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Singular value decomposition (SVD) at a glance …

Motivation: the image of the unit sphere S under 
any m  n matrix transformation is a hyperellipse.

Through the SVD, we will infer important 
properties of matrix A from the shape of AS!
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Singular value decomposition (SVD) at a glance …

The singular value decomposition (SVD) 
is a particular matrix factorization. 

Through the SVD, we will infer important 
properties of matrix A from the shape of AS!
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Why is the singular value decomposition 
of particular importance?

The reasons for looking at SVD are twofold:

1. The computation of SVD is used as an 
intermediate step in many algorithms of 
practical interest.

2. From a conceptual point of view, SVD also 
enables a deeper understanding of many 
problems in linear algebra.

The reasons for looking at SVD are twofold:

1. The computation of the SVD is used as an 
intermediate step in many algorithms 
of practical interest.

2. From a conceptual point of view, 
the SVD enables a deeper understanding 
of many aspects of linear algebra.
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Learning objectives & outline

Become familiar with the SVD and its geometric 
interpretation, and get aware of its significance

1. Geometric observations

2. Reduced SVD

3. F
ull SVD

4. Formal definition

1. Reminder of some fundamentals in linear algebra

2. Geometric interpretation

3. From “reduced SVD” to “full SVD”, 
and formal definition

4. Existence and uniqueness



1 - Reminder: fundamentals in linear algebra
In this section, we briefly review the concepts of adjoint matrix, 
matrix rank, unitary matrix as well as matrix norms (Chapters 2 and 3 
in Trefethen & Bau, 1997). 
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Adjoint of a matrix

The adjoint (or Hermitian conjugate) 
of an m  n matrix A, written A*, is the n  m matrix 

• whose i, j entry 

• is the complex conjugate of the j, i entry of A. 

If A = A*, A is Hermitian (or self-adjoint).

For a real matrix A, 
• the adjoint is the transpose: A* = AT, 
• if the matrix is Hermitian, that is A = AT, 

then it is symmetric.
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Matrix rank

The rank of a matrix is the number of linearly 
independent columns (or rows) of a matrix.

The numbers of linearly independent columns 
and rows of a matrix are equal. 

An m  n matrix of full rank is one that has the 
maximal possible rank (the lesser of m and n). 

If m ≥ n, such a matrix is characterized by the 
property that it maps no two distinct vectors to the 
same vector.
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Matrix rank

Image of the unit 
sphere S by a full-rank 
matrix: no distinct 
vectors are mapped to 
the same vector.

Image of the unit 
sphere S by a rank-
deficient matrix: distinct 
vectors are mapped to 
the same vector.
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Unitary matrix

A square matrix Q  ℂmm, is unitary 
(or orthogonal, in the real case), if 

Q* = Q−1, 

i.e.

Q* Q = I. 

The columns qi of a unitary matrix form 
an othonormal basis of ℂm : (qi)* qj = δij,
with δij the Kronecker delta.
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A rotation matrix 
is a typical example of a unitary matrix

A rotation matrix R may write:

The image of a vector is the same vector, 
rotated counter clockwise by an angle q.

Matrix R

• is orthogonal 

• and R* R = RT R = I.

cos sin
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q q
q q
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(Induced) matrix norms are defined 
from the action of the matrix on vectors

For a matrix A  ℂmn, and given vector norms 

• ‖ ‧ ‖(n) on the domain of A

• ‖ ‧ ‖(m) on the range of A

the induced matrix norm ‖ ‧ ‖(n) is the smallest 
number C for which the following inequality holds 
for all x  ℂn:

It is the maximum factor by which A can “stretch” a 
vector x.

   m n
Ax C x
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(Induced) matrix norms are defined 
from the action of the matrix on vectors

The matrix norm can be defined equivalently in 
terms of the images of the unit vectors under A:

This form is convenient for visualizing induced 
matrix norms, as in this example.
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2 – Geometric interpretation
In this section, we introduce conceptually the SVD, by means of a 
simple geometric interpretation (Chapter 4 in Trefethen & Bau, 1997). 
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Geometric interpretation

Let S be the unit sphere in ℝn.

Consider any matrix A  ℝmn, with m ≥ n.

Assume for the moment that A has full rank n.
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Geometric interpretation

The image AS is a hyperellipse in ℝm.

This fact is not obvious; but let us assume for now
that it is true. It will be proved later.

S

x AxA
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A “hyperellipse” is the m-dimensional 
generalization of an ellipse in 2D

In ℝm, an hyperellipse is a surface obtained by
• stretching the unit sphere in ℝm

• by some factors s1, …, sm (possibly zero)
• in some orthogonal directions u1, …, um  ℝm

For convenience, let us take
the ui to be unit vectors, 
i.e. ‖ui‖2 = 1.

The vectors {si ui} are the 
principal semiaxes
of the hyperellipse. s1u1

s2u2
AS
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A “hyperellipse” is the m-dimensional 
generalization of an ellipse in 2D

If A has rank r, 
exactly r of the lengths si will be nonzero.

In particular, if m ≥ n, 
at most n of them will be nonzero.
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Singular values

We stated at the beginning that the SVD enables 
characterizing properties of matrix A from the 
shape of AS. Here we go for three definitions …

We define the n singular values
of matrix A as the lengths of 
the n principal semiaxes of AS,
noted s1, …, sn.

It is conventional to number
the singular values in 
descending order:
s1 ≥ s2 ≥ … ≥ sn.

s1u1

s2u2

AS
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Left singular vectors

We also define the n left singular vectors of 
matrix A as 

• the unit vectors {u1, …, un}

• oriented  in the directions of 
the principal semiaxes of AS,

• numbered to correspond 
with the singular values.

Thus, the vector si ui is the 
ith largest principal semiaxis. s1u1

s2u2

AS
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Right singular vectors

We also define the n right singular vectors of 
matrix A as the unit vectors {v1, …, vn}  S that 
are the preimages of the principal semiaxes of AS, 
numbered so that A vj = sj uj.

s1u1

s2u2

ASS

v2v1
A

S
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s1u1

s2u2

ASS

v2v1
A

S

Important remarks

The terms “left” and “right” singular vectors 
will be understood later as we move forward 
with a more formal description of the SVD.

In the geometric interpretation presented so far, 
we assumed that matrix A is real and m = n = 2. 

Actually, the SVD applies 
• to both real and complex matrices, 
• whatever the number of dimensions.



3 – From reduced to full SVD, and formal definition

In this section, we distinguish between the so-called “reduced SVD”, 
often used in practice, and the “full SVD”. We also introduce the 
formal definition of SVD (Chapter 4 in Trefethen & Bau, 1997). 
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The equations relating right and left singular 
vectors can be expressed in matrix form

We just mentioned that the equations relating right 
singular vectors {vj} and left singular vectors {uj}
can be written

A vj = sj uj 1 ≤  j ≤ n

This collection of vector equations can be 
expressed as a matrix equation.

A =v1 v2 … vn u1 u2 … un
s2

s1

sn
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A =v1 v2 … vn u1 u2 … un
s2

s1

sn

The equations relating right and left singular 
vectors can be expressed in matrix form

This matrix equation can be written in a more 
compact form:

with
• S an n  n diagonal matrix with real entries 

(as A was assumed to have full rank n)
• U an m  n matrix with orthonormal columns
• V an n  n matrix with orthonormal columns

Thus, V is unitary (i.e. V* = V1), and we obtain:

ˆ ˆAV U S

Ŝ

Û

*ˆ ˆA U V S

to distinguish from 
U, S in the “full SVD”



26A Û Ŝ *V

Reduced SVD

The factorization of matrix A in the form

is called a reduced singular values decomposition, 
or reduced SVD, of matrix A.

Schematically, it looks like this (m ≥ n):

*ˆ ˆA U V S

=

n

m

n

m

n

n

n

n
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From reduced SVD to … full SVD

The columns of Û are n orthonormal vectors in the 
m-dimensional space ℂm.

Unless m = n, they do not form a basis of ℂm, 
nor is Û a unitary matrix.

However, we may “upgrade” Û to a unitary matrix!

=

n

m

n

m

n

n

n

n
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From reduced SVD to … full SVD

Let us adjoin an additional m  n orthonormal 
columns to matrix Û, so that it becomes unitary.

The m  n additional orthonormal columns are 
chosen arbitrarily and the result is noted U.

However, S must change too …

=

n

m

U Ŝ

Û

n

m

n

n

n

n

m – n
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From reduced SVD to … full SVD

For the product to remain unaltered, the last m  n 
columns of U should be multiplied by zero.

Accordingly, let S be the m  n matrix consisting of 
• S in the upper n  n block 
• together with m  n rows of zeros below.

=

n

m

U

“s
ile

nt
” 

co
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m
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^
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From reduced SVD to … full SVD

We get a new factorization of A, called full SVD:

A = U S V*

• U is an m  m unitary matrix, 
• V is an n  n unitary matrix, 
• S is an m  n diagonal matrix with real entries

=

n

m

U
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=

n

m

U

Generalization to the case of a matrix A
which does not have full rank

If matrix A is rank-deficient (i.e. of rank r < n), 
only r (instead of n) of the left singular vectors are 
deduced from the size of the hyperellipse

BUT the full SVD still applies, 
• by introducing m  r (instead of m  n)  

additional arbitrary orthonormal columns 
to construct the unitary matrix U;

• the matrix V also needs n  r arbitrary 
orthonormal columns to extend the r columns 
determined from the hyperellipse geometry

• matrix S has only r non-zero diagonal entries.
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=

n

m

Formal definition of the SVD

Let m and n be arbitrary (we do not require m ≥ n).

Given A  ℂmn, not necessarily of full rank,

a singular value decomposition of A is a factorization

A = U S V*

where

U  ℂmm

is square,
unitary

V*  ℂnn

is square,
unitary

s1 … sp nonnegative, in nonincreasing order

S  ℝmn

is 
real

diagonal
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=

n

m
U  ℂmm

is square,
unitary

V*  ℂnn

is square,
unitary

S  ℂmn

is 
real

diagonal

Consequently, the image of the unit sphere in ℝn

under a map A = U S V* is a hyperellipse in ℝm

1. The unitary map V* preserves the sphere
2. The diagonal matrix S stretches the sphere 

into a hyperellipse
3. The final unitary map U rotates, or reflects, 

the hyperellipse without changing its shape. 

Thus, 
• if we can prove that every matrix has an SVD, 
• we will have proved that the image of the unit 

sphere under any linear map 
is indeed a hyperellipse.



4 – Existence and uniqueness
In this section, we demonstrate the existence of the SVD, the 
uniqueness of the singular values, as well as under some specific 
conditions, the uniqueness of the singular vectors (Chapter 4 in 
Trefethen & Bau, 1997). 
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Every matrix A  ℂmn

has a singular value decomposition A = U S V*

To prove the existence of the SVD, 

• we first isolate the direction of the largest 

action of A,

• then we proceed by induction on the 

dimension of A.

The proof takes 5 steps.
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Every matrix A  ℂmn

has a singular value decomposition A = U S V*

Set s1 = ‖A‖2.

From the definition of the matrix norm, 
there must be a vector v1  ℂm

with ‖v1‖2 = 1 and      ‖Av1‖2 = s1

=

n

m A 1v 1Av

‖v1‖2 = 1

‖Av1‖2 = s1

We note:
1

1
1

Av
u

s


1

max
nx

x

A Ax







Christophe Geuzaine

Christophe Geuzaine
n
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Every matrix A  ℂmn

has a singular value decomposition A = U S V*

Consider any extensions 
• of v1 to an orthonormal basis {vj} of ℂn

• and of u1 to an orthonormal basis {uj} of ℂm

Let U1 and V1 denote the unitary matrices with 
columns uj and vj , respectively. 

and

n

m A 1v

V1

1jv  1u

U1

1ju 


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Every matrix A  ℂmn

has a singular value decomposition A = U S V*

Then we have

where 0 is a column vector of dimension m − 1, 
w* is a row vector of dimension n − 1, and 
B has dimensions (m − 1)  (n − 1).

=

n

m A 1v

V1

*
1u

U1
*

*
1 1 1 1u us s

*
1*

11
0

w
AV S

B
U

s 
   

 

0

*
1 1 1 0ju us 

B

*w


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Every matrix A  ℂmn has a singular 
value decomposition A = U S V*

Furthermore,

Implying (from the definition of matrix norms)

BUT, since U1 and V1 are unitary, we know that

This implies w = 0.

 
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Every matrix A  ℂmn

has a singular value decomposition A = U S V*

To sum up, this is what we know at this stage:

Hence,

=A 1v

V1

*
1u

U1
*

1s
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1 1A U S V
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Every matrix A  ℂmn

has a singular value decomposition A = U S V*

If n = 1 or m = 1, we are done!

Otherwise, the submatrix B describes the action 
of A on the subspace orthogonal to v1. 

By the induction hypothesis, B has an SVD 

B = U2 S2 V2
*. 

Now it is easily verified that

is an SVD of A, completing the proof of existence.
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Every matrix A  ℂmn

has a singular value decomposition A = U S V*

Written 
out in full:

*

*
1 1

*
1

1

1

2 2 2

1
*

2 2 2
1

*
1

* *
1 1 1

1
*

2 2

1
1
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1 0 0 1 0

0 0 0

0 1 0

0 0

0

0

0

0

U V

U V

U V

S A

U V

U V

U V

U V
B

U V

s

s

s

s

     
     S     

   
    S   

 
  S 

 
   

 

 
Unitary matrix Unitarymatrix



1s

B

S

The product of two 
unitary matrices is 
another unitary 
matrix.
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Uniqueness

The singular values {sj} are uniquely determined.

If A is square and the sj are distinct, the left and 
right singular vectors {uj} and {vj} are uniquely 
determined up to complex signs.

s1u1

s2u2

ASS

v2v1
A

S
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Uniqueness

Geometrically, the proof is straightforward:
• if the semiaxis lengths of a hyperellipse are 

distinct, 
• then the semiaxes themselves are determined 

by the geometry, up to signs.

s1u1

s2u2
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v2v1
A
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Take-home messages

SVD is an important factorization method, which 
applies for all rectangular, real or complex matrices

It decomposes the matrix into three factors

• a unitary matrix

• a real diagonal matrix, with nonnegative entries

• another unitary matrix

It has a broad range of implications and applications!
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What’s next?

Every matrix is diagonal if only one uses the proper 
bases for the domain and range spaces.

SVD vs. eigenvalue decomposition

• existence

• rectangular vs. square matrices

• orthonormal bases in the SVD, not eigenvectors

Link with matrix rank, range, null space, norm …

Low-rank approximations
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Low-rank approximations of a matrix

~ 1 % ~ 4 %

~ 14 % 100 %


