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Power system stability and 
voltage stability.

o Is power system stability a single problem?
YES!

“is the property of a power system which enables it to remain 
in a state of equilibrium under normal operating conditions 
and to regain an acceptable state of equilibrium after a 
disturbance”

o What is voltage stability?
“voltage instability stems from the attempt of load dynamics to 

restore power consumption beyond the capability of the 
combined transmission and generation system”

o What is voltage collapse?
“the process by which the sequence of events accompanying 

voltage instability leads to a low unacceptable voltage 
profile in a significant part of the power system”

(may or may not be the final outcome of voltage instability)



2

Voltage stability and angle 
stability.

o Is there clear distinction between angle and voltage 
instability?

NOT ALWAYS!
“often both types of instabilities come together and one may 

lead to other”
o Distinction between the two types is important for 

understanding of the underlying causes of the problems in 
order to develop appropriate design and operating 
procedures.

o Distinction is effective but the overall stability of the 
system should be kept in mind.

o Solutions for one problem should not be at expense of 
another.

o It is essential to look at all aspects of the stability 
phenomena and at each aspect from more than one 
viewpoint.

Why Voltage Stability is 
more and more important?

o Generation centralized in fewer, larger power 
plants:

- fewer voltage controlled buses
- longer electrical distances between generation 

and load
o Extensive use of shunt capacitor compensation
o Voltage instability caused by line and generator 

outages
o Many incidents throughout the world (France, 

Belgium, Sweden, Japan, USA, etc.)
o Operation of system closer to its limits
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Main results of the post-mortem 
analysis of 20 incidents

o The initial event may be due to a variety of causes:
- Small gradual changes such as natural increase in system load,
- Large sudden disturbances such as loss of a generating unit or a

heavily loaded line,
- cascading events
o The inability of the system to meet its reactive demands.
o Voltage collapse generally manifests itself as a slow decay in voltage.
o Voltage collapse is strongly influenced by system conditions and

characteristics:
- large distances between generation and load,
- ULTC actions,
- Unfavorable load characteristics,
- Poor coordination between various control and protective systems
o The voltage collapse may be aggravated by excessive use of shunt

capacitor compensation.

Voltage stability analysis

o Mechanism of voltage instability:
- How and why does instability occur?
- What are the key contributing factors?
- What are voltage-weak areas?
- How to improve voltage stability ?
o Proximity to voltage instability:
- How close is the system to voltage instability?
{Closely related issue: voltage (in)stability indices 

(indicators)}
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Voltage instability illustration 
on a simple system.

BUS  1  380.00    0.0    0.0    0.0    0.0  ;
BUS  2   20.00    0.0    0.0    0.0    0.0  ;
BUS  3  380.00    1500.0   300.0    0.0    0.0  ;
LINE '1-3' 1 3
0. 79.8  0. 1350. 1  ;
LINE '1-3b' 1 3
0. 79.8  0. 1350. 1  ;
TRFO '2-3' 2 3 ' ' 
0.0  8.  0.0  104.0  500.0  0. 0. 0  0. 0.  1 ;
GENER 1 1 1
1050.0  0.0  1.1  900.0  -9999.  9999.  1  ;
GENER 2 2 2
300.0  0.0  0.9777  500.0  -9999.  9999.  1  ;
SLACK 1 ;
GROUP-PV '1' 1. ;
GROUP3 '2'
2.1  2.1  0.1  0.  0.  50.  0.  0. ;
OXL '2' 
0.  2.825  20.  20. ;
LTCDYN '4-3' 
20. 10. ;
LOAD(V)* 2. 2. ;

Voltage instability in a simple 
system – modelling 1.

Load modeling: α
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Maximum deliverable power – 1.

Thinking on:

Realistic: maximum deliverable power keeping power factor constant.

*
sysload ZZ = Is not realistic.

For the simple system considered:
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V-Q curves.

V-Q curve is a characteristic of both
the network and the load

Q1 and Q2 are reactive power margins 
with respect to 
The loss of operating point.

Q3 provides a measure of the Mvar 
distance to system
Operability.

Example 1: loss of a line with 
LTC-controlled load.
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Example 2: Corrective controls –
LTC blocking.

Example 3: Corrective controls –
capacitor switching.
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Example 4: Corrective controls –
generator voltage increase.

Example 5: Corrective controls –
LTC set-point decrease.
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Example 6: Corrective controls –
load shedding.

From dynamic model to load flow 
Jacobian.

Power system dynamics is naturally described by 
differential-algebraic equations:
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An equilibrium point: ),( 00z µ is defined by: ),( 00zF µ

An equilibrium point: ),( ** µz where: ),( ** µzFDz Singular bifurcation
Point.

IMORTANT: There is direct relation between singularities of the power 
flow Jacobian and actual bifurcations of the full dynamical system
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Beyond ordinary (vanilla) power 
flows.

q Distributed “slack” bus.
q Q limits:

- PV→ PQ
- Active power and Voltage dependent

6543
2

2
2

1 aVaPaPVaVaPaQ +++++=lim

q Active power limits.
q Export flows.
q Line overloads.

Continuation Power Flows

Effective continuation method, and consequently 
continuation power flow, solves the problem via four basic 
elements:

q Predictor. Its purpose is to find an approximation for the 
next solution. Usually tangent, first-order polynomial, or 
zero order polynomial (as it is the case in this paper) 
predictor is employed.

q Parameterization. Mathematical way of identifying each 
solution on the solution curve. Parameterization augments 
the system of power flow equations.

q Corrector. Usually, application of Newton method to the 
augmented system of equations.

q Step length control. Can be done by optimal fixed step 
length or by adaptive step length control.
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Continuation Power Flows

Typical natural parameters of interest include 
the following:

q The total system demand.
q The demand at a given bus or within a given 

area.
q The amount of power transfer between two 

areas or between two buses.
q Some other parameters such as the impedance 

of a line, etc.

CPF – Mathematical formulation - 1
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CPF – Mathematical formulation - 2
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Continuation power flow with overload and generation re-dispatch

CPF – Example using IEEE-118  
and 39 test systems.

IEEE – 39 test system: 
- Without limits 11998.54 MW 
- with flow limits 7245 MW

IEEE – 118 test system: 
Evolution of voltage at the system critical
Bus (bus 95)
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CPF – Example using IEEE-118 test 
system.

IEEE – 118 test system:
-all limits considered
-Without flow limits max. loadabality 
19250.38 MW 

-With flow limits max. loadability 
10156.92 MW

Voltage Stability Indices 
(indicators)

Sensitivity factors:

-Loading margin,
-Local load margins,
-Reduced determinant,
-Tangent vector index,
-System determinant,
-Reactive power margins,
-V/V0 index.
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W – complex matrix of left eigenvectors
U – complex matrix of right eigenvectors
Λ - diagonal matrix of complex 
eigenvectors
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Voltage Stability Indices 
(indicators)

V-Q sensitivities:
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Voltage Stability Indices 
(indicators)

BPA Voltage Stability Index:
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“R” is a region of the system of particular interest
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Voltage Stability Indices (VIP –
voltage instability predictor)
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Static vs. Time Domain Methods 

Static methods:

q Capture the loss of a long-term equilibrium,
q Based on algebraic equations that stem from the 

equilibrium conditions of long-term dynamics,
q Cannot (easily) account for controls that depend on the 

system time evolution
Time domain methods:
q Higher modeling accuracy,
q Possibility to study other instability mechanisms than the 

loss of equilibrium,

q Higher interpretability of results.
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Approximation of long-term 
equilibrium equations by standard 
load flow equations 

Under voltage control: 
-voltage drop effect
Under rotor current limit:
-reactive power output varies with 
voltage and active power

Constant voltage
Constant reactive power

- Active power imbalance not left to slack-bus but shared by generators 
according to governor/LFC effects
- Update reactive power capability with active power output

generators

If controlled by LTC:
-if LTC not limited: constant power
-If LTC limited: consider short-term 
characteristics
Load self-restoration
(consider long-term char.)
Other cases (consider short-term)

Constant power

loads

True long-term equilibrium 
calculation

Standard Load flow

Quasi Steady_State (QSS) Long-
Term Simulation

Load evolution

Generators and regulators
SVCs
HVDC
Induction motors

Long-Term dynamics

Short-term dynamics replaced
By equilibrium equations

)(tw φ=

),,,,( wzzyxhz DCCC =&

Generic model of load self-restorat.
Secondary voltage control

Load frequency control
Load tap changers
Overexcitation limiters
Automatically switched capacitors

)),(,,,()( wkzzyxh1kz DCDD =+
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QSS main features

qCompromise between efficiency of static methods and advantages 
of time-domain methods,
qAccurate enough for security analysis,
qAdequate for real-time applications
qFocuses on long-term dynamics
qCannot deal with severe disturbances to short-term instability
(A solution: couple transient stability simulation and QSS)
qCannot simulate the final collapse in cases where short-term 

dynamics becomes unstable due to long-term instability (usually 
not of interest in security analysis)

qLoss of short-term equilibrium can be detected by QSS method

QSS main features - 2

qEDF (France),
qHydro-Quebec (Canada),
qELIA (Belgium),
qHTSO (Greece)
qCESI, GRTN (Italy, within the OMASES project)

Power Utilities and Companies using ASTRE:
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Voltage security analysis 

Continuation power flow
Optimization methods
Time simulation coupled with 
sensitivity analysis

Determine maximum stress allowed 
for the system (loadability limit)

Post-contingency loadability limit
Secure operation limit

Combine contingency and stress 
analysis

Sensitivity & eigenvector based 
methods
Optimal power flow

Preventive or corrective control

Post-contingency load flow
Modified load flow
VQ curves
Multi-time-scale simulation
QSS long-term simulation

Evaluate impact of contingencies

MEANSENDS

Post-contingency load flow

Evaluate the impact of contingency by computing the post-contingency 
long-term equilibrium,

In unstable cases with no long-term equilibrium, any numerical method 
trying to solve the equilibrium equations will diverge

Simple instability indicator, but:

qDivergence may be caused by pure numerical problems
qIn truly unstable case, following divergence, we are left without 
qInformation on the nature and location of the problem, remedies, etc.
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An example of Modified Load Flow

0yg =)( y – state vector;    g – power “mismatch” vector

Usual Newton-Raphson iterations (k=1,2,…):

solve )( 1k
y ygyg −−=∆

increment yyy 1kk ∆+= −

Non divergent load flow:

solve

increment

where *α minimizes ∑ − =∆+
i

1k2
i Fyyg )()( αα

)( 1k
y ygyg −−=∆

yyy 1kk ∆+= − *α

All mismatches negligible: solved

No solution:

The method provides a solution
with minimum mismatches.
The largest mismatches point out
the voltage problem area indicating
where power should be injected
to restore solvability

CAUTION: Generator limits handling
require great care.

Optimization methods

Solve: µmax
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- faster

With respect to continuation power flow:

- cannot (at least easily) incorporate controls that depends on the 
system “path” between base case and max. loadability (bifurcation)
points
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Examples using QSS simulation: 
Nordic – 32 test system.

A slightly modified version of a 
test system used by CIGRE 
Task Force 38.02.08.

All the loads in the system 
modeled as voltage dependent
(exponential model with 1 for 
active power and 2 for reactive 
power.)

All the loads, except in the 
equivalent area are controlled 
By LTCs .

All generators protected by OXL 
with fixed time delay. 

Optimal load shedding: the time 
vs. amount issue
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Load shedding: analysis procedure

∆ ∆Pup∆Plow

Binary search

System protection schemes 
against voltage collapse

Example of SPS against voltage 
collapse in  the South part of 
Sweden

Recent research conducted at University of Liege: Closed-loop SPS (load shedding)
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Automatic learning techniques for 
voltage security assessment. 

Automatic Learning – main steps.

qBuilding of a large data base of pre-analyzed 
scenarios (off-line).

qApplying AL methods to extract the complex 
relationships between the attributes and the 
classification or margin (off-line).
qOn-line. The obtained synthetic information is 

very simple and fast to use. 
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Useful links.

http://power.ece.drexel.edu/ (free software, Matlab,…)

http://thunderbox.uwaterloo.ca/~claudio/claudio.html (free software, Matlab, C/C++, 
IEEE Report on Voltage stability)

www.pserc.wisc.edu (useful papers and reports)

http://www.engr.wisc.edu/ece/faculty/ (follow web pages of Prof. Alvarado, Dobson, 
and DeMarco)

www.montefiore.ulg.ac.be

Contacts: Dr. Mevludin Glavic (glavic@montefiore.ulg.ac.be ) 
Dr. Thierry Van Cutsem (vct@montefiore.ulg.ac.be)


