

## POWER SYSTEM VOLTAGE STABILITY: A SHORT TUTORIAL

Dr. Mevludin Glavic

University of Liège Electrical Engineering and Computer Science Department

(The demos included and the material in part are provided by Dr. Thierry Van Cutsem)

































## From dynamic model to load flow Jacobian.

Power system dynamics is naturally described by differential-algebraic equations:

| $\dot{x} = f(x, y, \mathbf{m})$ $0 = g(x, y, \mathbf{m}) \qquad \text{or}$ | $\begin{bmatrix} \dot{x} \\ 0 \end{bmatrix} = F(z, \mathbf{m})$                                         |    |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----|
| Assuming Jacobian                                                          | $D_y g(\bullet)$ is nonsingular: $\dot{x} = f(x, y^{-1}(x, \mathbf{m}), \mathbf{m}) = s(x, \mathbf{m})$ | n) |
| An equilibrium point:                                                      | $(z_0, \mathbf{m}_0)$ is defined by: $F(z_0, \mathbf{m}_0)$                                             |    |
| An equilibrium point:                                                      | $(z_*, \mathbf{m}_*)$ where: $D_z F(z_*, \mathbf{m}_*)$ Singular bifurcation Point.                     | n  |
| IMORTANT: There flow Jacobian and                                          | s direct relation between singularities of the power ictual bifurcations of the full dynamical system   |    |

























## Approximation of long-term equilibrium equations by standard load flow equations



| Standard Load flow                                                                                                                    | True long-term equilibrium calculation                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                       | loads                                                                                                                                                                                                               |
| Constant power                                                                                                                        | If controlled by LTC:<br>-if LTC not limited: constant power<br>-If LTC limited: consider short-term<br>characteristics<br>Load self-restoration<br>(consider long-term char.)<br>Other cases (consider short-term) |
| g                                                                                                                                     | enerators                                                                                                                                                                                                           |
| Constant voltage<br>Constant reactive power                                                                                           | Under voltage control:<br>-voltage drop effect<br>Under rotor current limit:<br>-reactive power output varies with<br>voltage and active power                                                                      |
| <ul> <li>Active power imbalance not left t<br/>according to governor/LFC effects</li> <li>Update reactive power capability</li> </ul> | to slack-bus but shared by generators with active power output                                                                                                                                                      |







| NDS                                                                    | MEANS                                                                                                                    |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Evaluate impact of contingencies                                       | Post-contingency load flow<br>Modified load flow<br>VQ curves<br>Multi-time-scale simulation<br>QSS long-term simulation |
| Determine maximum stress allowed<br>for the system (loadability limit) | Continuation power flow<br>Optimization methods<br>Time simulation coupled with<br>sensitivity analysis                  |
| Combine contingency and stress analysis                                | Post-contingency loadability limit<br>Secure operation limit                                                             |
| Preventive or corrective control                                       | Sensitivity & eigenvector based<br>methods<br>Optimal power flow                                                         |



















