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Abstract

This paper presents a new non-overlapping domain decomposition method for the time
harmonic Maxwell’s equations, whose effective convergence is quasi-optimal. These improved
properties result from a combination of an appropriate choice of transmission conditions and
a suitable approximation of the Magnetic-to-Electric operator. A convergence theorem of the
algorithm is established and numerical results validating the new approach are presented.
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1 Introduction

In terms of computational methods, solving three-dimensional time-harmonic electromagnetic wave
problems is known to be a challenging topic, especially in the high frequency regime. Among the
various approaches that can be used to solve such problems, the Finite Element Method (FEM)
with an Absorbing Boundary Condition (ABC) or a Perfectly Matched Layer (PML) is widely used
for its ability to handle complex geometrical configurations and materials with non-homogeneous
electromagnetic properties [20]. However, the brute-force application of the FEM in the high-
frequency regime leads to the solution of very large, complex and possibly indefinite linear systems.
Direct sparse solvers do not scale well for such problems, and Krylov subspace iterative solvers
can exhibit slow convergence, or even diverge [16]. Domain decomposition methods provide an
alternative, iterating between subproblems of smaller sizes, amenable to sparse direct solvers.

Improving the convergence properties of the iterative process constitutes the key in designing
an effective algorithm, in particular in the high frequency regime. The optimal convergence is
obtained by using as transmission condition on each interface between subdomains the so-called
Magnetic-to-Electric (MtE) map [27] linking the magnetic and the electric surface currents on the
interface. This however leads to a very expensive procedure in practice, as the MtE operator is
non-local. A great variety of techniques based on local transmission conditions have therefore been
proposed to build practical algorithms [10, 1, 12, 15, 29, 28, 30, 11].

In the context of acoustic simulations, quasi-optimal local transmission conditions for domain
decomposition methods were proposed in [7], based on high-order rational approximations of the
Dirichlet-to-Neumann operator. In this paper, we analyze and validate the extension of this ap-
proach to electromagnetics, based on the high-order approximations of the MtE operator developed
in [14]. We show that the resulting domain decomposition algorithm exhibits quasi-optimal con-
vergence properties, i.e., that the convergence is optimal for the evanescent modes and significantly
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improved compared to competing approaches for the remaining modes. The finite element imple-
mentation of the method is available online as the open source software package GetDDM1, which
combines the open source mesh generator Gmsh [19] and the finite element solver GetDP [13, 18]
for large scale domain decomposition simulations.

The paper is organized as follows. In Section 2 we introduce the scattering problem as well
as the non-overlapping DDM. Optimized local transmission conditions are presented in Section 3.
Section 4 develops a convergence analysis for this approximate transmission condition on a model
problem. Section 5 details the complex Padé approximation of the square-root operator to get a
local representation. Section 6 presents the finite element implementation of the resulting DDM.
Numerical results on three-dimensional problems are presented in Section 7. The paper is concluded
in Section 8 with perspectives for future work.

2 Problem setting and non-overlapping optimized Schwarz DDM

Let K be a bounded scatterer in R3 with smooth closed boundary Γ. The associated unbounded
domain of propagation is denoted by Ω := R3\K. The exterior electromagnetic scattering problem
by a perfectly conducting body K is given by

curl curl E− k2E = 0, in Ω,

γT (E) = −γT (Einc), on Γ,

lim
r→∞

r
(
E− ı

k
x̂× curl E

)
= 0.

(1)

In the above equations, E denotes the scattered electric field. The wavenumber is k := 2π/λ,
where λ is the wavelength, and the unit imaginary number is ı =

√
−1. The curl operator is

defined by curl a := ∇ × a, for a complex-valued vector field a ∈ C3. The nabla operator is
∇ :=t (∂x1 , ∂x2 , ∂x3), where x =t (x1, x2, x3) ∈ R3. The notation a×b designates the cross product
and a ·b the inner product between two vectors a and b in C3, where z is the complex conjugate of
z ∈ C. The associated norm is ||a|| :=

√
a · a. Vector n is the unit outwardly directed normal to Ω

and Einc defines a given incident electric field. Let us consider a general domain D with boundary
∂D, n the outwardly directed unit vector to D, then the tangential traces applications are defined
by

γt : v 7→ vt := n× v|∂D and γT : v 7→ vT := n× (v|∂D × n).

Let us now write x = rx̂ ∈ R3, where r := ||x|| is the radial distance to the origin and x̂ is the
directional vector of the unit sphere S1. Then, the last equation of system (1), which is the so-
called Silver-Müller radiation condition at infinity, provides the uniqueness of the solution to the
scattering boundary-value problem (1).

To solve numerically (1) by a volume discretization method, it is standard to truncate the
exterior domain of propagation by using a fictitious boundary Γ∞ surrounding Ω. As a result, we
have to solve the following problem in a bounded domain Ω, with boundaries Γ and Γ∞,

curl curl E− k2E = 0, in Ω,

γT (E) = −γT (Einc), on Γ,

B(γT (E))− ı

k
γt(curl E) = 0, on Γ∞.

(2)

The operator B can be exact, resulting then in a transparent boundary condition that avoids any
spurious unphysical reflection. However, such a boundary condition is global since it is defined by
a nonlocal boundary integral operator on Γ∞ (i.e. the MtE operator Λ : γT (E) 7→ Λ(γT (E)) =
γt(curl E)). This generates a dense part in the global discretization matrix that must be solved

1http://onelab.info/wiki/GetDDM.
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at the end of the computational process. For reducing the cost of computation, a local Absorbing
Boundary Condition (ABC) is generally preferred, which means that the operator B is in fact an
approximation of Λ. Since the aim of this paper is not devoted to ABCs, we restrict ourselves to
the simplest ABC: B = I (I is the surface identity operator). This corresponds to the well-known
Silver-Müller ABC at finite distance.

Let us now focus on the construction of optimized Schwarz Domain Decomposition Methods
(DDM) without overlap [17, 12, 15, 23, 22, 29, 28, 7, 1, 10, 9, 30, 11] for the approximate boundary-
value problem (2). The first step of the method [9, 10] consists in splitting Ω into several subdomains
Ωi, i = 1, . . . , Ndom, in such a way that

• Ω =
⋃Ndom
i=1 Ωi (i = 1, . . . , Ndom),

• Ωi ∩ Ωj = ∅, if i 6= j, (i, j = 1, . . . , Ndom),

• ∂Ωi ∩ ∂Ωj = Σij = Σji (i, j = 1, . . . , Ndom) is the fictitious interface separating Ωi and Ωj as
long as its interior Σij is not empty.

In a second step, we solve smaller size problems on each subdomain Ωi by an iterative process
(indexed by p) and using transmission conditions (defined by an operator S below): we compute
Ep+1
i , 1 ≤ i ≤ Ndom, from Ep

j , 1 ≤ j 6= i ≤ Ndom, by
curl curl Ep+1

i − k2 Ep+1
i = 0, in Ωi,

γTi (Ep+1
i ) = −γTi (Einc

i ), on Γi,

γTi (Ep+1
i )− ı

k
γti (curl Ep+1

i ) = 0, on Γ∞i ,

S(γTi (Ep+1
i ))− ı

k
γti (curl Ep+1

i ) = S(γTj (Ep
j )) +

ı

k
γtj(curl Ep

j ) := gpij , on Σij ,

(3)

and then form the quantities gp+1
ji through

gp+1
ji = S(γTi (Ep+1

i )) +
ı

k
γti (curl Ep+1

i ) = −gpij + 2S(γTi (Ep+1
i )), on Σij , (4)

where Ei = E|Ωi , ni (resp. nj) is the outward unit normal to Ωi (resp. Ωj), i, j = 1, . . . , Ndom,
Γi = ∂Ωi ∩ Γ, Γ∞i = ∂Ωi ∩ Γ∞ and S is an inversible transmission operator through the interfaces
Σij . Let us remark that the boundary condition on Γi (resp. Γ∞i ) does not take place if the interior
of ∂Ωi ∩ Γ (resp. ∂Ωi ∩ Γ∞) is the empty set. The operators γti and γTi are moreover given by

γti : vi 7→ vti := ni × vi|∂D and γTi : vi 7→ vTi := ni × (vi|∂D × ni).

Solving at each step all the local transmission problems through (3)-(4) may be rewritten as
one application of the iteration operator A : ×Ndom

i,j=1 (L2(Σij))
3 7→ ×Ndom

i,j=1 (L2(Σij))
3 defined by

gp+1 = Agp + b, (5)

where gp is the set of boundary data (gpji)1≤i,j≤Ndom , and b is given by the incident wave field
boundary data. Therefore, (3)-(4) can be interpreted as an iteration step of the Jacobi fixed point
iteration method applied to the linear system

(I − A)g = b, (6)

where I is the identity matrix of size N2
dom×N2

dom. A consequence is that any Krylov subspace iter-
ative solver could be used for solving this equation. This can significantly improve the convergence
rate of the method most particularly if S is well-chosen.
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3 Optimized transmission conditions

3.1 Surface operators

In the sequel, we make use of some surface operators for a general smooth three-dimensional surface
Γ. We introduce these operators here and precise the associated functional spaces.

The tangential gradient ∇Γ is an operator from H1/2(Γ) to H
−1/2
× (Γ), where Hs

×(Γ) := {v ∈
Hs(Γ)/v · n = 0 on Γ} = n × Hs, for s ∈ R. The operator curlΓ is the tangential vector curl

operator which acts from H1/2(Γ) to H
−1/2
× (Γ) (the duality is defined with respect to the L2-

and L2-inner products). These operators have dual operators divΓ and curlΓ, respectively, which

apply from H
1/2
× (Γ) to H−1/2(Γ). The scalar Laplace-Beltrami operator is defined by ∆Γ :=

divΓ∇Γ = −curlΓcurlΓ. The vectorial Laplace-Beltrami operator is: ∆Γ = ∇ΓdivΓ − curlΓcurlΓ.

We introduce now H
−1/2
× (divΓ,Γ) := {v ∈ H

−1/2
× (Γ)/divΓv ∈ H−1/2(Γ)} which is the Hilbert

space of well-defined surface divergence fields. Its duals is: H
−1/2
× (curlΓ,Γ) := {v ∈ H

−1/2
× (Γ)/

curlΓv ∈ H−1/2(Γ)}. In the case of a smooth domain, the applications γt and γT can be extended by

continuity to surjective linear applications from H(curl,Ω) to H
−1/2
× (divΓ,Γ) and H

−1/2
× (curlΓ,Γ),

respectively.

3.2 Optimized transmission operators

The convergence of the domain decomposition algorithm is fundamentally related to the choice of
the operator S. For the time-harmonic Maxwell’s equations, the first converging iterative algorithm
has been proposed by Després in [10] where a simple impedance boundary operator is proposed

S0 = I. (7)

In the sequel, the corresponding zeroth-order Impedance Boundary Condition (IBC) is designated
by IBC(0). A convergence analysis of the DDM method for this boundary condition and for two
half-spaces of R3 has been developed in [12, 15]. The approach, based on Fourier transforms,
shows that the algorithm converges only for the propagating modes. For the evanescent modes,
the corresponding radius of convergence is equal to 1, which makes the method stagnates or di-
verges. Surprisingly enough, we prove in Section 4 that the method converges in the case of a
decomposition made of concentric spheres. However, the convergence remains slow for the evanes-
cent modes. To improve the convergence factor for these special modes, Alonso et al. [1] derive
an optimized impedance boundary condition by using a Fourier frequency decomposition. They
adapt the technique developed by Gander in [17] for the Helmholz equation to get a zero order op-
timized impedance boundary condition called here GIBC(α) (GIBC means Generalized Impedance
Boundary Condition). For the Maxwell’s equation, the GIBC(α) impedance operator writes down

Sα = α(I− 1

k2
curlΣijcurlΣij ), (8)

where α is judiciously chosen thanks to an optimization process (see Section 4.1). The same
condition is proposed in [12] for the first-order system of Maxwell’s equations. In [29], Peng et al.
show that the DDM converges for a well-chosen complex-valued number α and a decomposition
into two half-spaces but by considering both the TE (Transverse Electric) and TM (Transverse
Magnetic) modes. The improvement of the rate of convergence for the evanescent modes is obtained
at the price of the deterioration of the rate of convergence for the propagative modes. To improve
this last transmission condition for the two families of modes, Rawat and Lee [30] introduce the
following optimized transmission condition by using two second-order operators

Sα,β = (I +
α

k2
∇ΣijdivΣij )

−1(I− β

k2
curlΣijcurlΣij ), (9)
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where α and β are chosen so that an optimal convergence rate is obtained for the (TE) and (TM)
modes. We denote this boundary condition by GIBC(α, β) in the sequel of the paper. In the half-
space case, we refer to [30] for the expression of α and β. Similar boundary conditions are derived
in [12] for the first-order Maxwell’s equations. Very recently, in [11], the authors proved that the
convergence rates and the optimization processes for the first- and second-order formulations are
finally the same.

When developing optimized DDMs in [7], the authors use highly accurate square-root/Padé-type
On-Surface Radiation Conditions (OSRCs) [21, 4, 6, 26, 3, 31, 5, 14] as transmission conditions,
which are also GIBCs. While being easy-to-use and direct to implement in a finite element en-
vironment, these GIBCs lead to the construction of fast converging non-overlapping DDMs, most
particularly when computing the solution to high-frequency three-dimensional acoustics scatter-
ing problems. In [14], the extension of this high-order OSRC has been developed for the three-
dimensional first-order system of Maxwell’s equations. When coming back to the second-order
formulation, the corresponding square-root GIBC (that we denote by GIBC(sq, ε)) for the DDM
can be written as

Ssq,ε = Λ−1
1,εΛ2,ε, Λ1,ε = (I +∇Σij

1

k2
ε

divΣij − curlΣij
1

k2
ε

curlΣij )
1/2,

Λ2,ε = I− curlΣij
1

k2
ε

curlΣij ,
(10)

where the complex wavenumber kε is defined by: kε = k + ıε, with the optimal parameter ε =

0.39k1/3H2/3
Σij

, where HΣij is the the local mean curvature on Σij , e.g. the average of the two

principal curvatures at the interface. Finally, A1/2 stands for the square-root of the operator A,
where the square-root of a complex-valued number z is taken with branch-cut along the negative
real axis.

The construction of this GIBC is realized in three steps [14]

1) the half-space case is considered and the construction of the DtN operator is realized by
Fourier analysis,

2) the extension to a sphere SR (of radius R > 0) is made by considering the local tangent plane
approximation of the DtN map to a spherical surface and a regularization procedure of a
square-root operator with optimal damping parameter ε for SR,

3) and finally the approximation (10) of the MtE operator for a three-dimensional general
convex-shaped smooth surface Γ (:=Σij in the DDM context) is obtained by considering
the local osculating sphere.

A more adapted form of the square-root GIBC defined by (10) is given by

Λ2,ε(γ
T
i (Ep+1

i ))− ı

k
Λ1,εγ

t
i (curl Ep+1

i ) = Λ2,ε(γ
T
j (Ep

j )) +
ı

k
Λ1,εγ

t
j(curl Ep

j ), on Γ = Σij , (11)

and in this case one gets

gp+1
ji = Λ2,ε(γ

T
i (Ep+1

i )) +
ı

k
Λ1,εγ

t
i (curl Ep+1

i ) = −gpij + 2Λ2,ε(γ
T
i (Ep+1

i )), on Σij . (12)

The IBC (7) and the GIBCs (8)-(9) are defined by local surface operators. In contrast, the GIBC
given by (10)-(11) is nonlocal because of the presence of the square-root operator.

If we set kε = α−1/2k = −β−1/2k, let us remark that the Rawat-Lee condition GIBC(α,−α)
with the operator (9) can be seen as GIBC(sq, ε), where Λ1,ε is approximated by
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Λ1,ε = (I +∇Σij

1

k2
ε

divΣij − curlΣij
1

k2
ε

curlΣij )
1/2 ≈ (I +∇Σij

1

k2
ε

divΣij )
1/2 ≈ I +∇Σij

1

k2
ε

divΣij ,

which corresponds to a first-order Taylor expansion of the square-root operator. We will see in
what follows that a high-order complex-valued Padé approximation of the full nonlocal operator
(11) can be used to get a local representation that is well-suited for a numerical approximation
based on finite element methods and leads to quasi-optimal convergence of the DDM.

4 Convergence analysis for a model problem

We now study the convergence rate and spectral properties of the DDM algorithm (3) when using
the square-root transmission operator. In [12, 30], a Fourier analysis has been performed for
computing the convergence factor of the algorithm for each Fourier mode when using (8) or (9).
The assumption for the derivation is that the decomposition of R3 uses two half-space subdomains.
Here, we consider a more general situation: the whole domain Ω = R3 is separated in two curved
subdomains Ω1 and Ω2 by a spherical boundary of radius R

Ω1 = {x ∈ R3, ||x|| > R}, Ω2 = {x ∈ R3, ||x|| < R}, (13)

with Σ = ∂Ω1 = ∂Ω2 := SR. Let us study the spectral convergence properties of the iteration
operator A defined by (5) and associated with this domain decomposition.

4.1 Convergence theorem

For this decomposition, the DDM algorithm with the square-root GIBC defined by Ssq,ε consists
in solving, for p = 1, 2, ..., the coupled problems in the two subdomains{

curl curl Ep+1
1 − k2 Ep+1

1 = 0, in Ω1,

gp+1
21 := −ıkSsq,ε(γT1 (Ep+1

1 ))− γt1(curl Ep+1
1 ) = −ıkSsq,ε(γT2 (Ep

2)) + γt2(curl Ep
2), on Σ,

(14)
and{

curl curl Ep+1
2 − k2 Ep+1

2 = 0 in Ω2,

gp+1
12 := −ıkSsq,ε(γT2 (Ep+1

2 ))− γt2(curl Ep+1
2 ) = −ıkSsq,ε(γT1 (Ep

1)) + γt1(curl Ep
1), on Σ.

(15)
Since we have a spherical transmission boundary, we can explicitly write the solutions to (14) and
(15) by using the vectorial spherical harmonics. We then deduce the tangential trace γti (curl Ep

i )
and tangential component trace γTi (Ep

i )

γT1 (Ep
1) =

1

k

∞∑
m=1

ıαpmξ
(1)′
m (kR)∇SRY

c,1
m (θ, φ)− 1

k

∞∑
m=1

βpmξ
(1)
m (kR)n×∇SRY

s,1
m (θ, φ),

γt1(curl Ep
1) =

1

k

∞∑
m=1

αpmξ
(1)
m (kR)∇SRY

c,1
m (θ, φ)− 1

k

∞∑
m=1

ıβpmξ
(1)′
m (kR)n×∇SRY

s,1
m (θ, φ),

(16)

and

γT2 (Ep
2) =

1

k

∞∑
m=1

ıγpmψ
′
m(kR)∇SRY

c,1
m (θ, φ)− 1

k

∞∑
m=1

δpmψm(kR)n×∇SRY
s,1
m (θ, φ),

γt2(curl Ep
2) =

1

k

∞∑
m=1

γpmψm(kR)∇SRY
c,1
m (θ, φ)− 1

k

∞∑
m=1

ıδpmψ
′
m(kR)n×∇SRY

s,1
m (θ, φ).

(17)

Functions ψm and ζm are respectively the first- and second-kind Ricatti-Bessel functions of or-

der m, ξ
(1)
m = ψm + ıζm is the first-kind spherical Hankel’s function of order m, Y c,1

m (θ, φ) =
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P 1
m(cos(θ)) cos(φ) and Y s,1

m (θ, φ) = P 1
m(cos(θ)) sin(φ) are the spherical harmonics, P 1

m being the
first-order Legendre function of degree m. The operator ∇SR is the surface gradient and (θ, φ) are
the spherical coordinates. We refer to [2] for more details concerning these special functions. The
coefficient αpm, βpm, γpm and δpm are determined by using the transmission conditions in (14)-(15).
The expressions (16)-(17) lead to the following equalities

gp+1
21 :=

∞∑
m=1

(gp+1,m
21 )1 ∇SRY

c,1
m (θ, φ) +

∞∑
m=1

(gp+1,m
21 )2 n×∇SRY

s,1
m (θ, φ)

:=
1

k

∞∑
m=1

Am,1α
p+1
m ∇SRY

c,1
m (θ, φ) +

1

k

∞∑
m=1

Am,2β
p+1
m n×∇SRY

s,1
m (θ, φ)

=
1

k

∞∑
m=1

Bm,1γ
p
m ∇SRY

c,1
m (θ, φ) +

1

k

∞∑
m=1

Bm,2δ
p
m n×∇SRY

s,1
m (θ, φ),

gp+1
12 :=

∞∑
m=1

(gp+1,m
12 )1 ∇SRY

c,1
m (θ, φ) +

∞∑
m=1

(gp+1,m
12 )2 n×∇SRY

s,1
m (θ, φ)

:=
1

k

∞∑
m=1

Am,3γ
p+1
m ∇SRY

c,1
m (θ, φ)− 1

k

∞∑
m=1

Am,4δ
p+1
m n×∇SRY

s,1
m (θ, φ)

=
1

k

∞∑
m=1

Bm,3α
p
m ∇SRY

c,1
m (θ, φ)− 1

k

∞∑
m=1

Bm,4β
p
m n×∇SRY

s,1
m (θ, φ),

(18)

where 
Am,1 = ıµ

− 1
2

m,εξ
(1)′
m (kR)− ξ(1)

m (kR), Bm,1 = ıµ
− 1

2
m,εψ

′
m(kR)− ψm(kR),

Am,2 = ıξ(1)′
m (kR)− µ

1
2
m,εξ

(1)
m (kR), Bm,2 = ıψ′m(kR)− µ

1
2
m,εψm(kR),

Am,3 = ıµ
− 1

2
m,εψ

′
m(kR) + ψm(kR), Bm,3 = ıµ

− 1
2

m,εξ
(1)′
m (kR) + ξ(1)

m (kR),

Am,4 = ıψ′m(kR) + µ
1
2
m,εψm(kR), Bm,4 = ıξ(1)′

m (kR) + µ
1
2
m,εξ

(1)
m (kR),

(19)

setting

µm,ε = 1− m(m+ 1)

k2
εR

2
=
R2(k2 + ε2)2 −m(m+ 1)(k2 + ε2)

R2(k2 + ε2)2
+ 2

m(m+ 1)ε

R2(k2 + ε2)2
ı.

To obtain the expressions (18)-(19), we used the following properties of the spherical harmonics
(see [27], p. 39): 

∆SR∇SRY
n
m = −m(m+ 1)

R2
∇SRY

n
m,

∆SRcurlSRY
n
m = −m(m+ 1)

R2
curlSRY

n
m,

(20)

where Y n
m is the spherical harmonics of order (m,n). Since (∇SRY

n
m, n×∇SRY

n
m) is a basis of the

space of tangent vector fields on SR, we have
(gp+1,m

12 )1 =
Am,1
k

αp+1
m =

Bm,1
k

γpm, (gp+1,m
12 )2 =

Am,2
k

βp+1
m =

Bm,2
k

δpm,

(gp+1,m
21 )1 =

Am,3
k

γp+1
m =

Bm,3
k

αpm, (gp+1,m
21 )2 =

Am,4
k

δp+1
m =

Bm,4
k

βpm.

(21)

From (21), we obtain

αp+1
m =

Bm,1
Am,1

γpm, βp+1
m =

Bm,2
Am,2

δpm, γp+1
m =

Bm,3
Am,3

αpm, δp+1
m =

Bm,4
Am,4

βpm,
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implying that
(gp+1,m

21 )1 =
Bm,1
Am,3

Am,3
k

γpm =
Bm,1
Am,3

(gp,m12 )1, (gp+1,m
21 )2 =

Bm,2
Am,4

Am,4
k

δpm =
Bm,2
Am,4

(gp,m12 )2,

(gp+1,m
12 )1 =

Bm,3
Am,1

Am,1
k

αpm =
Bm,3
Am,1

(gp,m21 )1, (gp+1,m
12 )2 =

Bm,4
Am,2

Am,2
k

βpm =
Bm,4
Am,2

(gp,m21 )2.

(22)

Finally, we obtain the following iterative scheme

gp+1,m =


(gp+1,m

21 )1

(gp+1,m
21 )2

(gp+1,m
12 )1

(gp+1,m
12 )2

 = Amgp,m :=


0 0

Bm,1
Am,3

0

0 0 0
Bm,2
Am,4

Bm,3
Am,1

0 0 0

0
Bm,4
Am,2

0 0

gp,m, (23)

with Am the iteration matrix for a mode m ≥ 1. Since our problem is linear and we have an
orthonormal decomposition of the iteration operator A on the spherical harmonics basis, we can
prove that A = diag((Am)m≥1). Therefore, studying the global convergence of the two spherical
DDM for A requires the spectral study of the modal iteration matrices Am, for m ≥ 1.

For a fixed-point (Jacobi-type) method and a mode m, the convergence rate of the iterative
method is given by the spectral radius ρ(Am) of Am. A simple calculation shows that the eigenvalues
of Am are

λm,1 =

√
Bm,1 Bm,3
Am,1 Am,3

= −λm,2, λm,3 =

√
Bm,2 Bm,4
Am,2 Am,4

= −λm,4.

Let us remark that λm,1 = λm,3. The global iterative method (14)-(15) converges if and only if the
spectral radius ρ = max

m≥1
ρ(Am) is strictly less than one. The result is embedded in the following

Theorem.

Theorem 1. For any given initial guess E0
1 ∈ (L2(Ω1))3 and E0

2 ∈ (L2(Ω2))3, the iterative DDM
(14)-(15) converges in (L2(Ω1))3 × (L2(Ω2))3, i.e the convergence factor

∀m ≥ 1, ρ(Am) =

∣∣∣∣∣
√
Bm,2 Bm,4
Am,2 Am,4

∣∣∣∣∣ =
∣∣∣√Tm,1 Tm,2∣∣∣ < 1. (24)

In the above expressions, we set

Tm,1 =
Zm,1 − ıµ

1
2
m,ε

Zm,1 + ıµ
1
2
m,ε

, Tm,2 =
Zm,2 + ıµ

1
2
m,ε

Zm,2 − ıµ
1
2
m,ε

,

with Zm,1 =
ξ

(1)′
m (kR)

ξ
(1)
m (kR)

and Zm,2 =
ψ′m(kR)

ψm(kR)
.

To prove Theorem 1, let us first consider the following proposition.

Proposition 1. For ε > 0 and any m ≥ 1, we have,

|Tm,1| < 1. (25)

If ε = 0 and m 6=
√

1 + 4R2k2 − 1

2
:= mt, then the inequality (25) also holds.
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Proof. Setting Zm,1 = xm + ıym and µ
1
2
m,ε =

√
rm + ısm = am + ıbm, we obtain

|Tm,1|2 =

∣∣∣∣xm + ıym − ı(am + ıbm)

xm + ıym + ı(am + ıbm)

∣∣∣∣2 =
(xm + bm)2 + (ym − am)2

(xm − bm)2 + (ym + am)2
, (26)

with

am =

√√
r2
m + s2

m + rm
2

> 0, bm = sign(sm)

√√
r2
m + s2

m − rm
2

> 0

(denoting by sign the sign function).
If ε > 0 and xm < 0 < ym, we have from (26): |Tm,1|2 < 1, for all m. Let us prove that

xm < 0 < ym. Indeed, by writing Zm,1 as

Zm,1 =
ξ

(1)′
m (kR)

ξ
(1)
m (kR)

=
ξ

(1)′
m (kR)ξ

(1)
m (kR)

|ξ(1)
m (kR)|2

,

we have [2]

ym = =(ξ(1)′
m (kR)ξ

(1)
m (kR)) = ψm(kR)ζ ′m(kR)− ψ′m(kR)ζm(kR) = 1 > 0.

Furthermore, we obtain

xm = <(ξ(1)′
m (kR)ξ

(1)
m (kR)) =

1

2
(|ξ(1)

m (kR)|2)′.

To prove that xm < 0, we use the property [33] that |H(1)
ν (t)|2 is strictly decreasing with respect

to the positive variable t, for any fixed real-value ν. We have

xm = (|ξ(1)
m (t)|2)′ = (

π

2t
(|H(1)

m+1/2(t)|2)′ = (
π

2t
)′|H(1)

m+1/2(t)|2 + (
π

2t
)(|H(1)

m+1/2(t)|2)′ < 0.

Let us now assume that ε = 0. If one has a propagating mode, i.e. 1 ≤ m < mt, then
µ1/2
m,ε = am > 0. For the evanescent modes such that m > mt, µ

1/2
m,ε = ıbm, with bm > 0. In these

two cases, we have as previously: |Tm,1|2 < 1.

Proposition 2. For ε ≥ 0 and any m > mt, we have,

|Tm,2| < 1. (27)

If ε = 0 and m ≤ mt, the following equality holds:

|Tm,2| = 1. (28)

Proof. The quantity Zm,2 is real-valued. Therefore, we have

|Tm,2|2 =

∣∣∣∣Zm,2 + ı(am + ıbm)

Zm,2 − ı(am + ıbm)

∣∣∣∣2 =
(Zm,2 − bm)2 + a2

m

(Zm,2 + bm)2 + a2
m

. (29)

Let us first consider the case: ε ≥ 0 and m > mt. Then, we can prove that |Tm,2|2 < 1 if one
gets Zm,2 > 0. Let us write

Zm,2 =
ψ′m(kR)

ψm(kR)
=
ψ′m(kR)ψm(kR)

ψ2
m(kR)

. (30)
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To prove that ψ′m(kR)ψm(kR) > 0, we use the definition of the functions ψm. For r 6= 0, ψm(r) is
the solution of the ODE

ψ′′m(r) +

(
1− m(m+ 1)

r2

)
ψm(r) = 0.

If we multiply this equation by ψm(r) and integrate on (0, kR), we get (since ψm(0) = 0)

ψ′m(kR)ψm(kR) =

∫ kR

0

(
m(m+ 1)

r2
− 1

)
ψ2
m(r)dr +

∫ kR

0
ψ′2m(kR)dr. (31)

If (m(m+1)
k2R2 − 1) > 0, i.e m > mt, then (m(m+1)

r2 − 1) > 0, ∀r ∈ (0, kR). As a conclusion, this proves
that ψ′m(kR)ψm(kR) > 0 and finally |Tm,2| < 1 by using (30).

Let us now assume that ε = 0 and m ≤ mt. Then, we have (see Proposition 1) bm = 0 and
|Tm,2|2 = 1.

Theorem 2. For ε = 0 and if m is not a cut-off mode, i.e m 6= mt, we have

|Tm,1 Tm,2| < 1. (32)

If ε > 0, then there exists εmax such that the inequality (32) is satisfied for 0 < ε < εmax.

Proof. If ε = 0 and m 6= mt, the inequality (32) is a direct consequence of Propositions 1 and 2.
For ε > 0, the inequality (32) holds for the evanescent modes (m > mt). For the finite number of
propagating modes (1 ≤ m ≤ mt) and since (32) holds for ε = 0, a continuity argument on ε proves
that there exists εmax such that (32) holds for 0 < ε < εmax.

A consequence of this Theorem is that (if ε > 0)

∀m > 1, ρ(Am) :=
∣∣∣√Tm,1 Tm,2∣∣∣ < 1, (33)

and therefore the DDM converges globally since the radius of convergence of the iteration matrix is
such that ρ(A) := maxm>1 ρ(Am) < 1 for the spherical decomposition. This proves the convergence
Theorem 1. Considering ε > 0 ensures the well-posedness of the DDM. Finally, ε > 0 improves the
convergence of the iterative scheme for the transition zone between the propagating and evanescent
modes.

Remark 1. If one considers the Després impedance boundary condition IBC(0) (see Eq. (7) which
defines S0), the convergence factor is then given by

ρ(Am) =

∣∣∣∣∣
√
Zm,1 − ı
Zm,1 + ı

Zm,2 + ı

Zm,2 − ı

∣∣∣∣∣ . (34)

As previously, it can be proved that: ρ(Am) < 1 for all m ≥ 1, i.e that, for a spherical two-domain
decomposition, the DDM with Després condition converges. This is a very interesting result since
it can be proved [12] that the convergence factor is exactly 1 for the evanescent modes in the case
of a two half-space decomposition.

To illustrate the rate of convergence of the DDM with different impedance boundary conditions,
let us consider the case of a sphere of radius R = 1 and for k = 6π. The maximal number of modes
is mmax = [10kR] (where [10kR] designates the integer part of 10kR). We report on Figure 1 the
modal spectral radius ρ(Am) for the following transmission conditions: IBC(0) (Eq. (7)), GIBC(α)
(Eq. (8)), GIBC(α, β) (Eq. (9)) and GIBC(sq, ε) (Eq. (11)). For GIBC(α) and GIBC(α, β), the
optimal parameters α and β are numerically computed by solving the min-max problem

min
(α,β)∈C2

max
m≥1

ρ(Am) (35)
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Figure 1: Convergence rate with respect to m.

with the Matlab function fminsearch. Let us remark that solving (35) analytically is extremely
complicated. A practical alternative consists in using GIBC(α) and GIBC(α, β) that can be explic-
itly designed for the half-space approximation. More precisely, GIBC(α0) is given [1] by considering
the optimal parameter

α0 =
e−ı

π
4

((k2 − k2
−)(ξ2

max − k2))1/4
, (36)

with k− := k − π/L and ξmax the highest spatial Fourier frequency, L being the largest dimension
of the transmitting interface. In the case of a spherical interface and according to our notations,
we take: L = 2πR and ξmax = mmax. For GIBC(α1, β1) [30], we have

α1 =
k

k + ı

√
ξte,2

max − k2

, β1 = − k

k + ı

√
ξtm,2

max − k2

, (37)

where various values of ξte
max and ξtm

max are tested. The extension to a spherical interface is nontrivial.
Here, we fix the choice to ξte,tm

max = 2k which is numerically optimal for the sphere.
As we remarked above, IBC(0) leads to ρ(Am) < 1 for the propagative modes (1 ≤ m ≤ mt,

with mt = [kR] = 18) but ρ(Am) is very close to 1 for the evanescent modes (m > mt), which
results in a globally slowly converging DDM. For GIBC(α), we see that ρ(Am) < 1, for all m.
This is still improved for GIBC(α, β). GIBC(sq, 0) leads to a better convergence rate which can
furthermore be optimized in the transition zone by using GIBC(sq, ε) (with the value parameter
ε = 0.39k1/3R−2/3). Finally, a numerical study using the exact series solution shows that GIBC(α0)
with formula (36) can lead to a spectral radius larger than one, whatever the values of k− and ξmax,
highlighting the need for careful geometry-dependent optimization of the parameters.

4.2 Quasi-optimality - iterative Krylov subspace solvers

The aim of this Section is to show that the DDM is quasi-optimal in the sense that there exists
an accumulation point of the eigenvalues in the complex plane for the evanescent modes, i.e. when
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m� kR. The result is stated asymptotically for the spherical DDM. Let us recall that

H
(1)
m+1/2(t) ≈ −ıΓ0(m+ 1/2)

π

2m

tm+1/2
, Jm+1/2(t) ≈ − 1

Γ0(m+ 3/2)

tm+1/2

2m+1/2
, (38)

for |m+ 3/2| � t > 0, where Γ0 is the Gamma function. By using the expression of the Gamma
function for half integers and the definition of ξm and ψm, one gets the asymptotic approximations

ξm(t) ≈ −ı(2m)!

m!

2−m

tm
, ψm(t) ≈ (m+ 1)!

(2m+ 2)!
2m+1tm+1. (39)

Now, by using the expressions of Zm,1 and Zm,2 given in Theorem 1, we obtain

Zm,1 ≈ −
m

kR
, Zm,2 ≈ −

m+ 1

kR
,

for the evanescent modes. Finally, we deduce that

lim
m→∞

λm,(1,3) = − lim
m→∞

λm,(2,4) =
ıε

2k + ıε
.

This means that we have two opposite accumulation points in the complex plane for the evanescent
modes.

In a practical DDM, Krylov subspace solvers are generally preferred to a Jacobi (fixed-point)
method since they are more robust and converge faster. This is most particularly true when there
is a clustering of the eigenvalues in the complex plane. When using the DDM with GIBC(sq, ε),
we just have seen above that this is the case when solving: (I − A)g = b, for a spherical domain
decomposition. Indeed, in this situation, the eigenvalues of (I −A) are given by 1−λm,(1,2,3,4), for
m ≥ 1, and satisfy

lim
m→∞

1− λm,(1,3) = 1− ıε

2k + ıε
, lim

m→∞
1− λm,(2,4) = 1 +

ıε

2k + ıε
.

To illustrate this claim, let us consider the same parameters as in the numerical situation of Section
4.1. We compare on Figure 2 the history of the residual with respect to the number of iterations
#iter for the Jacobi and GMRES solvers to converge with a stopping criterion equal to 10−8, and
for the various transmission conditions. As we can observe, there is a hierarchy in the convergence
curves that is directly connected to the increasing order of the GIBCs, the best convergence being
obtained for GIBC(sq, ε). When using GIBC(α1, β1) with the parameters given in (37), the number
of iterations is about the same as for GIBC(α0). Finally, let us remark that some tests show that
the Jacobi method does not converge for all the GIBCs except for GIBC(sq, 0) and GIBC(sq, ε).

5 Localization of the square-root GIBC

The square-root transmission condition, given by (10)-(11), is nonlocal since it is defined by the
pseudodifferential operator Λ1,ε

Λ1,ε := (I + T )1/2, (40)

setting

T := ∇Γ
1

k2
ε

divΓ − curlΓ
1

k2
ε

curlΓ. (41)

Such an operator is impracticable in a finite element context since it generates a full matrix part
associated with the transmitting boundary. A standard way [7, 14, 24] to localize it consists in
using rational approximations. Here, we use the approach previously introduced in [14] in the
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Figure 2: Residual history of GMRES vs. #iter for the various GIBCs.

framework of OSRC methods. We introduce the rational Padé approximation of order Np of the
square-root function [24] with a rotation of the branch-cut

(1 + z)1/2 ≈ eı
θp
2 RNp((1 + z)e−ıθp − 1) = C0 +

Np∑
`=1

A`z

1 +B`z
= R0 −

Np∑
`=1

A`
B`(1 +B`z)

, (42)
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Figure 3: Eigenvalues distribution of the operator (I − A) for the different GIBCs.
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where RNp is the standard real-valued Padé approximation of order Np

(1 + z)1/2 ≈ RNp(z) = 1 +

Np∑
`=1

a`z

1 + b`z
, (43)

and

a` =
2

2Np + 1
sin2(

`π

2Np + 1
), b` = cos2(

`π

2Np + 1
).

The angle of rotation θp is a free parameter that is fixed for the numerical simulations and

C0 = eı
θp
2 RNp(e

−ıθp − 1), A` =
e−ı

θp
2 a`

(1 + b`(e−ıθp − 1))2
,

B` =
e−ıθpb`

1 + b`(e−ıθp − 1)
, R0 = C0 +

Np∑
`=1

A`
B`
.

(44)

If one formally considers that z = T , then Λ1,ε can be approximated by

Λ1,ε = (I + T )1/2 ≈ Λ̃1,ε := (R0 −
Np∑
`=1

A`
B`

(I +B`T )−1). (45)

Now, if we use this approximation, the equation (41) and we introduce Np coupled auxiliary vector
fields {φ`}`=1,...,Np , we obtain a local and approximate computation of Λ1,εM through Λ̃1,εM,
which is realized through the system

Λ̃1,εM = R0M−
Np∑
`=1

A`
B`

φ`, on Γ,

M−
(

I +B`

(
∇Γ

1

k2
ε

divΓ − curlΓ
1

k2
ε

curlΓ

))
φ` = 0, ` = 1, . . . , Np, on Γ,

(46)

setting ikM = γt(curl E). The way we use this representation in a DDM is explained in Section 6.
Since we use an approximation of the square-root GIBC, this clearly modifies the spectrum of

the operator (I − A) that we wish to solve. To illustrate this point, we report on Figure 4 the
spectrum of (I −A) when using GIBC(sq,ε) and GIBC(Np,θp,ε) (denoted by (I −ANp,θp)) related
to the Padé approximation, and for the numerical situation described in section 4. In [14], we
have numerically shown that θp = π/2 leads to the most accurate GIBC(Np,θp,ε) in the framework
of OSRC methods. For the DDM, some numerical simulations show that θp = π/2 also leads
to the best convergence results when using FEMs. As we have seen before for the square-root
operator, the eigenvalues of Am are such that λm,1 = λm,3 and λm,2 = λm,4. This is no longer true
when using a rational approximation. Indeed, we can see that we have four distinct eigenvalues

λ
Np,θp
m,1 = −λNp,θpm,2 and λ

Np,θp
m,3 = −λNp,θpm,4 for the associated iteration operator ANp,θpm , but with

λ
Np,θp
m,1 6= λ

Np,θp
m,3 . Furthermore, for Np ≥ 4, we observe here that the spectra of the two operators

(I − A) and (I − ANp,θp) are very close, with a large clustering around 1 +
ıε

2k + ıε
.

Since we perturbed the eigenvalues when using rational approximants, the convergence of the
Krylov subspace solvers is impacted. We report on Figure 5 the GMRES residual history with
respect to #iter when solving the DDM with spherical decomposition for the same situation as in
Section 4.1, based on (I − ANp,θp). We clearly see how Np affects the convergence rate, Np = 8
being optimal in this situation, even if Np = 4 already leads to a very good convergence.
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6 Finite element formulation of the DDM with GIBC

Let us now explain the implementation of the domain decomposition algorithm when using the
Padé-type transmission conditions in a finite element context. We recall that the iterative method
consists in solving the subproblems (3) and then computing the transmitted vector fields (4). For
the sake of conciseness, we describe the situation where the problem is set in a bounded subdomain
that we call Ω in this Section. It has no exterior nor interface connected to the scattering object.
Therefore, we have: Γi = ∅, Γ∞i and Γ := ∂Ω is an artificial interface. Extending the formulation
to the other situations is straightforward. For the sake of clarity, we abbreviate the notations Ep+1

i ,
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plane.
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gpij , gp+1
ji by E, gin, gout, respectively, used in systems (3) and (4). Then, we first have

curl curl E− k2E = 0, in Ω,

1

R0
Λ2,ε(γ

T (E)) + (M +

Np∑
`=1

α`φ
`) :=

1

R0
(I− curlΓ

1

k2
ε

curlΓ)(γT (E)) + (M +

Np∑
`=1

α`φ
`) =

1

R0
gin, on Γ,

M−
(

I +B`

(
∇Γ

1

k2
ε

divΓ − curlΓ
1

k2
ε

curlΓ

))
φ` = 0, ` = 1, . . . , Np, on Γ,

(47)

where ikM = γt(curl E) and α` = −A`/(R0B`). The updating equation is (from equation (12))

gout = −gin + 2Λ2,ε(γ
T (E)), on Σ. (48)

Let us consider now that Ω and Γ are respectively meshed by using NΩ
t tetrahedra and NΓ

t surface

triangles, respectively, resulting in the discrete domains: Ωh = ∪N
Ω
t

q=1T q and Γh := ∪N
Γ
t

q=1T
q. Let

us introduce: Φh := (φ`h)`=1,...,Np and ρh := (ρ`h)`=1,...,Np . For solving system (47), we use the

following symmetrical weak formulation: find (Eh,Mh,Φh,ρh) ∈ V Ω
h × V Γ

h × V
p
h × Z

p
h such that
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∫
Ωh

(curl Eh · curl Wh − k2 Eh ·Wh)dΩh + ık

∫
Γh

Mh ·WhdΓh = 0,

1

R0

∫
Γh

(γT (Eh) · vh −
1

k2
ε,h

curlΓhγ
T (Eh) · curlΓhvh)dΓh +

∫
Γh

Mh · vhdΓh

+

Np∑
`=1

α`

∫
Γh

φ`h · vhdΓh =
1

R0

∫
Γh

gin
h · vhdΓh,∫

Γh

Mh ·w`
hdΓh −

∫
Γh

(φ`h ·w`
h −

B`
k2
ε,h

curlΓhφ
`
h · curlΓhw

`
h)dΓh

−B`
∫

Γh

∇Γhρ
`
h ·w`

hdΓh = 0, ` = 1, . . . , Np,∫
Γh

(k2
ε,hρ

`
hz
`
h + φ`h · ∇Γhz

`
h)dΓh = 0, ` = 1, . . . , Np,

(49)

for any test-functions Wh ∈ V Ω
h , vh and w`

h in V Γ
h , and z`h in Zh, for ` = 1, . . . , Np. After solving

(49), the boundary data is updated through the relation

gout
h = gin

h − 2R0Mh − 2R0

Np∑
`=1

α`φ
`
h. (50)

The approximation spaces V Ω
h and V Γ

h are the usual volume and surface Nédélec’s space of lowest
order edge finite element [25], respectively. If NΩ

e (resp. NΓ
e ) is the number of edges of Ωh (resp.

Γh), we have: dim(V Ω
h ) = NΩ

e (resp. dim(V Γ
h ) = NΓ

e ). The space V p
h , which is defined by:

V p
h := ×Np`=1Vh, is of dimension Np

e := NpN
Γ
e . The approximation space Zh is the nodal finite

element space

Zh =
{
zh ∈ H−1/2(Γh) | zh|T q ∈ P1(T q), ∀q = 1, . . . , NΓ

t

}
,

where P1 is the space of complex-valued linear functions. In particular, we have: dim(Zh) = NΓ
v ,

where NΓ
v is the number of vertices of the triangulation of Γh. We also define: Zph := ×Npj=1Zh, with

dimension Np
v := NpNv. The function kε,h is the linear interpolation of kε over Γh. Let us now

introduce (R1, ...,RNΩ
e

), (r1, ..., rNΓ
e

) and (`1, ..., `NΓ
v

) as the basis of V Ω
h , V Γ

h and Zh, respectively.

Then, one gets for Wh ∈ V Ω
h , vh ∈ V Γ

h and zh ∈ Zh

Wh =

NΩ
e∑

q=1

WqRq, vh =

NΓ
e∑

q=1

vqrq and zh =

NΓ
v∑

m=1

um`m.

Let us now define the elementary integrals

AΩ
uv =

∫
Ωh

(curl Ru · curl Rv − k2 Ru ·Rv)dΩh,

Apq =

∫
Γh

rp · rqdΓh, Npq =

∫
Γh

1

k2
ε,h

curlΓhrp · curlΓrqdΓh,

Kmn =

∫
Γh

k2
ε,h`m`ndΓh, Lmq =

∫
Γh

∇Γh`m · rqdΓh,

(51)

with 1 ≤ u, v ≤ NΩ
e , 1 ≤ p, q ≤ NΓ

e and 1 ≤ m,n ≤ NΓ
v . The associated matrix AΩ ∈MNΩ

e ,N
Ω
e

(C),
A and N are in MNΓ

e ,N
Γ
e

(C), K ∈ MNΓ
v ,N

Γ
v

(C) and L ∈ MNΓ
e ,N

Γ
v

(C). Under these notations, the
system (49) can be written as the system of coupled equations

MUh = Fh, (52)
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where we define

M =


AΩ D 0 0
E A Aα 0

0 ATα Aα,B AL
α,B

0 0 AL,T
α,B AK

α,B

 ,Uh =


Eh

Mh

Φh

ρh

 , Fh =


0

F2,h

0
0

 , (53)

with
D := ıkA ∈MNΩ

e ,N
Γ
e

(C),

E :=
(A + N)

R0
∈MNΓ

e ,N
Ω
e

(C),

Aα := ((α`A)`=1,...,Np) ∈MNΓ
e ,N

p
e
(C),

Aα,B := diag(α`(B`N− A)`=1,...,Np) ∈MNp
e ,N

p
e
(C),

AL
α,B := diag((−α`B`L)`=1,...,Np) ∈MNp

e ,N
p
v
(C),

AK
α,B := diag((−α`B`K)`=1,...,Np) ∈MNp

v ,N
p
v
(C),

F2,h :=
A
R0

gin
h ∈ CN

Γ
e .

(54)

By AT , we designate the transposed of a given complex-valued matrix A. The sparse complex-
valued matrix M of size np × np (with np := NΩ

e +NΓ
e +Np

e +Np
v ) that defines the linear system

(52) is non-definite positive. In addition, the vector fields Uh and Fh are in Cn1,p . Finally, the
boundary data are updated by using (50).

7 Numerical results

In this section, we present some numerical examples concerning the performance of the DDMs
introduced in this paper and compare the various transmission conditions. Three scatterers are
considered: a circular cylinder, a sphere and a Falcon jet. All the numerical tests were performed
using the open source software package GetDDM, which combines the open source mesh generator
Gmsh [19] and the finite solver GetDP [13, 18], and is available online for further testing at the
address http://onelab.info/wiki/GetDDM together the input data files for the first two examples.

We first analyze in detail the case of a circular cylinder of radius R = 1 under TE (Einc =
eze
−ikx; Figure 6) and TM (Einc = eye

−ikx; Figure 7) plane wave incidence. The outer circular
boundary delimitating the computational domain is set to Γ∞ = C5, for a Silver-Müller absorbing
boundary condition. The domain of computation is cut into Ndom = 5 concentric subdomains (see
Figure 9) in such a way that the local number of degrees of freedom (involved in the FEM) for
each subdomain is well-balanced to optimize the domain decomposition algorithm. We report on
Figure 6 the number of iterations #iter of the GMRES without restart (with relative tolerance
equal to 10−6) for the DDM vs. the wavenumber k. Two densities of discretization points per
wavelength nλ are presented: nλ = 10 (top) and nλ = 20 (bottom). In each case, we compare
various transmission conditions: IBC(0), GIBC(α, β) and GIBC(Np, π/2, ε), for Np = 1, 2, 4, 8

and ε = 0.39k1/3R
−2/3
Σij

. For the TE polarization case, we observe that the number of iterations for

IBC(0), GIBC(α, β) and GIBC(1, π/2, ε) depends on k while this does not seem to be the case
for GIBC(Np, π/2, ε), with Np = 2, 4, 8. For example, for k = 60 and nλ = 20, IBC(0) requires
62 iterations, GIBC(α, β) needs 44 iterations while GIBC(4, π/2, ε) converges in 22 iterations.
We remark a slight degradation in the number of iterations for large values of k with nλ = 10,
which can be explained by the under-resolution of the mesh. For the TM polarization, we observe
on Figure 7 the same behavior even if GIBC(α, β) seems to depend less on k than for the TE
case. Also, in all cases the convergence behavior of the Rawat-Lee condition GIBC(α, β) is fairly
similar to the convergence of the lowest order Padé-localized condition GIBC(1, π/2, ε), which is
consistent with the remark made at the end of Section 3.2. The convergence behavior in terms of
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the number of subdomains is reported on Figure 8. The number of iterations grows nearly linearly
with the number of subdomains, which is expected without a coarse grid [32]. Finally, we report
on Figure 9 the modulus of the reconstructed electromagnetic scattered field for k = 10, for the
TE polarization case.

With respect to computational times and memory, the extra cost of the auxiliary unknowns
introduced by GIBC(Np, π/2, ε) is modest. For example, in the high-frequency TE case on 5
subdomains, with k = 60 and nλ = 20, the total CPU time on Intel Xeon CPUs at 2.70GHz is
12h for IBC(0), 9h36 for GIBC(α, β) and 6h for GIBC(4, π/2, ε). The total memory is 160Gb for
IBC(0), 161Gb for GIBC(α, β) and 164 Gb for GIBC(4, π/2, ε).

The second test case concerns the scattering by the unit sphere. The fictitious boundary Γ∞ is
the sphere of radius 2. We report on Figure 10 the residual history of the GMRES without restart
for two subdomains, for k = 20 and nλ = 10. We can see that IBC(0) requires many iterations.
Using GIBC(α, β) needs 50% more iterations than GIBC(4, π/2, ε) to converge with a relative
residual equal to 10−6.

The third example presents the scattering problem of an electromagnetic wave by a Falcon
jet (see Figure 11). The computation involves Ndom = 4 subdomains (Figure 11, top). Figure 11
(bottom) reports the electromagnetic field in a vertical slice computed by the domain decomposition
method. We observe on Figure 12 that the converge of the GMRES (for a residual equal to 10−5)
is obtained for IBC(0) in about 100 iterations, for GIBC(α, β) in 30 iterations and in 18 iterations
for GIBC(2, π/2, ε).

8 Conclusion

In this paper we have proposed and analyzed a high-order optimized Schwarz domain decomposition
method for the time harmonic Maxwell equations, which exhibits quasi-optimal convergence prop-
erties. The algorithm is based on high-order rational approximations of the Magnetic-to-Electric
operator on the transmitting interfaces between the subdomains. The resulting code and examples
are freely available online for further testing.

As seen in this paper for electromagnetics, and in [7] for acoustics, once a suitable high-order
transmitting operator has been built, the optimized Schwarz domain decomposition method ex-
hibits quasi-optimal convergence. Future work could thus deal with the application of the same
methodology to elastodynamics, based on the recent work by Darbas et al. [8].
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[9] B. Després. Décomposition de domaine et problème de Helmholtz. C.R. Acad. Sci. Paris,
1(6):313–316, 1990.

[10] B. Després, P. Joly, and J. E. Roberts. A domain decomposition method for the harmonic
Maxwell equations. In Iterative methods in linear algebra (Brussels, 1991), pages 475–484,
Amsterdam, 1992. North-Holland.

[11] V. Dolean, M. Gander, S. Lanteri, J.-F. Lee, and Z. Peng. Effective transmission conditions for
domain decomposition methods applied to the time-harmonic curl-curl maxwell’s equations.
J. Comput. Phys., 280(1):232–247, 2015.

[12] V. Dolean, M. J. Gander, and L. Gerardo-Giorda. Optimized Schwarz methods for Maxwell’s
equations. SIAM J. Sci. Comput., 31(3):2193–2213, 2009.

[13] P. Dular, C. Geuzaine, F. Henrotte, and W. Legros. A general environment for the treatment
of discrete problems and its application to the finite element method. IEEE Transactions on
Magnetics, 34(5):3395–3398, 1998.

[14] M. El Bouajaji, X. Antoine, and C. Geuzaine. Approximate local magnetic-to-electric sur-
face operators for time-harmonic Maxwell’s equations. Journal of Computational Physics, to
appear, 2015.

[15] M. El Bouajaji, V. Dolean, M. J. Gander, and S. Lanteri. Optimized Schwarz methods for the
time-harmonic Maxwell equations with damping. SIAM J. Sci. Comput., 34(4):A2048–A2071,
2012.

[16] O. G. Ernst and M. J. Gander. Why it is difficult to solve Helmholtz problems with classical
iterative methods. In Numerical analysis of multiscale problems, pages 325–363. Springer,
2012.

[17] M. J. Gander, F. Magoulès, and F. Nataf. Optimized Schwarz methods without overlap for
the Helmholtz equation. SIAM J. Sci. Comput., 24(1):38–60 (electronic), 2002.

[18] C. Geuzaine. GetDP: a general finite-element solver for the de Rham complex. PAMM,
7(1):1010603–1010604, 2007.

20



[19] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre-
and post-processing facilities. International Journal for Numerical Methods in Engineering,
79(11):1309–1331, 2009.

[20] J. Jin. The Finite Element Method in Electromagnetics. John Wiley & Sons, Incorporated,
New York, second edition, 2002.

[21] G. A. Kriegsmann, A. Taflove, and K. R. Umashankar. A new formulation of electromagnetic
wave scattering using an on-surface radiation boundary condition approach. IEEE Trans.
Antennas and Propagation, 35(2):153–161, 1987.
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Figure 6: Circular cylinder under TE plane wave incidence: number of GMRES iterations #iter
vs. k (Ndom = 5, nλ = 10 (top) and nλ = 20 (bottom)).
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Figure 7: Circular cylinder under TM plane wave incidence: number of GMES iterations #iter vs.
k (Ndom = 5, nλ = 10 (top) and nλ = 20 (bottom)).
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Figure 8: Circular cylinder under TM polarization: Number of iterations vs. number of subdomains
(k = 30, nλ = 20).

Figure 9: Circular cylinder under TE polarization: ||E|| (for Ndom = 5 and k = 10).
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Figure 10: Unit sphere: residual history of the GMRES without restart (Ndom = 2, k = 20,
nλ = 10).
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Figure 11: Electromagnetic scattering by a Falcon jet.
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Figure 12: Falcon jet: residual history of the GMRES without restart (Ndom = 4, λ = 10, nλ = 10).
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