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Reminder

The image of the unit sphere S under any m  n

matrix is a hyperellipse.

u1

u2
AS

S

x A

S

xn A

n

m A x Ax= m
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Reminder

In ℝm, a hyperellipse is a surface obtained by

• stretching the unit sphere in ℝm

• by some factors 1, …, m

• in some orthonormal directions u1, …, um  ℝm

The vectors {i ui} are the principal
semiaxes of the hyperellipse:

1, …, n are the singular values

u1, …, um are the (left) singular
vectors u1

u2
AS
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Reminder

Given A  ℂmn, not necessarily of full rank, the SVD 
decomposition of A is a factorization

A = U  V*

where

UA  *V

=

n

m
U  ℂmm

unitary
V*  ℂnn

unitary

Entries: 1 ≥ 2 ≥ … ≥ p ≥ 0

 ℝmn

diagonal
  ℂmn
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Learning objectives

Understand the SVD as a change of bases, 
and relate it to the eigenvalue decomposition

Study matrix properties via the SVD

Understand the principle of low-rank 
approximations

     



1 – Change of bases

(Lecture 5 in Trefethen & Bau, 1997)
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Change of bases

The SVD makes it possible to view any matrix A
as a diagonal matrix… provided that we use proper 
bases for the domain and range spaces

Consider b = Ax

Let us

• expand b in the basis of the left singular vectors 
of A (the columns of U)

• Expand x in the basis of the right singular 
vectors of A (the columns of V)
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Change of bases

In these new bases, we have

and thus                   and                 .

Thus:

i.e.
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Change of bases

Thus any matrix A reduces to the diagonal matrix     
when 

• the range is expressed in the basis of columns 
of U

• the domain is expressed in the basis of the 
columns of V



2 – SVD vs. eigenvalue decomposition

(Lecture 5 in Trefethen & Bau, 1997)
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Eigenvalue decomposition

If a square matrix                     possesses m linearly 
independent eigenvectors, the eigenvalue 
decomposition of A is

where 

• the columns of X are the eigenvectors

• is an              diagonal matrix whose entries 
are the eigenvalues of A
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Eigenvalue decomposition

If similarly as before we now expand b and x (in b = Ax) 
in the basis of the eigenvectors, then the new vectors

satisfy                 .

What are the differences with the SVD?

• SVD uses two bases instead of one (the eigenvectors)

• SVD uses orthonormal bases (while eigenvectors 
are in general not orthogonal)

• All matrices (even rectangular) have an SVD!



3 – Matrix properties via the SVD

(Lecture 5 in Trefethen & Bau, 1997)
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Rank

Let r be the number of nonzero singular values. 
Then rank(A) = r.

Indeed: 

• the rank of a diagonal matrix is the number of 
its nonzero entries; 

• since U and V have full rank, we have

This is shown in the next slide
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Rank: demonstration

Reminder: ( ) ( ) ( )rank min rank , rankA B A B   

( ) ( ) ( ) ( )

( ) ( )

** min rank , rank , rank

min ,

r

rank =

ank

rank,

U V

m

U

n

V 



 
 

=   

( ) ( ) ( )

( ) ( ) ( )

( ) ( )*

* *

* *

*

r rank rank

min rank , rank , r

r

ank

mi

ank

ankn , rank ,

I I

U

U U V V

U U V V

m U V n V

=  = 

 
 

 =  =







( ) ( )*rank rankU V = 

①

②

①

②
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Norm

The 2-norm of the matrix is equal to the first 
(largest) singular value: 

We established this in the existence proof 
(from the geometric interpretation of SVD)!

More quickly, since                     with unitary U and 
V, we have

This is shown in the next four slides




( )

( )

( )

( )
( )

( ),

0 1

max max
n n

n n

m

m n m
x x

nx x

Ax
A Ax

x 
 =

= =
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Norm: demonstration

Consider a unitary matrix U. 

We proceed in four steps.

Step 1

First, let’s show that                        :
2 2

Ux x=

( ) ( )
2* *2 * *

2 2
I

Ux Ux Ux x U U x x x x= = = =
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Norm: demonstration (cont’d)

Reminder:

Step 2   We demonstrate that                             

a) Consider a vector x with               , such that:

b) Let’s evaluate the norm of UM:

2
2 21

max
x

A Ax
=

=

2 2
UM M

2 2
UMx UM=

2
1x =

( )
2 2 22

2 2 2

UM UMx U Mx Mx

M x M

= = =

=

2 2 2
AB A B

Step 1
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Norm: demonstration (cont’d)

Reminder:

Step 3   We demonstrate that                             

a) Consider a vector y with               , such that:

b) Let’s evaluate the norm of M:

2
2 21

max
x

A Ax
=

=

2 2
M UM

2 2
M y M=

2
1y =

( ) ( )
2 2 2 2

2 2 2

M M y U M y UM y

UM y UM

=

=

= =

2 2 2
AB A B

Step 1
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Norm: demonstration (cont’d)

Step 4   

From Step 2, we have:

From Step 3, we have:

Hence,

2 2
UM M=

2 2
UM M

2 2
M UM
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Eigenvalues

The nonzero singular values of A are the square 
roots of the nonzero eigenvalues of A*A or AA*

Proof: from

we see that           and          are similar. 

Hence, they have the same eigenvalues
with n – p additional zero eigenvalues if n > p.

Note that the right (resp. left) singular vectors 
are eigenvectors of A∗A (resp. AA∗).
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Two matrices A and B are similar if, for some 
invertible matrix P, we have B = P−1 A P

Similar matrices have the same eigenvalues.

Indeed, if v is an eigenvector of A with eigenvalue , 
P−1 v is an eigenvector of B with the same 
eigenvalue :

So, every eigenvalue of A is an eigenvalue of B, 
and conversely since one can interchange A and B.

1

1 1

A v v

PBP v v

B P v P v







−

− −

=

=

=
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Eigenvalues

If A* = A, then the singular values of A are the 
absolute values of the eigenvalues of A.

Proof Reminder: a Hermitian matrix has 

• a full set of orthogonal eigenvectors, 

• and all its eigenvalues are real, 

so that its eigenvalue decomposition can be written                     
A = Q  Q*, with Q unitary and  diagonal and real.

Let       and               denote the diagonal matrices 
with entries         and                , respectively.
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Eigenvalues

We can then write

since                    is unitary if Q* is unitary.

Inserting permutation matrices (i.e., square 
matrices that have exactly one entry of 1 in each 
row and each column and 0s elsewhere) as factors 
of Q and W* to reorder the entries of        in non-
increasing order, this is an SVD of A, with the 
singular values equal to the diagonal entries of        , 
i.e., the absolute values of the eigenvalues.



4 – Low-rank approximations

(Lecture 5 in Trefethen & Bau, 1997)
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Sum of rank-one matrices

Thanks to the SVD we can express A as the sum of 
r rank-one matrices:

Proof: write  as a sum of r matrices j

with 

( ) ( )* * * *

1 1 1


= = =

 
=  =  =  = 

 
  

r r r

j j j j j

j j j

A U V U V U V u v

( )diag 0, ,0, ,0, ,0 =j j

r = rank(A) = rank()
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Sum of rank-one matrices

Thanks to the SVD we can express A as the sum of 
r rank-one matrices:

There are many other ways to express a matrix as a 
sum of rank-one matrices (e.g. simply as the sum of 
its m rows, or its n columns, etc.).

But using the SVD leads to an approximation
with a remarkable property: the k-th partial sum 
captures as much “energy” of A as possible.

r = rank(A) = rank()
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Low-rank approximation

For any k ≤ r, define the partial sum

Then

This tells us that the “best” rank-k approximation 
of a matrix is obtained by the k-th partial sum Ak !

This has numerous applications, from image 
compression to the approximation of PDEs.
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Low-rank approximation: proof

Since                                                              , rank(Ak) = k

and we have                                                                          .

Thus                                 .

Suppose that there exists                    ,
such that rank(B) = k and                               .

Then we can find orthonormal vectors w1, …, wn—k in       
such that null(B) =                           .

For all                                       we then have Bw = 0,                  
(A – B)w = Aw, and  



a
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Low-rank approximation: proof

However there is another subspace of        for 
which                                : the one spanned by the 
k+1 first right singular vectors:                           .

Indeed: for                                 , i.e.                          
and                                , we have

b
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Low-rank approximation: proof

We thus have:

But these two subspaces of        must have a nonzero 
intersection, as the sum of their dimensions is:
(n-k) + (k+1) = n+1 > n .

This a contradiction and, therefore, there cannot exist 
a matrix B such that                                .

The best low-rank approximation in 2-norm is thus

c

!
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Take-home messages

Every matrix is diagonal if the range is expressed in the basis 
of columns of U and the domain is expressed in the basis of 
the columns of V

Compared to the eigenvalue decomposition:

• two orthonormal bases (instead of one: the eigenvectors)

• applicable to non-square matrices

• non-zero singular values of A are the square roots of the 
eigenvalues of A*A

• if A* = A, the singular values of A are the absolute values 
of the eigenvalues of A

The SVD allows finding the best low-rank approximation of A.
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Thank you!
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