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Abstract

This paper presents a preconditioner for non-overlapping Schwarz methods applied to the Helmholtz prob-
lem. Starting from a simple analytic example, we show how such a preconditioner can be designed by
approximating the inverse of the iteration operator for a layered partitioning of the domain. The precon-
ditioner works by propagating information globally by concurrently sweeping in both directions over the
subdomains, and can be interpreted as a coarse grid for the domain decomposition method. The resulting
algorithm is shown to converge very fast, independently of the number of subdomains and frequency. The
preconditioner has the advantage that, like the original Schwarz algorithm, it can be implemented as a
matrix-free routine, with no additional preprocessing.
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1. Introduction

Solving the Helmholtz equation numerically is a notoriously difficult problem, especially in the high-
frequency regime, when the wavelength is much smaller than the size of the domain under study [1]. When
solving the problem using a grid-based volume approach like the Finite Element Method (FEM), the number
of unknowns becomes so large that the direct solution of the resulting linear system is computationally
intractable. On the other hand, most iterative methods that have proved successful for elliptic problems
become inefficient when applied to problems with highly oscillatory solutions [1].

Domain Decomposition Methods (DDM) try to combine both direct and iterative approaches, by decom-
posing the original domain into smaller subdomains over which a direct solution of the Helmholtz problem
is possible, and then iterating over the subdomains until the solutions match. When the subdomains do
not overlap, the problem can be reformulated in terms of unknown sources on the boundaries between the
subdomains, linked to impedance-type transmission conditions between the subdomains. The solution pro-
duced by these sources inside the individual subdomains must match the restriction of the solution of the
full problem on the subdomains. Such a formulation falls into the framework of Schwarz methods [2, 3, 4, 5];
recent improvements in the approximation of the transmission operators have made its convergence rate
little sensitive to the wavenumber and discretization density [6, 7].

However, a remaining limitation of Schwarz methods is that, even with optimal transmission conditions,
the number of iterations increases linearly with the number of subdomains. This limitation has been suc-
cessfully addressed for certain classes of problems, by adding a component to the algorithm that is known in
the DDM community as a “coarse grid” [8, 9, 10, 11, 12]. This generic name refers to any technique that en-
ables global sharing of information between subdomains, while the basic additive algorithm only allows local
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exchange of information, hence hampering convergence (note that multiplicative Schwarz algorithms enable
long range exchange of information in one direction only, and cannot guarantee a convergence rate indepen-
dent of the number of subdomains.) While coarse grids have proven to be very effective for Laplace-type
problems, designing effective coarse grids for high-frequency Helmholtz problems proves difficult [11, 12].

Another way to look at the problem is to recast the DDM as the solution of a linear system, in which
case it is natural to search for a preconditioner that would efficiently speed up the convergence of the
solver. This paper explores that idea and contributes a way to precondition optimized Schwarz algorithms
by taking advantage of recent advances in the development of efficient absorbing boundary conditions for
the Helmholtz problem, used as transmission conditions. Starting from a propagation problem for which an
exact expression of the optimal transmission condition exists, we will show how such a preconditioner can
be designed by approximating the inverse of the iteration operator. It will be interpreted as a double sweep
over the subdomains and works by propagating information, just as a coarse grid would. The resulting
algorithm is shown to converge very fast, independently of the number of subdomains and frequency. This
idea of sweeping to speed up the convergence of iterative Helmholtz solvers, yet not in the context of Schwarz
methods, has been proposed in recent works [13, 14, 15] where it has shown a comparable effect on the rate of
convergence. Our preconditioner has the advantage that, like the original algorithm, it can be implemented
as a matrix-free routine and requires no additional preprocessing.

The paper is organized as follows. In Section 2 we begin by formulating the Schwarz algorithm as a linear
problem amenable to a solution by Krylov subspace techniques. We then show in Section 3 that the iteration
operator that corresponds to the problem formulated in terms of surface unknowns has different properties
than the Helmholtz operator, that are especially interesting when a good approximation of the optimal
transmission operator (the Dirichlet-to-Neuman map, or DtN map) is available. An iterative solution of this
problem can be quickly obtained by means of an efficient preconditioner that exploits these properties, as
detailed in Section 4. In Section 5, we summarize the different approximations of the DtN map that will
be used as transmission conditions in the algorithm. Section 6 presents numerical results obtained with the
proposed method on a variety of test cases.

2. Non-overlapping optimized Schwarz algorithm

The original domain decomposition method introduced by Schwarz [2] makes use of Dirichlet boundary
conditions on the artificial interfaces. It is well known that the rate of convergence of this method depends
on the size of the overlap between the subdomains and that the method stagnates if the subdomains do not
overlap [8]. Convergence without overlap requires Robin or mixed conditions, or more generally impedance-
type conditions [16, 17], giving rise to so-called non-overlapping optimized Schwarz algorithms [6, 5]. Such
algorithms benefit from an easy partitioning of the domain and do not require the explicit construction of
the normal derivative of the solution, although the treatment of junctions between multiple subdomains
(so-called “cross-points”) requires special care [18].

In this paper, we take advantage of the structure of particular decompositions, called layered partitionings,
in which the domain is sliced such that subdomains have at most two neighbours, and the first and last
subdomains do not share a boundary (see Figure 1, right). We first give a detailed description of the basic
algorithm, before rewriting it in a form suitable for Krylov acceleration.

2.1. Description of the algorithm
We want to solve the Helmholtz problem with wavenumber k in a domain Ω:

−(∆ + k2)u = f in Ω;
u = uD on ΓD;
u is outgoing on ΓS .

(1)

We consider a layered decomposition of Ω into N non-overlapping slices Ωi,1≤i≤N , with artificial boundaries
Σij between Ωi and Ωj , so that our partitioning contains no loop: Ωi ∩ Ωj = ∅ if |i− j| 6= 1.
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Figure 1: Left: A general computational domain Ω. Absorbing boundary conditions (ABCs) are used on part of the boundary ΓS
to truncate the domain, and sources can be imposed via Dirichlet conditions on another part ΓD. Right: Layered decomposition
of Ω. Artificial boundaries Σij are introduced to separate subdomains Ωi and Ωj , such that each domain has 2 neighbours
with the exception of the first and last domains.

The original problem (1) can be formulated in the subdomains so as to have ui = u|Ωi
, by using

impedance-matching boundary conditions on the artificial boundaries Σij . Introducing the unknown inter-
face data g = {gij , 1 ≤ i 6= j ≤ N, |i− j| = 1}, we look for the solution of:

−(∆ + k2)ui = 0 in Ωi,
(∂n + S)ui = gij := (−∂n + S)uj on Σij ,

(2)

where the operator S has a twofold role: it must simulate the impedance of the domain that extends beyond
the artifial boundary, and ensure that all sources located outside produce an equivalent contribution inside
the subdomain. Boundary conditions on ∂Ωi ∩ ∂Ω are conserved from the original problem. For the sake
of conciseness, we will abbreviate the definition of these problems as Hiui = fi. We will assume in all that
follows that the DDM is well-posed, in the sense that each subproblem (2) is well-posed, i.e., away from
interior resonances. We have defined a pair of unknown functions per interface, and we use the convention
that gij is the impedance data for problem i on the common boundary with subdomain j. To solve for
these new unknowns, the Schwarz algorithm works by iteratively solving the subproblems and transferring
the updated information to the adjacent domains via an exchange relation. We present the additive version,
where an iteration amounts to solving all subproblems in parallel (as opposed to the faster converging and
sequential multiplicative version thereof):

−(∆ + k2)u
(k+1)
i = 0 in Ωi,

(∂n + S)u
(k+1)
i = g

(k)
ij on Σij ,

(3)

and then to updating the unknowns:

g
(k+1)
ij = −∂nu(k+1)

j + Su(k+1)
j on Σij ,

= −g(k)
ji + 2Su(k+1)

j .
(4)

We still have the choice of operator S : H1/2(Σij)→ H−1/2(Σij). (Strictly speaking, we should define 2
operators per artificial interface, but we use a unique notation for convenience.) We have the constraint that
its null-space must be equal to {0}. It is well known that this choice influences the rate of convergence [5, 7],
and it was shown in [19] that the optimum is obtained for S being the exterior Dirichlet-to-Neumann (DtN)
map D of the complement of the subdomain Ω \ Ωi, defined on a boundary Σ as:

D : H1/2(Σ)→ H−1/2(Σ),

u|Σ 7−→ ∂nu|Σ = Du|Σ.
(5)

In practice, most optimized Schwarz algorithms make use of DtN maps that correspond to an open, free-
space complement of the subdomain to avoid the very costly computation of the DtN map corresponding to

3



the actual complementary domain. This amounts to defining absorbing boundary conditions on the artificial
interfaces. A perfectly matched layer (PML) can also be used for that purpose, as in [15]. Even in this case,
using the exact DtN map is not practical for computing, as it is a non-local operator. We refer to Section 5
for the description of approximations that will prove useful for numerical applications.

Let us note that by defining a new set of unknowns g, we use the Schwarz procedure as a solver, although
DDM algorithms are often regarded as preconditioners [8, 20]. In the latter case, the iterative solver acts
on the full system obtained from the discretization of the original operator in the whole domain, with
unknowns u.

2.2. Krylov acceleration
By exploiting the linearity of the problem, we can separate the (unknown) solutions of the subproblems

into two components: the contribution of the artificial sources on the internal boundaries vi and the physical
sources wi, such that ui = vi + wi. In the course of iterations, we write the current approximation as
u

(k)
i = v

(k)
i + wi, since the physical sources do not vary. We then inject the decomposition of the unknown

field in the update of the Schwarz unknowns (4):

g
(k+1)
ij = −g(k)

ji + 2Sv(k+1)
j + 2Swj on Σij .

= −g(k)
ji + 2Sv(k+1)

j + bij

Considering the full vector of unknowns, we obtain the fixed point iteration:

g(k+1) = Ag(k) + b,

where the iteration operator A : ×Ni,j=1L
2(Σij) → ×Ni,j=1L

2(Σij) is one step of the above algorithm with
the physical sources set to 0. The vector b contains the local contributions of the external sources, and is
computed as the output of the update relation (4) applied to wi. From the iteration above we obtain, at
convergence, the linear system:

Fg = (I − A)g = b. (6)

The new iteration operator F is very similar to A, with the difference that the update relation (4) is modified
to match its definition:

g
(k+1)
ij = g

(k)
ij + g

(k)
ji − 2Su(k+1)

j . (7)

The application of the iteration operator F and the construction of the right-hand-side b are summarized
in Algorithms 2.1 and 2.2. Once the Schwarz problem has been solved for g, one must compute vi from (2)
and finally obtain the original unknown u in each subdomain as ui = vi + wi.

The Schwarz problem under form (6) can be interpreted as the solution of a linear system of equations,
with matrix F , unknowns g and right-hand-side b, ready to be solved by standard linear solvers suitable
for non-symmetric systems. In particular, the solution can be accelerated by using a Krylov solver like
GMRES [20, 21]. The construction of the Krylov subspace only requires matrix-vector products, which allows
for a “matrix-free” implementation of the operator F—the only operation required being the application of
F to a given vector, which amounts to solving the subproblems and performing the update of the unknowns.
We will see in the next Section that an explicit expression of this matrix can actually be formed, although
doing so is only useful for the purpose of analysis in view of the computational cost of the procedure.

3. Analysis of the iteration operator

As is well-known [19, 22], the above algorithm converges very slowly when appplied to our layered
decomposition with many subdomains, even with Krylov acceleration and the use of optimal transmission
conditions on the artificial interfaces. Indeed, the reduction of the residual over the iterations exhibits large
plateaus, whose length is proportional to the number of domains (see Figure 7). This behaviour is due to
the fact that information can only be transferred from one subdomain to its neighbours in the course of
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Algorithm 2.1: Application of the iteration operator g ← Fg.
// Solve subproblems (in parallel)
for i = 1 : N

uD ← 0 on ∂Ωi ∩ ΓD
fi ← 0
gl ← gi,i−1

gr ← gi,i+1

Solve Hiui = fi, with impedance data gl and gr
end

// Update impedance data
for i = 1 : N − 1

gi,i+1 ← gi,i+1 + gi+1,i − 2Sui+1|Σi,i+1

gi+1,i ← gi+1,i + gi,i+1 − 2Sui|Σi+1,i

end

Algorithm 2.2: Computation of the right-hand side b.
// Solve subproblems
for i = 1 : N

uD ← uD on ∂Ωi ∩ ΓD
fi ← f
gl ← 0
gr ← 0
Solve Hiui = fi, with impedance data gl and gr

end

for i = 1 : N − 1
bi,i+1 ← − 2Sui+1|Σi,i+1

bi+1,i ← − 2Sui|Σi+1,i

end

one iteration (local interactions). In this work we want to better understand the algebraic properties of the
method in order to design a preconditioner that will improve these properties. We will see that a natural
and successful solution is to enhance the information sharing among the subdomains by enabling long range
communication between distant regions (global interactions).

We start by forming the explicit matrix F of the iteration operator F for a layered decomposition in
the 1D case; we will see in Section 3.3 that the extension to higher dimensions is straightforward in the
context of matrix-free operators. At this stage, we have not precised yet how we are going to solve the PDEs
that appear in algorithm (2). We compare two different approaches: first we define the “analytic” iteration
operator FA when we use the analytical solution of the 1D Helmholtz equation in each subdomain as well
as the exact expression of the exterior DtN map of an hypothetical complementary domain that would let
the wave freely propagate without causing any reflection, leading to a perfectly absorbing (transparent, non-
reflecting) boundary condition (in this particular case they are all identical: D = −ık). Then, in the more
practical case where we use a numerical method and an imperfectly absorbing condition, we will observe
the induced modifications to the structure of the associated “numerical” operator FN , mainly due to the
induced spurious reflections at the artificial boundaries.
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3.1. Analytical solution of the PDEs in the 1D case
A simple way to form the matrix of the iteration operator is to exploit the linearity of the algorithm: by

applying the operator to the columns of an identity matrix of appropriate size, we obtain the columns of the
iteration matrix: F = FI. In 1D, the unknown functions gij reduce to scalar values, so this procedure is
fast; following the decomposition introduced in Section 2, there are 2(N − 1) unknowns. To illustrate this,
we first focus on a problem with Sommerfeld radiation conditions on the left and right hand sides of the
domain Ω = [xl, xr] and a non-zero volume source inside the domain:

−(∂xx + k2)u = f in Ω,
(∂n − ık)u = 0 on {xl, xr}.

Following a computation detailed in Appendix A, the matrix has the general expression for N subdomains:

FA(N) =



1 0 b2

0 1 0

0 1 0 . . .
b2 0 1

. . .
. . .

bN−1

0

0 1 0

bN−1 0 1


. (8)

Horizontal and vertical lines emphasize the layered structure of the matrix: for each additional domain,
the matrix is augmented with 2 lines and 2 columns, with ones on the diagonal and two non-zero elements
conserving the same pattern.

Looking at the spectrum of this matrix, one can easily notice that it has only one eigenvalue λ1−M = 1,
with algebraic multiplicityM = 2(N−1) (the number of unknowns on the artificial interfaces) and geometric
multiplicity 2: it has only 2 linearly independent eigenvectors, that are the first and last canonical basis
vectors (see Appendix A for a simple 3 subdomains example). Matrices with the property of not having
a full basis of eigenvectors are called defective [23]. Although the inverse of the matrix exists (it has full
rank, and we will see in Section 4.1 that the inverse is particularly easy to find), this property is known to
cause slow convergence of Krylov solvers [24, 25]. This complements our intuitive understanding that the
slow convergence of the algorithm is due to local exchange of information, which can also be inferred from
the structure of the matrix with at most two non-zero elements per row, near the diagonal. This is also
a counterexample of the widespread idea that a good clustering of the eigenvalues is a sufficient condition
for the fast convergence of Krylov solvers: this matrix has perfectly clustered eigenvalues and its condition
number is small (see Appendix A), yet its convergence is very slow because it is defective.

3.2. Numerical solution of the PDEs
The matrix FN of the iteration operator in the case of numerical solution (e.g. by the Finite Element

Method) of the subproblems (A.1) is slightly modified compared to the analytical case. We apply the same
procedure as before to form the matrix, and we observe that some entries that used to vanish take a small
value, hereunder denoted by ε (we use the same notation for all of them, though their values may differ):
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FN (N) =



1 ε b2

ε 1 0

0 1 ε . . .
b2 ε 1

. . .
. . .

bN−1

0

0 1 ε

bN−1 ε 1


. (9)

The parameters bi are also slightly affected. This is the consequence of the numerical dispersion (also known
as the pollution effect) that arises upon discretization of the Helmholtz equation [26], as it causes inaccuracy
of the absorbing boundary conditions. In other words, our choice of operator S = −ık no longer matches
the exact DtN map for the discretized problem, which causes a partial reflection of outgoing waves.

0 1 2

<e(λi)

-1

0

1

=m
(λ
i
)

Exact DtN

Approx. DtN

Figure 2: The eigenvalues of the iteration operator with exact DtN collapse to 1, as opposed to the case of imperfect impedance
conditions where the eigenvalues tend to spread out over the complex plane, in a circle centered in (1, 0). Despite the perfect
conditioning of the system with the exact DtN, the algorithm does not converge faster, because the corresponding operator
proves to be defective.

We observe that the eigenvalues are all distinct, with algebraic multiplicity 1, and tend to spread in the
complex plane, in a circular pattern around (1, 0) (Figure 2). For 3 subdomains, they are:

λ1,2,3,4 = 1±
√
ε2 ± εb2

≈ 1±
√
±εb2

For more domains, the expression becomes too complicated to be reproduced here, yet they can still be seen
as perturbations of 1: λi = 1 + ri, where ri is a complex number with approximately constant modulus
|ri| ≈ R (if we suppose ε � bi; small deviations appear for large N) that corresponds to the radius of the
circle. This radius tends to increase with the number of subdomains, or when a coarser discretization is
used (further degrading the accuracy of the impedance condition). It asymptotically reaches 1 (with the
consequence that some eigenvalues are close to 0), which strongly degrades the conditioning of the operator.
Note that, as an effect of the cascaded square roots in the expression of the eigenvalues, even very small
values of ε have a strong effect on the spectral radius.
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<e(λi)

-1

0

1

=m
(λ
i
)

N = 10
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N = 200

0 1 2

<e(λi)

-1

0

1

=m
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i
)

nλ = 30
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nλ = 10

Figure 3: Influence of the number of subdomains N and number of discretization points per wavelength nλ on the eigenvalues
distribution of the matrix of the operator in 1D, at k = 20π. Left: increasing N with same discretization nλ = 30; right:
coarser discretization (constant N = 20). The spectral radius and the condition number increase whenever more subdomains or
a coarser grid are used. In extreme cases (very large N), some eigenvalues asymptotically approach 0. There are M = 2(N −1)
eigenvalues.

The associated eigenvectors are distinct, but still resemble each other. So the operator FN is not strictly
defective as it was the case with the exact DtN, but can still be considered as almost defective. Numerical
experiments show very similar convergence behaviours in both cases.

3.3. Extension to higher dimensions
The major difference for dimensions higher than 1 is that the unknowns gij are now functions defined

on the interface Σij , which is a line in 2D and a surface in 3D. Each of the gij is discretized with several
unknowns, so the total size of the g vector rapidly grows as the discretization is refined and the number of
subdomains increases. For problems topologically equivalent to the above 1D problem, we can still construct
an iteration operator FA(N) with the same structure as (8). While this operator will be exact only if the
medium is homogeneous with no internal reflection, it can be used as a preconditioner in other cases. The
matrix has a structure made of blocks, that are arranged in the same pattern as in the 1D case:

FA(N) =



I Bb2

I

I . . .
Bf2 I

. . .
. . .

BbN−1

I

BfN−1 I


, (10)

where I denotes identity blocks of appropriate sizes and Bfi or Bbi are by construction the matrix versions
of the discrete operators Bfi and Bbi , respectively called the forward and backward transmission operators.
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They are defined by:
Bfi : H−1/2(Σi,i−1)→ H−1/2(Σi,i+1)

gi,i−1 7−→ 2Dui(gi,i−1, 0)|Σi,i+1
= Bfi gi,i−1;

Bbi : H−1/2(Σi,i+1)→ H−1/2(Σi,i−1)

gi,i+1 7−→ 2Dui(0, gi,i+1)|Σi,i−1
= Bbi gi,i+1,

where ui(gl, gr)|Σ refers to the restriction on boundary Σ of the solution to the subproblem Hiui = fi defined
by (2), with the simplified notation gl, gr respectively corresponding to gi,i−1, gi,i+1.

These blocks are not necessarily square matrices, as the two artificial interfaces Σi,i−1 and Σi,i+1 that
delimit a subdomain Ωi can be discretized with different number of unknowns; they are very expensive to
form, but we can obtain their application to a vector by solving a problem and applying the (approximation
of the) DtN map as in the definition above. We will see that this correspondence between the matrix blocks
and the solution of subproblems will be very useful for the construction of a matrix-free version of our
proposed preconditioner.

We mention for completeness that if approximate non-reflecting conditions are used or if internal reflec-
tions occur within the subdomains, additional blocks Efi and Ebi appear in the matrix at the same positions
as the ε entries in the FN matrix (9) of the 1D case. They correspond to operators Efi and Ebi defined from
an interface to itself:

Efi : H−1/2(Σi,i−1)→ H−1/2(Σi,i−1)

gi,i−1 7−→ 2Sui(gi,i−1, 0)|Σi,i−1
= Efi gi,i−1;

Ebi : H−1/2(Σi,i+1)→ H−1/2(Σi,i+1)

gi,i+1 7−→ 2Sui(0, gi,i+1)|Σi,i+1
= Ebi gi,i+1.

4. Formal construction of the double sweep preconditioner

As said above, explicitely forming the matrix of the iteration operator is computationally expensive—
and thus never done in practice except for analysis purposes. Assuming that a perfectly non-reflecting
condition is used at the interfaces between the subdomains, and that no internal reflection occurs inside the
subdomains, we will now show that the properties of the matrix can in fact be exploited to easily obtain its
inverse: a recurrence relation exists that lets one build that inverse, even in the case of many subdomains,
without forming the iteration matrix first. This process would provide the exact solution to the homogeneous
1D problem with exact DtN maps on the artificial and external boundaries, and can be used as a natural
and efficient preconditioner in other cases.

4.1. Inverse of the iteration operator with exact DtN
By exploiting the layered structure of the matrix FA(N) obtained in Section 3.3, a recursion formula

can be found for forming its inverse with increasing number of subdomains. Using operator notation, the
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inverse has the following explicit form:

F−1
A (N) =



I −Bb2 . . . F−1
1,M−1

I

I . . . F−1
3,M−1

−Bf2 I
...

...
...

. . .
−BbN−1

I

F−1
M,2 F−1

M,4 . . . −BfN−1 I


, (11)

with the entries, using the index mappings defined in Appendix A:

F−1
mn =


−(−1)i(n)+j(m)

∏j(m)
k=i(n) B

b
k if m = 1, 3, . . . and m < n;

−(−1)i(n)+j(m)
∏i(n)
k=j(m) B

f
k if m = 2, 4, . . . and m > n;

0 otherwise.

(12)

The same operators Bi appear in the iteration matrix and in its inverse, though the structure of the latter
is more complex, with the operators multiplying each other.

One might think that forming and applying that inverse matrix will be expensive, but we will see in the
next Section that the terms of the matrix-vector product with the inverse operator can be rewritten in such
a way that the products of operators are fully avoided. This means that, provided that the Bi operators
are available, the matrix-vector products with the iteration operator and with its inverse can be obtained
at reasonable cost and without having to form these matrices first. Since the application of Bi to any vector
v amounts to solving the i-th subproblem with v as impedance data on one side and applying operator
S to the restriction of the solution on the other side, we have all the ingredients at hand to build a fully
matrix-free algorithm.

4.2. Simplification and matrix-free version of the preconditioner
Throughout the developments above, we insisted on the recurrence relations in the structure of the

iteration operator (10) and its approximate inverse (11), that we propose to use as a preconditioner. We
now take advantage of that property to write the matrix-vector product with the preconditioner F−1

A in
a simplified way and give it an interpretation in terms of a double sweep of subproblems solves. The
product g′ = F−1

A r (in the context of right-preconditioned Krylov solvers, r denotes the residual), is given
component-wise as:

g′i,i−1 = ri,i−1 +

2∑
p=i−1

(−1)i+p
p∏

q=i−1

Bfq rp,p−1, i = 2, . . . , N ;

g′i,i+1 = ri,i+1 +

N−1∑
p=i+1

(−1)i+p
p∏

q=i+1

Bbqrp,p+1, i = 1, . . . , N − 1.

Factoring these expressions, we rewrite them as:

g′i,i−1 = ri,i−1 − Bfi−1

(
ri−1,i−2 − Bfi−2

(
. . . (r3,2 − Bf2 r2,1)

))
,

i = 2, . . . , N ;

g′i,i+1 = ri,i+1 − Bbi+1

(
ri+1,i+2 − Bbi+2

(
. . . (rN−2,N−3 − BbN−1rN−1,N )

))
,

i = 1, . . . , N − 1,

10



which finally gives the double recurrence relation:

g′21 = r21;

g′i+1,i = ri+1,i − Bfi g′i,i−1, i = 2, . . . , N − 1;

g′N−1,N = rN−1,N ;

g′i−1,i = ri−1,i − Bbi g′i,i+1, i = N − 1, . . . , 2.

The first relation describes the forward sequence: we start from the first boundary and propagate the
information by solving a problem at each step to move to the next boundary and incorporate the contribution
of that boundary. The other relation describes the same procedure in the backward direction; because these
sequences are independent of each other, they can be done in parallel. We note that the extreme problems
(the first and the N -th) are not solved in any of the sequences, so each of them requires N − 2 steps.

A sequence of solves over the domain is sometimes called a sweep, hence the name “double sweep” for
this procedure. With the recurrence relations above, it becomes natural to implement the preconditioner
as a matrix-free operator: each sweep is performed by calling, at every step, the subproblem solve routine
and applying the DtN map to its output; the result is then used to start the next step. This gives rise to
algorithm 4.1. In practice, the solution of Hiui = fi is done using the factorization of Hi that is readily
available in the Schwarz algorithm. But one could also envision using an approximate solution if a faster
technique is available.

Algorithm 4.1: Application of the double sweep preconditioner r ← F−1
A r

// Forward sweep
r21 ← r21

for i = 2 : N − 1
uD ← 0 on ∂Ωi ∩ ΓD
fi ← 0
gl ← ri,i−1

gr ← 0
Solve Hiui = fi, with data gl and gr
ri+1,i ← ri+1,i + 2Sui|Σi,i+1

end

// Backward sweep
rN−1,N ← rN−1,N

for i = N − 1 : 2
uD ← 0 on ∂Ωi ∩ ΓD
fi ← 0
gl ← 0
gr ← ri,i+1

Solve Hiui = fi, with data gl and gr
ri−1,i ← ri−1,i + 2Sui|Σi,i−1

end

One can further push the idea of the matrix representation of the iteration operator and the precondi-
tioner, by directly considering the product of these matrices as our iteration operator instead of separately
applying them. That matrix is computed as a classical matrix-matrix product, and can also be obtained by
following a recurrence relation. This is somehow equivalent to defining a new, unpreconditioned algorithm,
as it amounts to solve (FNF

−1
A )g′ = b with GMRES, with the matrix-vector product by (FNF

−1
A ) performed

in one single step. In the case of right preconditioning, that operation rewrites well in a matrix-free fashion
as a double sequence of subproblems solutions, with the difference that it includes the first and last domains.
The advantage of this combined approach is that it is more efficient in terms of number of solves per iteration,
by skipping those solves that are redundant in the separate applications of the operators: the integrated
version requires 2N − 2 solves, for 3N − 4 solves in the separate version. This results in Algorithm 4.2.
(Note that in this case the solution of Hiui = fi must be computed fully.)

Computationally, although the sweeps in the algorithm are sequential by nature, parallelism can still
be efficiently exploited in practice. Indeed, the most costly step (the factorization) of the direct solutions
by sparse LU of all Helmholtz problems is fully parallelizable (the actual solution of each system at each
iteration is also parallelizable by itself, but does not scale as well). It is also insteresting to note that, on
shared memory architectures, several sequential phases can be run concurrently for problems with multiple
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excitations (e.g. multiple incidence angle or multiple source types). Finally, partial sweeps can also be
envisioned on smaller groups of subdomains, which can restore some parallel efficiency [27].

Algorithm 4.2: Combined application of iteration operator and preconditioner r ← FF−1
A r

// Use two auxiliary variables: gc contains the correction to the input data, gt

saves data for use at next iteration. Both have same structure as input data r.

// Forward sweep
gt2,1 ← 0

for i = 2 : N
gl ← ri,i−1 + gti,i−1

gr ← 0
Solve Hiui = fi
gci−1,i ← gl − 2Sui|Σi,i−1

gti+1,i ← 2Sui|Σi,i+1

end

// Backward sweep
gtN−1,N ← 0

for i = N − 1 : 1
gl ← 0
gr ← ri,i+1 + gti,i+1

Solve Hiui = fi
gci+1,i ← gr − 2Sui|Σi,i+1

gti−1,i ← 2Sui|Σi,i−1

end

// Add correction
r ← r + gc

4.3. Spectrum of the preconditioned iteration operator
In Section 3, we have identified two sources for the slow convergence of the algorithm: the defectiveness of

the operator, and the bad conditioning of the system caused by the small eigenvalues when many subdomains
are used, in combination with approximate DtN maps on the artificial interfaces. Figure 4 shows the
spectrum of the preconditioned iteration operator in the 1D case, i.e. of FNF−1

A . The eigenvalues of the
preconditioned system are much more clustered around (1, 0) than in the unpreconditioned case. This
spectrum resembles the one of the operator with the exact DtN, with the fundamental difference that the
eigenvectors are now distinct. So the difficulty with the operator being defective, or close to it, has been
removed and the good clustering of the eigenvalues opens the way for fast convergence. The preconditioner
produces the same effect with a coarser discretization, yet the eigenvalues are not as well clustered in that
case. In relation to this, we will see that the quality of the approximate DtN has a direct impact on the rate
of convergence.

4.4. Interpretation of the double sweep and related methods
We can interpret the application of the preconditioner as the transport of information over longer dis-

tances than the direct neighbourhood of the subdomains: the products of transmission operators Bi that
appear in (12) actually correspond to the contribution of a domain to another domain, that are separated
by several other domains. This is illustrated on Figure 5.

We will see in Section 6 that, under the assumption that a good approximation of the DtN map is
used, the double sweep preconditioner has the property that the convergence rate is independent of the
number of subdomains. In the DDM community, a preconditioner that, at least partly, works by enabling
global information sharing among the subdomains and thereby makes the convergence rate insensitive to
the decomposition is known as a coarse grid. It was first introduced in [28] for the Laplace problem, and
many authors have subsequently used that name, or sometimes coarse space, to describe a component of an
algorithm or a technique (sometimes with no apparent connection with the original one) with similar prop-
erties [8, 9, 10, 11, 12]. Although our preconditioner is used to speed up the solution of a Schwarz problem,
rather than the Helmholtz problem itself, we think that it makes sense in regards of its characteristics to
view it as such a coarse grid.

The double sweep preconditioner is related to several other methods introduced over the last few years,
not all of them linked to Domain Decomposition methods; in the realm of domain decomposition techniques,
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Figure 4: The double sweep preconditioner produces an excellent clustering of the eigenvalues of the iteration operator. Left:
comparison of the spectrums of the operators (k = 40π,N = 100, nλ = 20), with and without preconditioner; right: zoom,
centered in (1, 0), on the eigenvalues of the preconditioned operator. The eigenvalues are again equal or very close to each
other, but the preconditioned operator has a full set of distinct eigenvectors, so the convergence is now expected to be fast.

the sweeping algorithm was first analyzed by Nataf and Nier [22] for convection-diffusion operators, where
the double-sweep was used as the actual solver, not as a preconditioner. Very recently, Stolk [15] proposed a
domain decomposition approach to precondition the Helmholtz operator, with the same kind of layered de-
composition as proposed in the present paper. The main difference is that we use the sweeps to precondition
a Schwarz problem over interface unknowns, instead of preconditioning the original problem defined over the
full set of volume unknowns. Also, the algorithm presented here is completely decoupled from the choice of
the DtN map on the boundaries between the subdomains: as will be seen in the numerical tests (Section 6),
in some cases even very inexpensive local approximations of the DtN can lead to rapid convergence of the
preconditioned algorithm.

The idea of using sweeps to precondition the Helmholtz equation was also recently proposed by Engquist
an Ying [13, 14] in a context unrelated to domain decomposition techniques. In this case preconditioners are
built that are approximate factorizations of the discretized Helmholtz operator, obtained by eliminating the
unknowns layer by layer in a sweeping process. When the size of the subdomains in our layered decomposition
is very small (i.e., we keep a single layer of elements), the two methods present some similarities, altough
Engquist and Ying’s sweeping PML preconditioner must be built in a preprocessing step. The parallel
version of the sweeping PML preconditioner presented in [29] could be compared to our proposed double-
sweep DDM preconditioner, with each subdomain factorization and subsequent backward solves made in
parallel.

We close this section by mentioning the link between the double sweep preconditioner, the multiplicative
Schwarz algorithm and a Gauss-Seidel iteration: they all share an intrinsically sequential behaviour, in
contrast to additive Schwarz and Jacobi iterations, which are parallel by nature. Although the double sweep
is not exactly a step of the multiplicative Schwarz algorithm, they are clearly linked and it is interesting to
notice that an additive Schwarz method can be preconditioned by something that resembles the multiplicative
version thereof.

5. Dirichlet-to-Neumann map

We mentioned earlier that the optimal choice of the transmission operator S in the algorithm defined
by (2) and (4) is the DtN map D defined by (5). In that case the convergence of the iterative process is
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Figure 5: Coarse grid interpretation of the preconditioner in the 1D case: (a) the contribution of each artificial interface is
transported to every other interfaces, via successive solves; (b) doing a sweep is equivalent, but the contributions of each domain
are collected as one progresses in the sweep, as illustrated by the increasing stroke thickness of the arrows.

optimal [30, 9]. Beside the simple one-dimensional case where the DtN is trivial, this however leads to a
very expensive procedure in practice, as the DtN is a non-local operator: see e.g. [3]. A great variety of
techniques based on local transmission conditions have thus been proposed over the years: these include
the class of FETI-H methods [31, 32, 10, 33], the optimized Schwarz approach [6], the evanescent modes
damping algorithm [34, 35, 36] and the Padé-localized square-root operator [7]. All these local transmission
conditions can be seen as approximations of the exact DtN operator; the better the related impedance
operators approximate the exact DtN operator on all the modes of the solution, the better the convergence
properties of the resulting DDM.

The DtN map is intimately linked with the artificial boundary conditions that were originally introduced
to truncate infinite domains in various fields of application [37]. When used in the context of wave propaga-
tion problems, they are often called absorbing, non-reflecting or transparent boundary conditions. All these
names refer to the fact that these conditions attempt to prevent or minimize the reflection of any outgoing
wave that would hit the artificial boundary, therefore allowing it to freely leave the domain. This property is
interesting when designing a domain decomposition algorithm since a wave propagating in a domain should
naturally be able to cross artificial boundaries without distortion or reflection. An efficient transmission
operator should therefore fully capture all of the outgoing waves and release them intact at the other side
of the boundary.

We will use several local approximations of the DtN operator for the numerical tests presented in the
next Section (IBC(χ), OO2 and GIBC(Np)), as well as one non-local approximation using perfectly matched
layers (PML(nPML)).

5.1. Local impedance condition: IBC(χ)
A simple local approximation of the DtN is the following Impedance Boundary Condition:

SIBC(χ)u = (−ık + χ)u,

where χ is a self-adjoint positive operator [34]. When χ = 0, one recovers the classical Sommerfeld radiation
condition, used by Deprés in the original non-overlapping Schwarz method for Helmholtz [38]. We only
consider here the case where χ is a real-valued positive coefficient, which amounts to approximate the DtN
map by a diagonal operator with a constant value on the diagonal. Choosing χ 6= 0 allows to improve the
convergence of the DDM for evanescent modes. In Section 6.1 we will also use the impedance boundary
condition with a modified wavenumber kh, i.e. SIBCkh

(χ)u = (−ıkh + χ)u.
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5.2. Optimized second order local impedance condition: OO2

While IBC(χ) is a zero-th order approximation of the DtN, higher order approximations can also be
constructed. For a generic transmitting boundary Σ, Gander et al. [6] proposed to construct a second order
local approximation of the DtN in the form:

SOO2u = (a− b∆Σ)u, (13)

where the complex numbers a and b are obtained by solving a min-max optimization problem on the rate of
convergence (hence the name “Optimized Order 2”), and ∆Σ is the Laplace-Beltrami operator on the interface
Σ: ∆Σ := divΣ∇Σ. The optimal transmission coefficients depend on several parameters, chosen to solve the
min-max problem on a bounded domain, excluding the Fourier modes close to the cut-off frequency [6]. In
all the numerical tests we chose the parameters leading to the optimal convergence rate. (An optimized 0th
order approximation can also be constructed in the same way.)

5.3. Padé-localized generalized impedance condition: GIBC(Np)
Instead of a polynomial approximation of the DtN operator, a rational approximation was proposed

in [7]:

SGIBC(Np)u = C0u+

Np∑
`=1

A`divΣ(k−2
ε ∇Σ)(1 +B`divΣ(k−2

ε ∇Σ))−1u, (14)

where C0, A` and B` (` = 1, . . . , Np) are the coefficients of a complex Padé expansion of the square root
operator (with a rotation of the branch cut of π/4), and kvarepsilon = k + ıε is a complexified wavenumber.
(In all subsequent tests we used ε = k/4). This condition leads to a DDM with quasi-optimal convergence
properties, meaning that the rate of convergence is optimal on the evanescent modes and is improved
compared to other local techniques for the remaining modes. To be noted is that, unlike the other techniques
presented above, GIBC(Np) makes use of Np auxiliary unknown functions. Consequently, the size of the
linear system to be solved is augmented. The additional cost is usually very small [7], unless the number of
unknowns on the interfaces is large compared to number of volume unknowns.

5.4. Non-local PML condition: PML(nPML)

nPML

Σ

Figure 6: Geometry of fictitious “black-box” domain Ωbb used to compute the non-local approximation of the DtN map using
a perfectly matched layer. The domain Ωbb is made of a few layers (3 in this case) between the interface of interest Σ and the
PML, made of nPML layers. The Dirichlet condition is imposed on Σ, while the boundary conditions on the top and bottom
sides of Ωbb are inherited from the ones imposed on the edges of Σ in the original problem. The gradient represents the (1D)
growth of the PML absorption factor.

Finally, we also consider a non-local approximation of the DtN operator constructed with the Perfectly
Matched Layer (PML) technique. The procedure was developed in the context of matrix probing of the DtN
map [39], that could be applied in our algorithm as suggested in [40]. A fictitious “black-box” domain Ωbb
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is first created by extruding the mesh of the interface Σ over nPML + 3 layers, using a mesh size identical
to the mesh of the subdomain connected to Σ (see Figure 6). If the mesh of the interface Σ counts nΣ

internal nodes, the approximate nΣ×nΣ DtN matrix is built by inspection: column c is obtained by solving
a Helmholtz problem with an imposed value of 1 on the cth node and 0 on the other nodes of Σ, and a 1D
PML layer in the last nPML cells of Ωbb (the boundary condition on the top and bottom boundary nodes
of Ωbb is inherited from the ones on the top and bottom node of Σ; a homogenous Dirichlet condition is
imposed on the right). The normal derivative is extracted on Σ using the weak form of the finite element
formulation. The number of layers (3 in all our numerical tests) added in front of the PML allow to clearly
separate the PML from the elements used in the computation of the normal derivative.

This method would be too costly to use as-is in practical applications, but it is useful to consider it here
for benchmarking the proposed preconditioner, as the quality of the approximate DtN map is directly related
to that of the PML, which can be controlled via its thickness (number of layers nPML). We will thus refer
to the non-local PML-based approximation as PML(nPML). Another way of using PMLs in the algorithm
would be to proceed like in [15]: instead of extracting the DtN map from the black-box as explained above,
a PML is appended on the interfaces of the subdomains. Both approaches are algebraically equivalent, but
their implementations differ in several aspects: with the black-box method, most of the computational work
is done in preprocessing, and in the frequent practical cases where several interfaces are similar and can use
the same DtN map (like in all the test cases of the next Section), the computation of the DtN map must
be done only once; the other approach needs no additional preprocessing, but requires a modification of
the geometry of all the subdomains and the evaluation of the derivative at the boundary of the PML, with
an increased cost at every iteration. Recalling that a motivation for using a DDM is the size of the linear
systems to be inverted, such an addition of the PMLs could make the method less attractive.

6. Numerical results

We first present numerical results in the 1D case with constant parameters, from which the preconditioner
was derived in Section 4. We then use the same preconditioning strategy on more complex configurations
and in the presence of a non-homogeneous medium, with guided and non-guided waves in 2D. In each case
we analyse the effect of the accuracy of the DtN approximation on the performance of the preconditioner.
In the non-homogeneous cases, we define the pulsation ω and velocity c(x, y), such that k(x, y) = ω/c.

6.1. 1D with constant parameters
We study the behaviour of the algorithm in an homogeneous 1D medium Ω = [0, 1]. This test case repro-

duces the conditions of the construction of the double sweep preconditioner (Section 4): we use absorbing
conditions on both sides of the domain, and a volume source modeled by a delta-function located on the left
boundary f = δ(0).

We observe that the convergence is fast compared to the unpreconditioned case (Figure 7): no more
than a few iterations are required with the double sweep preconditioner. More interestingly, the rate of
convergence is independent of the number of subdomains (Table 1) and wavenumber (Figure 8), under the
condition that the exact DtN map is used. In 1D, this can be achieved by replacing the wavenumber k in
the Sommerfeld condition IBC(0) by the wavenumber kh accounting for the numerical dispersion of FEM
for a discretization step h:

kh =
1

h
arccos

(
1− (kh)2

3

1 + (kh)2

6

)
.

In the more practical case when an approximate DtN map is used as transmission operator, the perfor-
mance of the algorithm is slightly degraded and the number of iterations weakly depends on the number
of subdomains. To observe this effect, we repeat the computation with different discretizations (we denote
by nλ the number of grid points per wavelength). As the numerical dispersion is more pronounced for
coarser discretizations (smaller nλ) [41], the accuracy of the Sommerfeld conditions (S = −ık) that we use
as transmission operators is also degraded.
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Figure 7: A typical convergence history of the optimized Schwarz algorithm with GMRES acceleration applied to a 1D problem,
with N = 20 subdomains (solid line). The curve exhibits 2 plateaus with length N − 1, before suddenly converging with full
accuracy. The dashed line is obtained for the same problem with the preconditioned algorithm using optimal transmission
operators.

N = 5 25 50 100 150 200

IBC(0), nλ = 10
4 4 5 5 6 6

(8) (48) (98) (198) (298) (398)

IBC(0), nλ = 20
3 3 4 4 4 4

(8) (48) (98) (198) (298) (398)

IBCkh(0), nλ = 10
3 3 3 3 3 3

(8) (48) (98) (198) (298) (398)

IBCkh(0), nλ = 20
2 2 2 2 2 3

(8) (48) (98) (198) (298) (398)

Table 1: The iteration count (||r||/||r0|| ≤ 10−6) in the 1D case is very small and steady with the number of domains when the
exact DtN is used as transmission operator (S = D = −ıkh); more iterations are required when less accurate approximations
of the DtN map are used instead (S 6= D = −ık), with a slight dependence on N . Values between parentheses are for the
unpreconditioned algorithm: Nit = M = 2(N − 1), where M is the size of the Schwarz system, hence the theoretical maximal
number of iterations required to solve it by a Krylov method.

This behaviour is easily understood under the light of the analysis of Section 3: the double sweep
preconditioner was built upon the assumption that no reflection occurs at the artificial boundaries, which
can only be verified with an accurate DtN map as transmission operator; in that case, it is an exact inverse of
the iteration operator and should converge in 1 iteration in exact arithmetic. With reflections at the artificial
boundaries, the double sweep is no longer an exact inverse of the iteration operator and its performance
deteriorates with the amplitude of the spurious reflected waves. More intuitively, an effect of the reflections is
the transmission of partial information to the neighbouring subdomains. As this information is transmitted
multiple times in the course of a sweep, it will be distorted everytime it crosses an artificial boundary. This
explains why more iterations are required when more domains are involved if inexact DtN maps are used as
transmission operators.

6.2. Homogeneous waveguide
The geometry of this test case is a straight waveguide (Ω = [0, D] × [0, d]) made of an homogeneous

medium. Homogeneous Dirichlet conditions are imposed on the upper and lower sides of the guides: u = 0
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Figure 8: 1D problem: the iteration count is also stable with the wavenumber k, for all the tested transmission operators S
(N = 100).

on y = {0, d}. We excite the second mode on the left hand side: u(0, y) = sin(mπy/d), with m = 2, and use
an absorbing condition on the right hand side to model a continuing waveguide.

x

y

Figure 9: Waveguide geometry (D = 4; d = 1) and decomposition, and solution for m = 2 and k = 20π.

As there is only one possible propagation direction and no internal reflection for such a problem, the
method is expected to behave somewhat like in the 1D case since we are still in the conditions of the
preconditioner derivation. Moreover, an analytical solution for this problem is available for each mode,
considered separately [42]:

uA(x, y) = sin
(mπ
d
y
)
eıβmx,

with:

βm =

{ √
k2 − (mπ/d)2 if 1 ≤ m ≤ kd

π (propagative);

ı
√
−k2 + (mπ/d)2 otherwise (evanescent).

We only present results for the propagative modes. An exact expression of the DtN map can be inferred
from the above expression: D = −ıβm. Modifying the Sommerfeld transmission condition by replacing k by
βm therefore gives an excellent approximation of the DtN map, that can be ever improved by accounting
for the numerical dispersion in its definition (βhm). However, we do not include these results as they are
not sufficiently general (only valid for a single mode.) The results for all the tested approximations of the
DtN map are presented in Table 2. With the exception of IBC(χ), they all perform well and little penalty
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ω = 20π ω = 40π

N = 5 10 25 50 100 5 10 25 50 100

IBC(0)
3 3 4 4 4 3 3 4 4 4

(8) (18) (48) (98) (198)

IBC(k/2)
8 8 23 56 88 8 9 38 49 dnc

(8) (18) (50) (120) (326)

OO2
3 3 4 4 4 3 3 3 3 4

(8) (18) (46) (98) (201)

GIBC(2)
3 3 3 4 4 3 3 4 4 8

(8) (18) (48) (119) (239)

GIBC(8)
3 3 3 4 4 3 3 4 4 8

(8) (18) (48) (119) (240)

PML(5)
4 4 5 6 6 4 4 6 8 12

(8) (18) (48) (96) (196)

PML(15)
3 3 3 4 4 3 3 3 3 4

(8) (18) (48) (98) (198)

PML(75)
2 2 2 3 3 2 2 2 2 2

(8) (18) (48) (98) (198)

Table 2: Homogeneous waveguide: iteration count of the preconditioned GMRES (||r||/||r0|| < 10−6) as a function of N ,
for different transmission conditions. Values in parentheses are for the unpreconditioned algorithm; “dnc” stands for “did not
converge” within the prescribed 500 iterations

is associated with the use of rough approximations of the DtN map; the good performance of the local
approximations is therefore not surprising. GIBC(k/2) fails as it adds a real part to the operator S while
the DtN map in this particular case is purely imaginary.

6.3. Simple underground model
We consider a rectangular domain Ω = [0, 600] × [0, 1000] made of an heterogeneous medium with 3

different velocities in regions separated by straight non-parallel boundaries (Figure 10(a)). The outside
world is modeled by Sommerfeld conditions on the “underground” sides, and a Neumann condition on the
top side. A Dirichlet point source is located in the middle of the top line. This test-case was proposed
in [43, 44] to test multigrid preconditioners for the Helmholtz equation.

As opposed to the previous test case, we are now in presence of abrupt variations of the wavenumber,
that will produce internal reflections in different directions. The Sommerfeld conditions on the external
boundaries are also likely to reflect part of the outgoing waves back into the domain. For these reasons,
this problem is expected to be more challenging for a Schwarz method, as the multiple reflections will
be harder to capture throughout the iterations. This also holds for our preconditioner, since this case is
further removed from the hypotheses underlying its construction (recall that we neglected both numerical
and physical reflections).

If the number of iterations is indeed slightly increased, the property of independence of the number of iter-
ations with respect to the number of subdomains is actually preserved with the most accurate approximation
of the DtN map (PML(75)). Even with less accurate approximations, we find that the number of additional
iterations required for convergence grows relatively slowly with N (see Table 6.3). The GIBC(2) condition
in particular performs extremely well—at a fraction of the cost of the non-local PML approximation.
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Figure 10: (a) Underground propagation test case geometry and decomposition, (b) solution for ω = 160π.

ω = 80π ω = 160π

N = 5 10 25 50 100 5 10 25 50 100

IBC(0)
88 90 99 158 347 97 98 107 134 265

(96) (133) (244) (415) (dnc)

IBC(k/4)
62 63 68 92 178 66 67 73 90 168

(70) (110) (231) (404) (dnc)

OO2
22 24 28 46 70 25 27 42 74 186

(38) (77) (207) (384) (dnc)

GIBC(2)
25 27 29 35 41 25 26 29 36 56

(40) (74) (186) (369) (dnc)

GIBC(8)
18 19 22 32 39 19 20 24 34 56

(36) (73) (186) (369) (dnc)

PML(5)
15 16 17 23 29 22 27 43 143 dnc

(38) (75) (195) (368) (dnc)

PML(15)
14 15 16 16 15 14 15 15 16 79

(36) (74) (183) (359) (dnc)

PML(75)
14 14 14 14 14 14 14 14 15 15

(35) (72) (182) (357) (dnc)

Table 3: Results for the underground propagation test case (||r||/||r0|| < 10−6) for different approximations of the DtN map.
The convergence rate is independent of the number of domains and wavenumber when a very accurate (and computationally
expensive) non-local approximation of the DtN map is used (PML(75)). Less accurate approximations degrade the convergence
rate, especially when many subdomains are involved, but the algorithm still appears to be quite robust for the best fast local
approximations; “dnc” stands for “did not converge” within the prescribed 500 iterations.
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6.4. Gaussian waveguide
The geometry of this test case is comparable to the one presented in Section 6.2, but we now consider a

non-homogeneous medium, with a velocity profile constant in the propagation direction (along the x-axis)
and gaussian in the transverse direction (see Figure 9): c(x, y) = 1.25(1− .4e−32(y−.5)2). This a 2D version of
a test case used in [29]. The second mode is excited on the left hand boundary and we model the continuing
domain by means of a Sommerfeld condition on the right hand side.

(a)

(b)

Figure 11: Solution of the gaussian waveguide problem at (a) ω = 20π and (b) ω = 40π. In both examples, the second mode
is excited on the left hand side.

As opposed to the homogeneous case presented above, the gaussian speed profile will cause curved
beams at high frequency that make the problem truly 2D, as can be seen on Figure 9. As a consequence,
the “oscillations” exhibited in the matrix of the DtN map are more complex (their direction varies with
position) and harder to capture by approximate methods. This is verified in practice: Table 4 shows
that the convergence of all the local approximations degrades significantly for large N , and only the most
accurate non-local PML approximations are able to maintain a constant iteration count with N . The interest
of the preconditioner is particularly visible on this test case, where the unpreconditioned Schwarz algorithm
becomes practically unusable for more than 25 domains.

7. Conclusion

In this paper we presented a double-sweep preconditioner for non-overlapping Schwarz methods applied to
the Helmholtz problem. For a layered partitioning of the domain, the preconditioner works by propagating
information by sweeping in both directions over the subdomains. The preconditioned algorithm can be
implemented fully in a matrix-free fashion, requiring 2N − 2 subdomain solutions per iteration instead of N
for the classical unpreconditioned Schwarz algorithm. The resulting algorithm, which can be interpreted as
a coarse grid for the domain decomposition method, was shown to converge very fast, independently of the
number of subdomains and frequency, provided that a good approximation of the DtN map on the interfaces
between the subdomains is available.

Many perspectives exist for further investigation. First, since very accurate approximations of the DtN
allow to obtain convergence in a constant number of iterations, one could investigate techniques that reduce
the evaluation cost of accurate non-local DtN approximations, in particular the matrix probing technique [45]
that takes advantage of a priori information on the structure of the DtN map [39]. Such a technique
would shift most of the computational burden offline, in a preprocessing step. Second, by construction the
algorithm would be particularly suitable for (quasi)-periodic problems, where most domains and DtN maps
are identical. In such cases, the factorizations of the systems to be solved on each domain are identical and
must be computed only once, as well as the DtN maps on their boundaries, leading to substantial savings
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ω = 20π ω = 40π

N = 5 10 25 50 100 5 10 25 50 100

IBC(0)
38 40 78 207 497 51 65 129 217 dnc

(70) (131) (345) (dnc) (dnc)

IBC(k/2)
35 45 134 314 dnc 56 82 241 495 dnc

(71) (157) (412) (dnc) (dnc)

OO2
30 33 69 175 303 41 53 123 202 dnc

(62) (128) (356) (dnc) (dnc)

GIBC(2)
19 20 42 98 149 27 31 67 103 288

(53) (114) (314) (dnc) (dnc)

GIBC(8)
19 20 42 98 150 27 31 67 105 283

(53) (114) (314) (dnc) (dnc)

PML(5)
13 12 13 15 16 16 20 30 52 115

(47) (103) (271) (dnc) (dnc)

PML(15)
12 12 12 12 12 13 13 13 14 15

(44) (101) (266) (dnc) (dnc)

PML(75)
11 11 11 11 11 13 13 13 13 13

(44) (99) (264) (dnc) (dnc)

Table 4: Gaussian waveguide: iteration count of the GMRES (||r||/||r0|| < 10−6) as a function of N .

in the preprocessing step and memory usage. The homogeneous and gaussian waveguides considered as
test cases in Section 6 are simple examples of such problems. Third, partial sweeps can also be envisioned
on smaller groups of domains, which can restore some parallel efficiency [27]. Finally, the algorithm can
be applied in a straightforward manner to other harmonic wave-type problems, like the propagation of
electromagnetic waves [27].
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Appendix A. Matrix form of the iteration operator

Here we detail how the matrix of the iteration operator FA (8) was formed in Section 3.1, when analytical
solutions of the PDEs in the Schwarz algorithm are used. Applying algorithm (3–4) with Krylov acceleration,
we have to solve the subproblems (recall that external sources are cancelled in the definition of operator
F and that we use S = D = −ık, so we apply the same condition on the artificial interfaces than on the
external boundaries):

−(∂xx + k2)uj = 0 in Ωj
(∂n − ık)uj = gji on Σij
(∂n − ık)uj = 0 on {xl, xr}.

(A.1)

The solutions of these problems are a superposition of a forward and a backward wave:

uj(x, gl, gr) = Af,je
ıkx +Ab,je

−ıkx, x ∈ Ωj , j = 1, . . . , N,

with respective amplitudes given as functions of the impedance data gl and gr on the artificial boundary
(we suffix by l and r quantities or coordinates associated with resp. the left and right side of the considered
domain):

Af,j = − gl
2ık

eıkxl ; Ab,j = − gr
2ık

eıkxr , (A.2)

While the matrix is easy to form numerically, its formal expression is rather technical and requires some
definitions. We first number the unknowns of the Schwarz algorithm as g = [g12, g21, g23, . . . ]

T , where an
unknown gij corresponds to the impedance data of the boundary condition for problem i, on Σij . There are
two unknowns per artificial interface, for a total of M = 2(N − 1) unknowns. Then, we classically number
the entries of the matrix as:

F =

 F11 . . . F1M

...
. . .

...
FM1 . . . FMM

 ,
where entry Fmn refers to the m-th row and n-th column. So we have two different ways of indexing the
unknowns: the “matrix index” gm and the “problem index” gij . As both are convenient depending on the
context, we define the index mappings:

m(i, j) =

{
i+ j − 1 if i > j

i+ j − 2 if i < j
;

[i, j](m) =

{
[m+1

2 , m+3
2 ] if m = 1, 3, · · ·

[m2 + 1, m2 ] if m = 2, 4, · · ·

Each unknown gij has a companion unknown gji associated to the same interface Σij . In the matrix indexing,
we will write g′m the unknown associated to gm, with the index relation:

m′ = m− (−1)m.

The column F·,n is the output of the update relation (7) applied to the n-th column of an identity matrix
as source vector gk, so the m-th entry of that column will be:

Fmn = δmn + δm′n + 2ıkuj(m)(xΣij(m)
, δ2(j(m)−1),n, δ2j(m)−1,n). (A.3)

In the n-th column, at most 3 entries have a non-zero contribution from at least one of its terms: the n-th
entry (the one on the diagonal of the matrix) is exactly 1, as only the δnn term contributes; the n′-th is 0,
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because the δm′n term is exactly canceled by the problem contribution as an effect of the exact transmission
condition; and the (n±2)-th only has the problem contribution alone. The matrix therefore has the following
structure for N subdomains:

FA(N) =



1 0∗ b2

0∗ 1 0

0 1 0∗ . . .
b2 0∗ 1

. . .
. . .

bN−1

0

0 1 0∗

bN−1 0∗ 1


,

where parameters bi depend only on the size of the subdomains ∆i = xΣi+1
−xΣi

(we introduce the simplified
notation Σk = Σij , with k = min(i, j)): bi = eık∆i . The 0∗ entries indicate values that are 0 as the result of
the cancellation of 2 contributions in expression (A.3) (we will see that in the numerical solution case, they
are no longer 0.) The condition number of FA(N) is small. For example, for the case of 3 subdomains, the
matrix is:

FA(3) =


1 0∗ b2

0∗ 1 0

0 1 0∗

b2 0∗ 1

 .

One can easily verify that all eigenvalues are equal to 1 (λ1−4 = 1) and that only 2 independent eigenvectors
exist: [1, 0, 0, 0] and [0, 0, 0, 1]. They are indeed the only possible invariants since the wave they produce
leaves the domain via the external boundaries instead of coupling to other subdomains. Since b2 has unit
modulus (|bi,1<i<N | = 1), we have for the condition number, in spectral norm:

||FA(3)||2 = ||F−1
A (3)||2 =

√
1

2
|b2|2 +

1

2

√
|b2|4 + 4|b2|2 + 1;

κ2(FA(3)) = ||FA(3)||2||F−1
A (3)||2 =

|b2|2

2
+

√
|b2|4 + 4|b2|2

2
+ 1 =

( |b2|
2

+

√
|b2|2

4
+ 1
)2

= 2.618.

The condition number grows linearly with the number of subdomains, as shown by Table A.5.

N 2 3 4 5 10 20 50 100
κ2 1 2.62 4.09 5.41 11.94 24.57 63 126.67

Table A.5: Condition number of the iteration matrix FA(N) for increasing number of subdomains.
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