A-norm”.
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Minimizing the A-norm of the error

What is the conjugate gradient iteration?

It is a system of recurrence formulas that generates
the unique sequence of iterates x, € .7, with the

property that at each step n the 4-norm||ex||a of

the error

is minimized.

% y



The Conjugate Gradient iteration

The CG iteration is the following:

XQZO,I’():b,p():I"()

forn=1,2,3,... do
r r{—lr n—1
Op = —7
Xn = Xpn—1+ 0y pn—1 approximate solution

step length

T
B, — ¥ o
n— T
Fn—1"n—1
Pn="Vn~+ Bupn_i search direction

end

13,’ We leave aside for now how and when to stop.
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The Conjugate Gradient iteration

The CG iteration is very simple: you can program
it in a few lines of Matlab or Python

It involves several vector manipulations and one
matrix-vector product (4p,,_)

If A is dense and unstructured, this matrix-
vector product dominates the operation count,

which is &(m*) per step

If A is sparse, the operation count may be as low
as O'(m) per step

& 18



The Conjugate Gradient iteration

Let’s first explore three properties of the CG
iteration:

1. ldentity of subspaces

<%/n — <X1,X2,...,Xn> — <p0,p1,---,pn—1>
= <I’0,I’1,. . ,rn_1> = <b,Ab,. . ,An_1b>

2. Orthogonality of residuals

T

r,ri=0 (j<n)

3. A-conjugateness of search directions
> p,{Apj:O (j <n)

% i



] Prop 1: #n = (X1,X2,--,Xn) = {P0sPls--->Pn—1)
First property = (ro, 71, 1ut) = (b, AB, .. A" D)

By induction on n:

« xo=0and x, =x,_1+ Qpn_1
— Xp € <PO,P17---aPn—1>

- po=ro and Pn :rn_|'Bnpn—1
— <p(),p1,...,pn_1> = <l’0,7‘1,...,7‘n_1>

* rp=band Fn = Tn—1— OApy—1
= (ro,r1,...,rn—1) = (b,Ab,... A" D)

4» 20



Prop 2: r,frj:O (j <n)
Second property Prop 3: prAp; =0 (j<n)

Fn ="rtn—1— 0Apn—1 = I’,{I’j = ,{_ﬂ’j — OCn(Apn_l)Trj
T T
—Tn1rj— anpn—lArj

@ If j <n—1both terms on the right are zero by induction:
Induction hypotheses:

r,{_lrj =0 & p,{_lApj =0forj<n—1
First term: direct by first hypothesis

Second term: substitute r;=p; —B;jpj—1, then use
second hypothesis twice

4» 21



Prop2: 1, rj=0 (j<n)
Second property Prop 3: prAp; =0 (j<n)

Fn =Tn—1— 0GApp—1 = I’,{I’j = ,{_1}’]‘ — OCn(Apn_l)Trj

T T
—Fh_1rj— anpn—lArj

@ If j = n—1the difference on the right is zero if

T
_ Fp—1"n—1
On =T Ar

By the induction hypothesis we have Pg_lAPn—z =0

and thus:
o — ”;{—1’%—1 . ”Z-l”n—l
" p,{_lArn—l +ﬁn—1p£_1Apn—2 PZ_lA(”n—l +ﬁn—1pn—2)
_ M1 7n1
o p,{_lApn—l
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Prop 2: r,frj:O (j <n)

Third property Prop 3: pyAp; =0 (j<n)
Pn ="Tn ‘|_ﬁnpn—1 = pZ;Apj — I’Z;Apj —I—ﬁnpz;_lApj

@ If i < n—1both terms on the right are again zero by
induction:

Induction hypotheses:

r,{_lrj:O & p,{_lApj:Oforj<n—1

Second term: direct by second hypothesis

Firstterm:rj =rj_1 —QjApj_1,i.e.rj;1 =rj— Qj1Ap;
Hence |

<« ¥ @it
& which is zero by prop 2

rnAp; = ro(rj—rjs1)
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Prop2: 1, rj=0 (j<n)
Third property Prop 3: pyAp; =0 (j<n)

Pn="n+Pupn-1 = p,prj — I’Z;Apj _I_ﬁ”pz;—lApj

@ If j =n—1the sum on the right is zero provided that

FZApn—l anr;{Apn—l B i’,f(—OCnAPn—l)

ﬁ —_— — _ — —
" pl Apa oup! Apn1 pL_ (0Ap,_1)

This is the same as the B, in the CG iteration, since
. ry{(_anApn—l) — rr];(rn _rn—l) — FZ;I”H by prop 2

. pr{—l(anApn—l) — (”;{—1 +5n—1l?;{—2)05nz4pn—1
T

= V1 OAPn—1 by induction
T
< ¥ =Ty 1(Fn—1—"n)

% =l i by prop 2
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Optimality of CG: theorem

Let the CG iteration be applied to a symmetric
positive definite matrix problem Ax = b. If the
iteration has not already converged (r,_1 # 0), then
x, is the unique point in %, that minimizes ||ex||a.

The convergence is monotonic

lenlla < llen-1]la

and e, = 0 is achieved for some n<m .

4» 25



Optimality of CG: proof

From the first property we know that x, € .7, .

To show that it is the only point in %, that
minimizes ||e,||4, consider an arbitrary point

xX=x,—Ax € %,

with error e =x, —x =e¢, + Ax. We calculate
e][3 = (en + Ax)TA(e, + Ax)
= el Ae, +el A(Ax) + (Ax)' Ae, + (Ax)T A(Ax)
= e} Ae,+el AT (Ax) 4 (Ax)T Ae, + (Ax)" A(Ax)
= el Ae, + (Ae,)T (Ax) + (Ax)T Ae, + (Ax)TA(Ax)
& = el Ae, 4+ (Ax)TA(Ax) +2(Ax)! Ae,,

26



Optimality of CG: proof

The last term 2(Ax)’ Ae, = 2(Ax)" A(x, — x,,)
=2(Ax)" (b —Ax)
=2(Ax)"r,

is an inner product of », with a vector in .7, (since

(Ax) = (x — x,) € ", as both x and x,, € %), which
by the second property is O.

Thus:
le||3 = ) Aen + (Ax)" A(Ax)

4» 27



Optimality of CG: proof

Only the second term in ||e||5 = el Ae, + (Ax)T A(Ax)
depends on Ax, and since A4 is positive definite, it
is > 0, attaining the value O if and only if x, = x, i.e.
whenAx = 0. Thus ||er||a is minimal if and only

if x, =x , as claimed.

The monotonicity is a consequence of the inclusion
of Krylov subspaces:

e, = Xy — X, is minimal for all x,, in %,
€n+1 = Xx — Xn+1 is minimal for all x,4+1in 2,41

& Since %, C .1, ||ent1]| cannot be > ||ex]].



Optimality of CG: proof

Finally, since .7, is a subset of R"of dimension n as
long as convergence has not been achieved,
convergence must be achieved in at most m steps.

Note that the guarantee that CG converges in at
most m steps is void in floating point arithmetic.

In practice, when CG is applied to matrices whose
spectra (perhaps thanks to preconditioning) are
well-enough behaved, convergence to a desired

p accuracy is achieved for n < m .



CG as an optimization algorithm

The CG iteration can be interpreted as an algorithm
for minimizing a nonlinear function of x € R™.

At the heart of the algorithm is

Xn = Xp—1+ Oy Pn—1

where a current approximation x,_; is updated to a
new approximation x, by moving a distance «, (the
step length) in the direction p,,_;.

Which function?

30



CG as an optimization algorithm

Let’s examine the function

1
o(x) = ixTAx—be

A short computation reveals that
lenl[2 = exAen
= (x —x0) T A(xy — )
= x! Ax, — 2x Ax, +xL Ax,
=x Ax, —2x'b+xIb
= 2¢(x,) + constant

Thus @(x) is the same as ||ex||5 except for a factor
4»’ of 2 and the (unknown) constant xLb.

31



CG as an optimization algorithm

LikeHenHi, ¢(x) must achieve its minimum (namely
the value —x! b/2) uniquely at x = x,.

The CG iteration can thus be interpreted as an
iterative process for minimizing the quadratic
function ¢(x) of x € R™, At each step, an iterate

Xn = Xp—1+ Oy Pn—1

is computed that minimizes ¢(x) over all x in the

one-dimensional space x, 1+ (pu_1).
T
Fn—1"n—1

N provides the optimal
pn—lAp”l—1

The formula «, =
W s step length.
& P g

32



CG as an optimization algorithm

What makes the CG iteration remarkable is the
choice of the search directions p,_;, which has the
special property that minimizing ¢(x) over the

Xp—1+ <pn—1>

actually minimizes it over all of %!

33



CG as an optimization algorithm

4

u CG (green) vs. Steepest Descent (black) in R?
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Rate of convergence

Two results, without proof:

1. If A has only n distinct eigenvalues, the CG
iteration converges in at most n steps

2. If A has a condition number k, then

leoll <2(g;)n

Since ﬁ; N1_% for k — o, it implies that for «
K K

large but not too large, convergence to a specified
5 tolerance can be expected in (v/x) iterations.




3 — Preconditioning

(Lecture 40 in Trefethen & Bau, 1997)
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Preconditioning

For any nonsingular matrix M € R™*"™ the system
M 'Ax=M"1p

has the same solution as the system Ax =b.

The convergence of iterative methods will however
now depend on the spectral properties of M~ A
instead of A.

So if this preconditioner M is chosen wisely, the
preconditioned system can be solved much faster

than the original system.



Preconditioning

In practice one of course needs to find a matrix M
such that it must be possible to compute the
operations represented by the product M~ A
efficiently.

As usual, this will not mean an explicit construction
of the inverse M ! but the solution of systems of
the form My = c.

Finding good preconditioners (e.g. M “close to” A)
is an active research area, in particular linked to the
approximation of various PDEs.



Preconditioning

A non-exhaustive list of some types of
preconditioners includes

Diagonal scaling (Jacobi)
Incomplete LU or Cholesky factorization

Coarse grid approximations, multigrid iteration,
low-order discretization

Block preconditioners and domain
decomposition



Next week

Singular value decomposition
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