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Reminder

The image of the unit sphere S under any m x n

matrix is a hyperellipse.
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Reminder

In R™M, a hyperellipse is a surface obtained by
 stretching the unit sphere in R™M
* by some factors o, ..., o,
* in some orthonormal directions uy, ..., U, € R

The vectors {o; U;} are the principal
semiaxes of the hyperellipse:

oy, ..., O, are the singular values

u,, ..., U, are the (left) singular
vectors



Reminder

Given A € C™N, not necessarily of full rank, the SVD
decomposition of A is a factorization

A=UZV"
where
Entries: 0,2 0,2 ... 2 0,20
N ' T '
A e Cmxn UeCm™m | |y =« R™N| [\ e CN

unitary diagonal | | unitary
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Learning objectives

Understand the SVD as a change of bases,
and relate it to the eigenvalue decomposition

Study matrix properties via the SVD

Understand the principle of low-rank
approximations
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1 — Change of bases

(Lecture 5 in Trefethen & Bau, 1997)



Change of bases

The SVD makes it possible to view any matrix 4

as a diagonal matrix... provided that we use proper
bases for the domain and range spaces

Consider b = Ax

Let us

- expand b in the basis of the left singular vectors
of 4 (the columns of U)

- Expand x in the basis of the right singular
vectors of 4 (the columns of V)



Change of bases

In these new bases, we have

b= |u w - u,|b=U>V

/ /
X=1|vy v2 -+ v|x =Vx

and thus 5’ = U*b and ' = V*x.
Thus:
b=Ax <= U'b=U"Ax=U"UXV'x=XV*x
& Qe b =3X



Change of bases

Thus any matrix 4 reduces to the diagonal matrix 2
when

the range is expressed in the basis of columns
of U

the domain is expressed in the basis of the
columns of VV
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2 —SVD vs. eigenvalue decomposition

(Lecture 5 in Trefethen & Bau, 1997)



Eigenvalue decomposition

If a square matrix A € C"™*™ possesses m linearly
independent eigenvectors, the eigenvalue

decomposition of A4 is
A=XAX"!
where
the columns of X are the eigenvectors

A is an m X m diagonal matrix whose entries
are the eigenvalues of 4

‘r
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Eigenvalue decomposition

If similarly as before we now expand b and x (in b = Ax)
in the basis of the eigenvectors, then the new vectors

b =X"'b X =X"1x
satisfy b’ = AX'.
What are the differences with the SVD?
- SVD uses two bases instead of one (the eigenvectors)

- SVD uses orthonormal bases (while eigenvectors
are in general not orthogonal)

- All matrices (even rectangular) have an SVD!
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3 — Matrix properties via the SVD

(Lecture 5 in Trefethen & Bau, 1997)



Rank

Let » be the number of nonzero singular values.
Then rank(4) = r.

Indeed:

- the rank of a diagonal matrix is the number of
Its nonzero entries;

- since U and V have full rank, we have

rank(A) = rank(UXV™) = rank(X) = r

This is shown in the next slide
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Rank: demonstration

Reminder: rank (A B) < min [rank(A), rank(B)]

rank(UZV*)gmin _rank(U) rank () rank(V )]
=min| m,rank(),n |=rank(2) @
rank () =rank (1 2 1) = rank(U U ZV’\/)

< min :rank(U*), rank(U ZV*), rank (V )]

— min :m, rank (U £V7), n] =rank(U ZV")@

"’ %—»rank(u ZV*): rank ()




|AX],,

M=o M) =2

The 2-norm of the matrix is equal to the first
(largest) singular value: ||Al|, = o)

We established this in the existence proof
(from the geometric interpretation of SVD)!

More quickly, since A = UXV™ with unitary U and
I, we have

[All2 = [IJUZVZ ]2 = [|Z]]2 = m?X\Gﬂ = O

This is shown in the next four slides
- A >
ﬁ;/% LN\
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Norm: demonstration

‘r

Consider a unitary matrix U.

We proceed in four steps.

Step 1
First, let’s show that HUXH2 = HXH2 :

A = (Ux)' (U =X U0 x=x"x=

17



Norm: demonstration (cont’d)

Reminder: HAH2 - maXHAXHZ
X[, =2

Step 2 We demonstrate that HUI\/l H2 < HM H2

a) Consider a vector X with HXH2 =1, such that:

JuMx]], = UM,

b) Let’s evaluate the norm of UM:
JuM{, = [UMx], = U (Mx)], =[Mmx],

ML, =M, L,

I
|ABI, <[|Al, B,
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Norm: demonstration (cont’d)

Reminder: HAH2 - maXHAXHZ

Ixl,=1

Step 3 We demonstrate that HI\/I H2 < HUM Hz

a) Consider a vector y with Hy

‘2 =1, such that:

My, =[M|

b) Let’s evaluate the norm of M:

2

M, =[My], [u (My)], =[UM)y],

| < [uml, [ly[, =[UM

Step 1

I
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Norm: demonstration (cont’d)

Step 4

From Step 2, we have:

Jum, <[m,

From Step 3, we have:

M, <[um],

Hence,
[um{, =[IM,

h )
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Eigenvalues

The nonzero singular values of 4 are the square
roots of the nonzero eigenvalues of 4"4 or AA”

Proof: from
A"A = (UXVH)"(ULV") =VEUULV =V (X E)V*

we see that A*A and X*Y. are similar.

Hence, they have the same eigenvalues 67,07%,...,0°

P
with n — p additional zero eigenvalues if n > p.

Note that the right (resp. left) singular vectors
are eigenvectors of A*A (resp. AA4*).

‘» 21



Two matrices A and B are similar if, for some
invertible matrix P, we have B=P 1 AP

Similar matrices have the same eigenvalues.

Indeed, if vV is an eigenvector of A with eigenvalue A,
P~lvis an eigenvector of B with the same
eigenvalue A:

Av=AYV
PBP'v=Av
BP'v=AP

So, every eigenvalue of A is an eigenvalue of B,

and conversely since one can interchange A and B.
a P

&
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Eigenvalues

If A" = A, then the singular values of 4 are the
absolute values of the eigenvalues of 4.

Proof Reminder: a Hermitian matrix has
- a full set of orthogonal eigenvectors,
- and all its eigenvalues are real,

so that its eigenvalue decomposition can be written
A=Q A Q7, with O unitary and A diagonal and real.

Let |A| and sign(A) denote the diagonal matrices
with entries |A;| and sign(A;), respectively.



Eigenvalues

We can then write
A = QAQ" = Q|A|sign(A)Q" = Q|A|W”
since sign(A)Q™ is unitary if O™ is unitary.

Inserting permutation matrices (i.e., square
matrices that have exactly one entry of 1 in each
row and each column and Os elsewhere) as factors
of O and W to reorder the entries of |A| in non-
increasing order, this is an SVD of 4, with the
singular values equal to the diagonal entries of \A
i.e., the absolute values of the eigenvalues.

4
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4 — Low-rank approximations

(Lecture 5 in Trefethen & Bau, 1997)



Sum of rank-one matrices

Thanks to the SVD we can express 4 as the sum of
r rank-one matrices:

I r = rank(A) = rank(X)
r
A= Z (F‘I'Ltjvjf
j=1

Proof: write 2 as a sum of » matrices 2].

A=UxV’ =U [ r ij\/* :i(uzj\/*):i(“iaﬂ’;)
=1

J =1 =1

with %, =diag(0,...,0,0,

J ]

0,...,0)
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Sum of rank-one matrices

Thanks to the SVD we can express 4 as the sum of
r rank-one matrices:

I r = rank(A) = rank(X)
r
A= Z (F‘I'Ltjvjf
j=1

There are many other ways to express a matrix as a
sum of rank-one matrices (e.g. simply as the sum of
its m rows, or its n columns, etc.).

But using the SVD leads to an approximation
with a remarkable property: the i-th partial sum
J'; captures as much “energy” of A as possible.

27



Low-rank approximation

For any k < r, define the partial sum

k
*
A = Z Gjujvj
j=1

Then |[A—Ai||2 =0k 1= min ||[A—B||2
rank(B)=k
|
|
This tells us that the “best” rank-k approximation
of a matrix is obtained by the k-th partial sum 4, !

This has numerous applications, from image
> compression to the approximation of PDEs.

‘» 28



Low-rank approximation: proof

(D  since A, = Udiag(oy, ..., 04,0, ...,0)V* rank(4,) = k
and we have A — A, = Udiag(0,...,0,01,...,0,)V".

Thus HA —Ak||2 = Of41-
@ a Suppose that there exists B € C""",
such that rank(B) = kand ||A — B||2 < O1.

Then we can find orthonormal vectors wy, ..., w, ,in C”
such that null(B) = (Wiyee o, Whek).

Forall w € (wy,...,w,_k) we then have Bw =0,
(A — B)w = Aw, and

& Mwll=11A— Byl < 1A~ Bll2llwilz < ol wll:

29



Low-rank approximation: proof

@ b However there is another subspace of C" for
which ||[Aw||[2>0r11||w]||2: the one spanned by the

k+1 first right singular vectors: <v1, . ,vk+1>.

Indeed: for v]l/ ? Viyeoey Vial), i€ W= Zf.jll CiV;
and Aw = Y, o;ciu;, we have
Kkl
wllz =) ¢
i=1

k+1 k+1

2 2 2 2 2
[|Aw||5 = Z O; ¢; = Opy1 Z C;
i—1 i—1



Low-rank approximation: proof

@c We thus have:
Aw||r < Gk+1HWH27 Yw € <W1,...,Wn_k>

Aw|[2 > Opy1||wll2, YW € (vi,. .o Vkg1)

But these two subspaces of C” must have a nonzero
intersection, as the sum of their dimensions is:

(n-k) + (k1) = n+1 > n .

This a contradiction and, therefore, there cannot exist
a matrix B such that ||A — Bl|2 < Oky1.

The best low-rank approximation in 2-norm is thus

o

k
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Take-home messages

Every matrix is diagonal if the range is expressed in the basis
of columns of U and the domain is expressed in the basis of
the columns of V'

Compared to the eigenvalue decomposition:

- two orthonormal bases (instead of one: the eigenvectors)

- applicable to non-square matrices

- non-zero singular values of A are the square roots of the
. %
eigenvalues of A" 4

- if A" = A, the singular values of 4 are the absolute values
of the eigenvalues of 4

:b’ The SVD allows finding the best low-rank approximation of A.

32



Thank you!
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