
RESOLUTION

Most useful proof method in implementations.

Proof method by refutation :

as with semantic tableaux, instead of proving A is valid,

we prove ¬A is inconsistent ;

instead of proving E |= A

we prove E ∪ {¬A} is inconsistent.

Classical resolution requires formulas in clausal form,

or conjunctive normal form.



Normal forms

The expression (x2 − 4x)(x+3)+ (2x− 1)2 + 4x− 19

is a polynomial, but its properties are not obvious. A more convenient

form for the same polynomial will emphasise its degree, its roots, . . ..

Normal forms (or canonical forms) are used for that purpose. The

most used forms are :

x3 + 3x2 − 12x− 18 (sum of monomials, decreasing degrees) ;

(x− 3)(x+3−
√
3)(x+3+

√
3) (product of linear factors) ;

[(x+3)x− 12]x− 18 (Horner form).



Disjunctive normal form I

p q r p ⇒ q (p ⇒ q) ⇒ r

T T T T T
T T F T F
T F T F T
T F F F T
F T T T T
F T F T F
F F T T T
F F F T F

( p ∧ q ∧ r)
∨ ( p ∧ ¬q ∧ r)
∨ ( p ∧ ¬q ∧ ¬r)
∨ (¬p ∧ q ∧ r)
∨ (¬p ∧ ¬q ∧ r)

The truthtable of (p ⇒ q) ⇒ r (left), demonstrates that this formula is

logically equivalent to the disjunctive formula (right). Each disjunct

corresponds to a “true” line of the table.

A disjunctive normal form is a disjunction of cubes, which are

conjunctions of literals. Every formula has a truthtable and is

therefore logically equivalent to a disjunctive normal form (DNF).

Comment. A DNF can contain any (finite) number of cubes ; a cube can contain
any (finite) number of literals.



Disjunctive normal form II

The cube (ℓ1 ∧ ℓ2 ∧ · · · ∧ ℓn) , (n ∈ N) , is sometimes written
�{ℓ1, . . . , ℓn}, or

�

i ℓi, or simply {ℓ1, . . . , ℓn}.

Comment. true et false are not literals, but they are cubes.

A cube is inconsistent if and only if it contains a pair of opposite

literals, a complementary pair.

A cube is valid if and only if it is empty.

A DNF is inconsistent if and only if all its cubes are inconsistent.

The empty DNF is therefore inconsistent.



Conjunctive normal form I

A clause is a disjunction of literals.

A clause can be represented as
�{ℓi : i = 1, . . . , n}, and even as

{ℓi : i = 1, . . . , n}, although the latter is ambiguous and should be

avoided.

Comment. Sometimes, a notation like pqr is used to denote the cube

p ∧ ¬q ∧ r or the clause p ∨ ¬q ∨ r. This is ambiguous and should be

avoided.

The only inconsistent clause is the empty clause, denoted ✷.

A clause is valid if and only if it contains a pair of opposite literals, a

complementary pair.

A unit clause contains a single literal.



Conjunctive normal form II

A conjunctive normal form or CNF is a conjunction of clauses.

Examples :

— (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬r) – CNF

— (¬p ∨ q ∨ r) ∧ ¬(¬q ∨ r) ∧ (¬r) – not CNF

A CNF is valid if and only if all its clauses are valid ; as a consequence,

the empty CNF is valid.

Every formula is logically equivalent to some CNF.

Comment. Clauses, cubes, DNF and CNF are formulas and therefore contain finitely
many terms.



Why normal forms ?

A useful normal form must be

— general enough : any formula should have a logically equivalent

normal form ;

— as specific as possible, so specific algorithms can be designed

to deal with normal forms, more efficient than the general

algorithms.

Normal forms could be unique, but that is not true for DNF and CNF.

Example. The DNF

(p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∨
(¬p ∧ q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r)
is logically equivalent to a shorter DNF :

(p ∧ r) ∨ (¬q ∧ ¬r) ∨ (¬p ∧ q ∧ r)



Normalization algorithm I

From now on, only CNF is considered.

1. Eliminate all connectives but ¬, ∨, ∧.
2. Use De Morgan laws for propagating ¬ occurrences down the syntactic tree.

¬(A ∧B) ↔ (¬A ∨ ¬B)
¬(A ∨B) ↔ (¬A ∧ ¬B)

3. Eliminate double negations.

¬¬A ↔ A

4. Use distributivity laws to propagate ∨ downward.

A ∨ (B ∧ C) ↔ (A ∨B) ∧ (A ∨ C)
(A ∧B) ∨ C ↔ (A ∨ C) ∧ (B ∨ C)

A CNF can be viewed as a set of clauses, a clausal form.

Exercise. Observe the link beteen a CNF logically equivalent to A and a DNF
logically equivalent to ¬A.



Normalization algorithm II

Variable L is a (conjunctive) set of disjunctions ; its initial value is {A} where A is
any formula (viewed as a disjunction of one term). The final value of L is a CNF,
logically equivalent to A. We call disclause any disjunction containing at least one
term which is not a literal.

L := {A} ;
As long as L contains some disclause do

{�L ↔ A is invariant }
select a disclause D ∈ L ;
select a non-literal t ∈ D ;
if t = α do

t1 := α1; t2 := α2;
D1 := (D − t) + t1; D2 := (D − t) + t2;
{D ←→ D1 ∧ D2 }
L := (L\{D}) ∪ {D1, D2}

else (t = β) do
t1 := β1; t2 := β2;
D′ := ((D − t) + t1) + t2;
{D ←→ D′ }
L := (L\{D}) ∪ {D′}



Example

Design a CNF logically equivalent to (¬p ⇒ ¬q) ⇒ (p ⇒ q).

(¬p ⇒ ¬q) ⇒ (p ⇒ q)

¬(¬¬p ∨ ¬q) ∨ (¬p ∨ q) (⇒ elimination)

(¬¬¬p ∧ ¬¬q) ∨ (¬p ∨ q) (downward propagation, ¬)
(¬p ∧ q) ∨ (¬p ∨ q) (double negation)

(¬p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q) (distributivity)

Formula (¬p ⇒ ¬q) ⇒ (p ⇒ q) is logically equivalent to CNF

(¬p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q) .

It is also logically equivalent to ¬p ∨ q .



Example (bis)

1. {(¬p ⇒ ¬q) ⇒ (p ⇒ q)} Init

2. {¬(¬p ⇒ ¬q) ∨ (p ⇒ q)} β,1
3. {¬(¬p ⇒ ¬q) ∨ ¬p ∨ q} β,2
4. {¬p ∨ ¬p ∨ q , ¬¬q ∨ ¬p ∨ q} α,3
5. {¬p ∨ ¬p ∨ q , q ∨ ¬p ∨ q} α,4

Therefore the CNF is

(¬p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q) .

It can be simplified into

(¬p ∨ q) ∧ (¬p ∨ q) ,

and further into

¬p ∨ q .



Simplification of clausal forms

The normalization algorithm usually leads to CNF that can (should) be simplified.

1. Keep only one occurrence of a literal inside a clause.

Example : (¬p ∨ q ∨ ¬p) ∧ (r ∨ ¬p) ←→ (¬p ∨ q) ∧ (r ∨ ¬p)

2. Valid clauses (containing a complementary pair) can be

omitted.

Example : (¬p ∨ q ∨ p) ∧ (r ∨ ¬p) ←→ (r ∨ ¬p)

3. If a clause c1 is included into a clause c2, then c2 can be

omitted.

Example : (r ∨ q ∨ ¬p) ∧ (¬p ∨ r) ←→ (¬p ∨ r)

These simplifications lead to a pure normal form, which is still not unique. For
instance, (p ∨ ¬q) ∧ q and p ∧ q are pure, logically equivalent CNFs.



Resolution rule I

A clause set (set of clauses) S is inconsistent if and only if S |= ✷.

(✷ is the empty clause, also denoted false.)

Idea. Demonstrate S inconsistency by “deriving” ✷ (false) from S.

Let A,B,X be formulas, let v be a valuation.

Assume v(A ∨X) = T and v(B ∨ ¬X) = T .

If v(X) = T , then v(B) = T ,

If �(�) = � , therefore v(A ∨B) = T .

If v(X) = F , then v(A) = T ,

If �(�) = � , therefore v(A ∨ B) = T .

As a result, {(A ∨X), (B ∨ ¬X)} |= (A ∨B).

Resolution rule : special case where X is a proposition and where A,B

are clauses.



Resolution rule II

Relation ⊢R (or ⊢) is inductively defined

between a clause set and a clause ;

it is the smallest relation satisfying these conditions :

1. If C ∈ S, then S ⊢ C.

2. Let C1 = (C′
1 ∨ p) and C2 = (C′

2 ∨ ¬p) ;
if S ⊢ C1 and S ⊢ C2, then S ⊢ C′

1 ∨ C′
2.

Clauses C1 and C2 can be resolved (with respect to p) ;

clause Res(C1, C2) =def C′
1 ∨ C′

2 is their resolvent.

If S is a clause set, SR is defined as the smallest superset of S

containing the resolvents of its elements.

SR = {C : S ⊢ C} = {C : SR ⊢ C}.



Soundness of resolution rule

Let S a clause set and C a clause. We must prove, if S ⊢ C, then

S |= C. It is sufficient to see that relation |= (restricted to clause sets

and clauses) satisfies the characteristic conditions of relation ⊢R :

1. If C ∈ S, then S |= C.

2. Let C1 = (C′
1 ∨ p) and C2 = (C′

2 ∨ ¬p) ;
ifS |= C1 and S |= C2, then S |= C′

1 ∨ C′
2.

Condition 1 is obviously satisfied ; condition 2 results from

{(A ∨X), (B ∨ ¬X)} |= (A ∨B).

Comment. Clause sets S and SR are always logically equivalent.



Completeness of resolution rule I

If S is a clause set, if A is a clause and if S |= A, can we deduce

S ⊢R A ?

Obviously not :

{p,¬p} |= q ,

but

{p,¬p} 6⊢R q .

Fortunately, we do not need so much ; instead of proving S |= A, we prove the
equivalent S,¬A |= ✷.
The following result can be used :

Theorem. If S |= ✷, then S ⊢R ✷.

This “weak completeness” is in fact as powerful as completeness (why ?).



Semantic tree

Let S a formula or a formula set, with ΠS = {p1, p2, . . .}.
A semantic tree is a complete, balanced binary tree, labelled as

follows : left branches at level i are labelled pi and right branches are

labelled ¬pi.

The leaves (or full branches) of the semantic tree S correspond to the

valuations of ΠS and S.

Each path C from the root to some node n at level i defines

— a proposition set, Π(n) = {p1, . . . , pi} ;
— a valuation vn on this set ;

vn(pk) = T if pk ∈ C and vn(pk) = F if ¬pk ∈ C.



Semantic tree : an example

Let S = {p ∨ q, p ∨ r,¬q ∨ ¬r,¬p} , a clause set.

ΠS = {p, q, r}.
A semantic tree is :

� �� � � � � �

��

��

��

¬p ¬p ¬p ¬p ¬q ∨ ¬r p ∨ r p ∨ q p ∨ q

The tree is finite since ΠS is finite.

As S is inconsistent, each leaf can be labelled with a clause made false

by the valuation associated with that leaf.



Completeness of the resolution method (finite case) I

If S is a finite inconsistent clause set, then S ⊢ ✷.

Let A be a semantic tree for S.

The path from the root to node n defines a proposition set Π(n) and a valuation vn
for this set ; vn(ℓ) = T for each labelling literal ℓ on the path.

S is inconsistent, so the valuation associated with any leaf f of A falsifies some
clause Cf ∈ S. We label f with Cf . Observe that

ΠCf
⊆ Π(f) = ΠS et vf(Cf) = F .

(ΠCf is the set of atoms occurring in Cf .)

We will attempt to propagate leaf labelling upward : each node n will be labelled
with some clause Cn ∈ SR such that

ΠCn
⊆ Π(n) ⊆ ΠS and vn(Cn) = F.

If this propagation succeeds, root r will be labelled with Cr ∈ SR such that

ΠCr
⊆ Π(r) et vr(Cr) = F.

As Π(r) = ∅ and vr(Cr) = F , the only possibility is Cr = ✷.



Completeness of the resolution method (finite case) II

How to label node n ?

Let n1, n2 the children of node n ; assume

Π(n1) = Π(n2) = Π(n) ∪ {p}.

n(Cn)
p ւ ց ¬p

n1(Cn1
) n2(Cn2

)

Assume

Cn1
∈ SR and ΠCn1

⊆ Π(n1) and vn1
(Cn1

) = F

Cn2
∈ SR and ΠCn2

⊆ Π(n2) and vn2
(Cn2

) = F

Node n is labelled as follows :
— If p 6∈ ΠCni

for i = 1 or 2, then Cn = Cni.
— If p ∈ ΠCn1

and p ∈ ΠCn2
:

vn1
(Cn1

) = F so Cn1
= C ′

n1
∨ ¬p and vn2

(Cn2
) = F so Cn2

= C ′
n2

∨ p.

Let Cn = C ′
n1

∨ C ′
n2
( = Resp(Cn1

, Cn2
)).

In both cases : Cn ∈ SR and ΠCn
⊆ Π(n) et vn(Cn) = F.

and the completeness (finite case) is proved.



Completeness of the resolution method (infinite case)

Due to the compactness theorem, the statement

✷ ∈ SR iff S is inconsistent

remains true if S is infinite.

If ✷ ∈ SR, then SR and therefore S are inconsistent.

If S is inconsistent, there is a finite inconsistent subset Sf , so ✷ ∈ SR
f

and therefore ✷ ∈ SR since SR
f ⊂ SR.



Resolution procedure I

If S is a clause set,

let MS be the set of all models of S.

S is inconsistent iff MS = ∅.

Resolution procedure

S := S0 ; (S0 clause set)

{MS = MS0
}

While ✷ 6∈ S, do :

select p ∈ ΠS,

sele
t C1 = (C′
1 ∨ p) ∈ S,

sele
t C2 = (C′
2 ∨ ¬p) ∈ S ;

S := S ∪ {Res(C1, C2)}
{MS = MS0

}

Comment on selection procedure : each resolvent pair can be selected only once ;
this provides termination since, if the lexicon size is n, no more than 3n (non valid)
clauses can be generated.



Resolution procedure II

Invariant : only logical consequences are inserted into S so the set MS

does not change.

The procedure terminates smoothly (false guard) or aborts (no

possible selection).

Smooth termination : when the guard is false and the computation stops, the final

value Sf is such that MSf
= MS0

and ✷ ∈ Sf , so Sf and S0 are inconsistent.

Abortion : If all resolvents have been produced and none of them is ✷, then

MSf
= MS0

and ✷ 6∈ Sf ; both Sf and S0 are consistent.

A derivation of ✷ (false) from S is a refutation of S.



Refutations : examples I

Let S = {(p ∨ q), (p ∨ r), (¬q ∨ ¬r), (¬p)}.

Clause numbering :

1. p ∨ q
2. p ∨ r
3. ¬q ∨ ¬r
4. ¬p

Two refutations :

5. p ∨ ¬r (1,3)
6. q (1,4)
7. p ∨ ¬q (2,3)
8. r (2,4)
9. p (2,5)

10. ¬r (3,6)
11. ¬q (3,8)
12. ¬r (4,5)
13. ¬q (4,7)
14. ✷ (4,9)

5. q (1,4)
6. r (2,4)
7. ¬q (3,6)
8. ✷ (5,7)



Refutations : examples II

Let S = {p,¬p ∨ q}.
Clause numbering :

1. p
2. ¬p ∨ q

Derivation :

3. q (1,2)

Let S = {p,¬p ∨ q,¬q}.
Clause numbering :

1. p
2. ¬p ∨ q
3. ¬q

Refutation :

4. q (1,2)
5. ✷ (3,4)


