
INFO0051-1

LOGIC

LoGeek ?

References

— M. Ben-Ari, Mathematical Logic for Computer Science, Prentice-Hall, 1993.
— R. Cori et D. Lascar, Logique mathématique (deux volumes), Masson, 1993.
— H. Enderton, A Mathematical Introduction to Logic, Academic Press 1972,

2001.
— M. Fitting, First-Order Logic and Automated Theorem Proving,

Springer-Verlag, 1990.
— J.H. Gallier, Logic for Computer Science, Harper & Row, 1986.
— P. Gochet et P. Gribomont, Logique 1 – Méthodes pour l’informatique

fondamentale, Hermès, 1991 (2ème tirage), 1998 (3ème tirage).
— P. Gochet et P. Gribomont, Logique 2 – Méthodes pour l’étude des

programmes, Hermès, 1994.
— P. Gribomont,

http://www.montefiore.ulg.ac.be/~gribomon/cours/info0510.html
— R. Lassaigne et M. de Rougemont, Logique et fondements de

l’informatique, Hermès, 1993.
— A. Thayse & co-auteurs, Approche logique de l’intelligence artificielle,

Dunod, 1990.

INTRODUCTION

Logic : Science of reasoning for itself

Aristotle (384 BC - 322 BC)

Deduction system, logical rules

What is a sound logical rule ?

If the premises are true,

then the conclusion is also true

Example :

1. All men are mortal

2. Socrates is a man

3. Therefore, Socrates is mortal

1. Beware of the natural language !

Example :

(a) Some cars rattle

(b) My car is some car

(c) Therefore, my car rattles

2. Paradoxes

This sentence is false
The following sentence is true. The previous sentence is false.

Since 1850 : growing interest of mathematicians. Sound logical rules

for sound mathematical proofs.

Modern logic : formal logic, mathematical logic

Formal logic : deals with methods

— to determine whether a deduction is correct or not

— that can be verified by a computer

⇒ so a formal language is needed

The language allows to write sentences, statements, propositions

A proposition can be true or false

Example : It rains.

A piece of reasoning has a logical structure,

distinct from information about the underlying world.

— Logical structure : formula (or set of formulas)

→ syntax

— Information about the underlying world : interpretation

→ semantics

Example : If it rains, then the road is wet.

Valid, correct deductions : sound for all interpretations

Logic : which deductions are valid ?

Propositional calculus : formal language ; the sentences are

propositions, which are true or false.

Examples :
— 1+ 1 = 2

— We have logic on Sunday

— 1+ 1 = 2 and we have logic on Sunday

Predicate logic : more expressive formal language ; allows to write

properties and determine sets and set membership.

Examples :
— I teach(x,y)

— x < y

PROPOSITIONAL CALCULUS

Proposition : sentence with a truthvalue

Atomic propositions, Boolean connectives − > compound propositions

Which connectives ?

Verifunctional connectives : Only the truthvalues of the components

are needed to know the truthvalue of the compound proposition.

formal connectives, natural connectives :

It rains or the sun shines.

If it rains, then the road is wet.

He is clever and (he is) hardworking.

He is not dumb.

If Heads then I win else you lose.

‘because’ is not a Boolean connective !

The road is wet because it rains.

The road is wet because it is Tuesday.

The truthvalue of a because-sentence does not only depend on the

truthvalue of the components

Boolean connectives

There are 22
n
n-ary Boolean connectives (y = op(x1, . . . , xn)),

since the truthtable of an n-ary connective has 2n lines,
each of them being true or false.

Unary (monadic) connectives (4)

x ◦1 ◦2 ◦3 ◦4
T T T F F
F T F T F

Binary (dyadic) connectives (16)
x y ◦1 ◦2 ◦3 ◦4 ◦5 ◦6 ◦7 ◦8
T T T T T T T T T T
T F T T T T F F F F
F T T T F F T T F F
F F T F T F T F T F

◦9 ◦10 ◦11 ◦12 ◦13 ◦14 ◦15 ◦16
F F F F F F F F
T T T T F F F F
T T F F T T F F
T F T F T F T F

Usual binary connectives

op. name symbol

◦2 disjunction ∨ or

◦3 converse conditional ⇐ if

◦5 conditional ⇒ , ⊃ if . . . then

◦7 biconditional ≡ , ⇔ if and only if iff

◦8 conjunction ∧ and

◦9 ↑ nand

◦10 exclusive or ⊕, ∨∨ xor

◦15 ↓ nor

x y ∧ ∨ ≡ ⊕ ⇒
T T T T T F T
T F F T F T F
F T F T F T T
F F F F T F T

n-ary connectives

Theorem. Every n-ary connective (n > 2) can be simulated with two (n− 1)-ary
connectives, binary connectives and negations.

M(p1, . . . , pn−1, pn) ←→
[(pn ⇒ M(p1, . . . , pn−1, true)) ∧ (¬pn ⇒ M(p1, . . . , pn−1, false))]

M(p1, . . . , pn−1, pn) ←→
[(pn ∧M(p1, . . . , pn−1, true)) ∨ (¬pn ∧M(p1, . . . , pn−1, false))]

Corollary. Every n-ary connective (n > 2) can be simulated with binary

connectives and negations. (Elementary mathematical induction.)

So n-ary (n > 2) connectives can be omitted.

Example (ternary connective) : if p then q else r

Possible reductions :

(p ⇒ q) ∧ (¬p ⇒ r) ; (p ∧ q) ∨ (¬p ∧ r) ; (p ∧ q) ∨∨ (¬p ∧ r) .

SYNTAX OF PROPOSITIONAL CALCULUS

Let P be a set of atomic propositions or atoms. P = {p, q, r, . . .}

Definition. A formula of propositional calculus is a symbol string

generated by the grammar

formula ::= p , for all p ∈ P
formula ::= true | false
formula ::= ¬formula

formula ::= (formula op formula)
op ::= ∨ | ∧ |⇒ |≡ |⇐

Example : Derivation of formula (p ∧ q) :

1. formula
2. (formula op formula)
3. (formula ∧ formula)
4. (p ∧ formula)
5. (p ∧ q)

A derivation :

1. formula
2. (formula ≡ formula)
3. ((formula ⇒ formula) ≡ formula)
4. ((p ⇒ formula) ≡ formula)
5. ((p ⇒ q) ≡ formula)
6. ((p ⇒ q) ≡ (formula ⇒ formula))
7. ((p ⇒ q) ≡ (¬formula ⇒ formula))
8. ((p ⇒ q) ≡ (¬q ⇒ formula))
9. ((p ⇒ q) ≡ (¬q ⇒ ¬formula))
10. ((p ⇒ q) ≡ (¬q ⇒ ¬p))

Partial ordering, so syntactic tree :

≡
ւ ց

⇒ ⇒
ւ ց ւ ց
p q ¬ ¬

↓ ↓
q p

⇒
ւ ց
p ≡

ւ ց
q ¬

↓
⇒

ւ ց
q ¬

↓
p

((p ⇒ q) ≡ (¬q ⇒ ¬p)) (p ⇒ (q ≡ ¬(q ⇒ ¬p)))

Simplification rules.

We use these rules :

— Outer parentheses can be omitted :

p ∧ q instead of (p ∧ q), and

q ≡ ¬(q ⇒ ¬q) instead of (q ≡ ¬(q ⇒ ¬q)).
— Associativity of connectives ∧ and ∨ :

p ∨ q ∨ r instead of (p ∨ q) ∨ r or p ∨ (q ∨ r).

We do not use these rules :

— Left associativity :

p ⇒ q ⇒ r instead of (p ⇒ q) ⇒ r.

— Priority :

a+ b ∗ c = a+ (b ∗ c) 6= (a+ b) ∗ c,

p ∨ q ∧ r means p ∨ (q ∧ r) and not (p ∨ q) ∧ r.

Decreasing priority order sequence : ¬, ∧, ∨, ⇒, ⇐, ≡

SEMANTICS OF PROPOSITIONAL CALCULUS

Semantics is defined according to the syntactic structure :

Syntax : A formula of propositional calculus is generated by the

following context-free grammar :

formula ::= p , for all p ∈ P
formula ::= true | false
formula ::= ¬formula

formula ::= (formula op formula)
op ::= ∨ | ∧ |⇒ |≡ |⇐

Compositional, verifunctional semantics : the semantics (truthvalue)

of a formula depends only on the semantics (truthvalue) of its

components.

Interpretation (or valuation)

Let A be a formula of propositional logic and {p1, . . . , pn} the set of

atoms occurring in A.

An interpretation of A is a function v : {p1, . . . , pn} → {T, F}.
The domain of this function can be extended ; v assigns a truthvalue

to A according to the following inductive rules :

A v(A1) v(A2) v(A)

true T
false F
¬A1 T F
¬A1 F T

A1 ∨A2 F F F
A1 ∨A2 else T
A1 ∧A2 T T T
A1 ∧A2 else F
A1 ⇒ A2 T F F
A1 ⇒ A2 else T
A1 ⇐ A2 F T F
A1 ⇐ A2 else T
A1 ≡ A2 v(A1) = v(A2) T
A1 ≡ A2 v(A1) 6= v(A2) F

Examples

Formula :

(p ⇒ q) ≡ (¬q ⇒ ¬p)

Interpretation :

v(p) = F, v(q) = T

The truthvalue is obtained easily :

v(p ⇒ q) = T

v(¬ q) = F

v(¬ p) = T

v(¬ q ⇒ ¬ p) = T

v((p ⇒ q) ≡ (¬ q ⇒ ¬ p)) = T

Comment. Formula true is a syntactic object ; truthvalue T is a semantic object.

Valuations are functional relations ; each formula gets only one

truthvalue.

Example : Let v(p) = F and v(q) = T .

Therefore, v(p ⇒ (q ⇒ p)) = T and v((p ⇒ q) ⇒ p) = F .

Example : If v(p) = T , v(q) = F , v(r) = T , v(s) = T what about

{p ⇒ q, p, (p ∨ s) ≡ (s ∧ q)}

v assigns specific truthvalues :

v(p ⇒ q) = F
v(p) = T
v((p ∨ s) ≡ (s ∧ q)) = F

Propositional logic vs. natural language

Natural connectives are not always verifunctional.

- Connective and :

The sun shines and I have a car.

I have a car and the sun shines.

He became afraid and shoot the intruder.

He shoot the intruder and became afraid.

- Connective or (exclusive or not) :

An integer is even or (it is) odd.

- The conditional connective :

antecedent ⇒ consequent

When the antecedent is true, the conditional (truthvalue) reduces to

the consequent (truthvalue).

If the Earth rotates around the Sun, then 1+1 = 3.

When the antecedent is false, the conditional is true.

If the Sun rotates around the Moon, then 1+1 = 3.

Only connective satisfying :

— When the antecedent is true,

the conditional reduces to the consequent.

— The conditional is a true binary connective.

— The conditional is not commutative.

Every square integer is positive.

For all (integer) n, if n is a square, then n is positive.

∀n [Sq(n) ⇒ Pos(n)] .

Sq–Pos 0, 1, 4, . . . , 100, . . .

Sq–n-Pos

n-Sq–Pos 2, 3, 5, . . . , 99, 101, . . .

n-Sq–n-Pos −1, −2, −3, . . . , −100, . . .

The Boolean conditional is exactly the mathematical conditional.

Satisfiability (consistency) and validity

— A valuation v of formula A is a model of A if v(A) = T .

— A is satisfiable or consistent if A has at least one model.

— A is valid, or A is a tautology,
if v(A) = T for each interpretation v.
Notation : |= A

— A is unsatisfiable or inconsistent if A is not satisfiable,
that is, if v(A) = F , for each interpretation v.

Theorem.
A formula A is valid if and only if its negation ¬A is unsatisfiable.

i� A valid
iff v(A) = T , for each interpretation v
iff v(¬A) = F , for each interpretation v
iff ¬A is unsatisfiable. ✷

Decision procedure

Definition. Let U be a formula set (i.e., a set of formulas). An
algorithm is a decision procedure for U if, given A, the computation
stops with the answer ’yes’ if A ∈ U and the answer ’no’ if A 6∈ U .

Formal logic : often U will be the set of valid formulas (or consistent
formulas, or inconsistent formulas)

If ¬A is satisfiable, then A is not valid.
If ¬A is not satisfiable, then A is valid.

→֒ Refutation procedure :
A is proved valid if ¬A is proved unsatisfiable.

Comment. “X set” stands for “set of Xs”.

Formula sets

A model of S is an interpretation which assigns T to all formulas in S.

A (formula) set S is consistent, or satisfiable,

if if S has at least one model.

— For ∅, every valuation is a model.

— The models of {A} are the models of A.

— The models of the finite set {A1, . . . , An}
are the models of the conjunction A1 ∧ · · · ∧An.

! ! Beware ! !

— Infinite sets are acceptable ; infinite formulas are not.

— A set of satisfiable formulas can be an unsatisfiable set.

Set consistency

— Every subset of a consistent set is consistent.

— Every superset of an inconsistent set is inconsistent.

— If S is consistent and if A is valid, then S ∪ {A} is consistent.

— If S is inconsistent and if A est valid, then S \ {A} is

inconsistent.

Removing formulas preserves consistency.

Adding formulas preserves inconsistency.

Adding valid formulas preserves consistency.

Removing valid formulas preserves inconsistency.

Logical consequence

A formula A is a logical consequence of a formula set S if every

S-model is an A-model.

Notation : S |= A.

Comment. If S is valid, for instance if S = ∅, then A is a logical consequence of S if
and only if A is valid.

|= A

can be seen as

∅ |= A

A formula is valid iff it is a logical consequence of the empty set.

A formula is valid iff it is a logical consequence of every formula set.

Deduction theorem

Let A be a formula and U = {A1, . . . , An} a finite formula set.

Three equivalent statements are :

— A is a logical consequence of U ,

U |= A ;

— Set U ∪ {¬A} is inconsistent,

U ∪ {¬A} |= false ;

— Conditional (A1 ∧ . . . ∧An) ⇒ A is valid,

|= (A1 ∧ . . . ∧An) ⇒ A.

Statements 1 and 2 still hold when U is infinite. Statement 3 does not.

Definition. The theory associated with formula set U is the set of logical
consequences of U : T (U) = {A : U |= A} ; U-members are axioms and
T (U)-members are theorems. (Most often used in predicate logic.)

Consistency and inconsistency

The useful statements

Removing valid formulas from an inconsistent set leads to an

inconsistent set.

Adding valid formulas to a consistent set leads to a consistent set.

can be improved into

Removing logical consequences (of what is not removed) from an

inconsistent set leads to an inconsistent set.

Adding logical consequences to a consistent set leads to a consistent

set.

Logical equivalence

Definition. Two propositional formulas A1 and A2 are logically

equivalent (noted A1 ↔ A2) if they have the same models, that is, if

v(A1) = v(A2) for each interpretation v.

Example : p ∨ q ↔ q ∨ p

p q v(p ∨ q) v(q ∨ p)

T T T T
T F T T
F T T T
F F F F

If A1 and A2 are propositional formulas then A1 ∨A2 ↔ A2 ∨A1.

Let v be an interpretation of {A1, A2}.
v(A1 ∨A2) = T iff v(A1) = T or v(A2) = T ;

�(�

�

��

�

) = � iff v(A2) = T or v(A1) = T ;

�(�

�

��

�

) = � iff v(A2 ∨A1) = T .

Therefore, A1 ∨ A2 ↔ A2 ∨A1.

Logical equivalence 6= ≡-connective !

There is a difference between

— the object-language : logic itself

(≡, p ∨ q, . . .)

— the metalanguage : semi-formal language used to comment

about logic (↔, A1 ∨ A2, . . .) !

There is a connection between logical equivalence (a metalinguistic

notion) and the ≡-connective (a logical object).

Theorem (logical equivalence vs. equivalence connective) :

A1 ↔ A2 iff |= A1 ≡ A2.

�� v(A1 ≡ A2) = T , for each interpretation v

iff v(A1) = v(A2), for each interpretation v
(inductive definition of the semantics of ‘≡’)

iff A1 ↔ A2 (definition of the logical equivalence ‘↔’).

Some theorems

These four statements are equivalent :

— A1 ↔ A2 ;

— |= (A1 ≡ A2) ;

— |= (A1 ⇒ A2) and |= (A2 ⇒ A1) ;

— {A1} |= A2 et {A2} |= A1.

Comment.

A |= B can be written instead of {A} |= B, and

E,A,B |= C can be written instead of E ∪ {A,B} |= C.

(We use this in the sequel.)

Comment. v |= A is sometimes written instead of v(A) = T , since

interpretation v is sometimes identified with the set of v-true

formulas. (We do not use this.)

Subformulas

— A is a subformula of B if the syntactic tree of A if a subtree of

the syntactic tree of B.

— A is a proper subformula of B if A is a subformula of B distinct

from B.

Examples :
— p ⇒ q is a proper subformula of (p ⇒ q) ≡ (¬q ⇒ ¬p) ;
— p ⇒ q is a (not proper) subformula of p ⇒ q ;
— q ≡ ¬q is not a subformula of (p ⇒ q) ≡ (¬q ⇒ ¬p) .

Comment. A subformula can have several occurrences in a formula.

For instance, (sub-)formula ¬p has two occurrences in formula

¬p ≡ ¬(p ⇐ ¬p) ; (sub-)formula p has three occurrences in formula

p ≡ (p ⇐ ¬p).

Replacement theorem

Let A, B and CA be three formulas, such that A is a sub-formula

of CA, and let CB be the formula resulting from the replacement of

one or more occurrence(s) of A by B in CA.

The replacement theorem states

(A ≡ B) |= (CA ≡ CB) .

Corollary. If A ↔ B, then CA ↔ CB.

Example.
A =def p, B =def ¬¬p
CA =def (p ⇒ q) ≡ (¬q ⇒ ¬p)

Three possibles choices for CB :
CB =def (¬¬p ⇒ q) ≡ (¬q ⇒ ¬p)
CB =def (p ⇒ q) ≡ (¬q ⇒ ¬¬¬p)
CB =def (¬¬p ⇒ q) ≡ (¬q ⇒ ¬¬¬p).

Since A and B are logically equivalent, CA and CB are also logically equivalent.

Comment. We could write “the replacement of some (zero, one of more) occurrence(s)” instead of
“the replacement of one of more occurrence(s)”

Replacement theorem, the proof

The case CB = CA (zero occurrence replacement) is trivial.

Interesting case : one occurrence is replaced.

Proof. We view formulas as syntactic trees and use mathematical induction on the
depth d of A in CA.

Let v be an interpretation such that v(A) = v(B).
— d = 0 : A = CA and B = CB, therefore v(CA) = v(CB).
— d > 0 : CA can be written either as ¬DA or as (DA op EA),

so CB is either ¬DB or (DB op EB).
(In the second case, one of the terms DA, EA contains the occurrence A to
be replaced.)

If A occurs in DA, the depth of A (in DA) is less then d, so v(DB) = v(DA)
(inductive step) ; similarly v(EB) = v(EA).

From v(DB) = v(DA) and (maybe) v(EB) = v(EA), we deduce
v(CB) = v(CA).

Algebraic laws (examples)

(X ∧ X) ←→ X ←→ (X ∨ X)
(X ∧ Y) ←→ (Y ∧ X)
(X ∨ Y) ←→ (Y ∨ X)

((X ∧ Y) ∧ Z) ←→ (X ∧ (Y ∧ Z))
((X ∨ Y) ∨ Z) ←→ (X ∨ (Y ∨ Z))

(X ⇒ X) ←→ true
((X ⇒ Y) ∧ (Y ⇒ X)) ←→ (X ≡ Y)

(((X⇒Y) ∧ (Y ⇒Z)) ⇒ (X⇒Z)) ←→ true
(X ⇒ Y) ←→ ((X ∧ Y) ≡ X)
(X ⇒ Y) ←→ ((X ∨ Y) ≡ Y)

(X ∧ (Y ∨ Z)) ←→ ((X ∧ Y) ∨ (X ∧ Z))
(X ∨ (Y ∧ Z)) ←→ ((X ∨ Y) ∧ (X ∨ Z))
(X ⇒ (Y ⇒ Z)) ←→ ((X ⇒ Y) ⇒ (X ⇒ Z))

(X ∨ ¬X) ←→ true
(X ∧ ¬X) ←→ false

¬¬X ←→ X

¬(X ∧ Y) ←→ (¬X ∨ ¬Y)
¬(X ∨ Y) ←→ (¬X ∧ ¬Y)

— Algebraic laws lead to simplifications.

Example :

p ∧ (¬p ∨ q) ↔ (p ∧ ¬p) ∨ (p ∧ q)

↔ false ∨ (p ∧ q)

↔ p ∧ q

— Connective properties are stated as logical equivalences.

— associativity, commutativity of ∧, ∨, ≡
— idempotence of ∧, ∨
— · · ·

— All Boolean connectives can be derived from

— ¬ and ∧
— Nand alone

— Nor alone

Minimal connective systems

— ¬ and ∨ :

(a ⇒ b) =def (¬a ∨ b) ,

(a ∧ b) =def ¬(¬a ∨ ¬b) .
— ¬ and ∧ :

(a ⇒ b) =def ¬(a ∧ ¬b) ,
(a ∨ b) =def ¬(¬a ∧ ¬b) .

— ¬ and ⇒ :

(a ∨ b) =def (¬a ⇒ b) ,

(a ∧ b) =def ¬(a ⇒ ¬b) .
— “nand” alone (symbol : ↑)

¬a =def (a ↑ a) , (a ∧ b) =def ¬(a ↑ b) .

— “nor” alone (symbol : |, or ↓)
¬a =def (a | a) , (a ∨ b) =def ¬(a | b) .

Uniform substitution

Let A1 and A2 be formulas and B be formula A1 ⇒ (A1 ∨A2). Even if

A1 and A2 are complex formulas, B is obviously valid, as an

“instance” of the tautology p ⇒ (p ∨ q).

If C is a formula, C(p/A1, q/A2) is obtained by replacing all occurrences

of propositions p and q in C by formulas A1 and A2, respectively.

Lemma. Let C,A1, . . . , An be formulas and p1, . . . , pn be distinct

propositions. If v is a valuation such that v(pi) = v(Ai) (i = 1, . . . , n),

then v(C(p1/A1, . . . , pn/An)) = v(C).

Comment. The domain of valuation v contains every atom occurring

in C and/or in some Ai.

Comment. Formulas C(p/A1, q/A2), C(p/A1)(q/A2) and C(q/A2)(p/A1)

can differ !

Uniform substitution (example)

n =def 2

C =def p1 ∨ (q ⇒ p2)

A1 =def p2 ∧ (p1 ∨ r)

A2 =def p1 ∨ q

C(p1/A1, p2/A2) =def

(p2 ∧ (p1 ∨ r)) ∨ (q ⇒ (p1 ∨ q))

v =def {(p1, F), (p2, T), (q, T), (r, F)}

v(A1) = v(p1) = F and v(A2) = v(p2) = T , so

v(C(p1/A1, p2/A2)) = v(C) = T .

Comment. If no proposition pi has any occurrence in {A1, . . . , An}, then
formulas C(p1/A1, . . . , pn/An) and C(p1/A1) . . . (pn/An) are the same.

Uniform substitution, proving the lemma

We use mathematical induction on the structure of formula C.

Let C′ be C(p1/A1, . . . , pn/An).

Base case. C is a proposition.

If C is one of the pi, then v(C′) = v(Ai) = v(pi) = v(C)

else C ′ = C, therefore v(C′) = v(C).

Induction step. If C is formula ¬D, then C′ is formula ¬D′.
The induction hypothesis is v(D′) = v(D) ; the thesis v(C′) = v(C) is a

straightforward consequence.

If C is, say, D ∨ E, then C′ is formula D′ ∨ E′, with v(D′) = v(D) and

v(E′) = v(E), hence v(C′) = v(C).

Uniform substitution theorem

Theorem. Let C,A1, . . . , An be formulas et p1, . . . , pn be distinct

propositions. If C is a tautology, then C(p1/A1, . . . , pn/An) is a

tautology.

Proof. If none of the pi occurs in any Aj (nor in C ′ =def C(p1/A1, . . . , pn/An)), it is
easy. Let v, an arbitrary valuation for C ′, and w the extension of v such that
w(pi) =def v(Ai). As a consequence of the substitution lemma, w(C ′) = w(C). From
w(C) = T and w(C ′) = v(C ′) we deduce v(C ′) = T .

Comment. If pi does occur in Ak, this technique would not work.
For instance from |= p ≡ ¬¬p one cannot deduce immediately |= (p ∨ r) ≡ ¬¬(p ∨ r) since valuation
v : v(p) = F, v(r) = T , such that v(A) = v(p ∨ r) = T cannot be extended into w such that w(p) = T .
However, this is easily settled : from |= p ≡ ¬¬p we deduce |= q ≡ ¬¬q, and then from that
|= (p ∨ r) ≡ ¬¬(p ∨ r).

If some pi occur in some of the A1, . . . , An, we consider fresh atoms qi. If C is a
tautology, then C ′′ =def C(p1/q1, . . . , pn/qn) is a tautology. C ′ is C ′′(q1/A1, . . . , qn/An),
where no qi occurs in any Ak, so C ′ is a tautology.

SEMANTIC TABLEAUX

Decision procedure for satisfiability (consistency) in propositional

logic.

Faster than the truthtable method.

Principle : (in)consistency is investigated,

through a systematic search for models.

Truthtables : from smaller subformulas to bigger subformulas :

the truthvalue of a formula is function of the truthvalues of its

(immediate) components.

Semantic tableaux : from bigger subformulas to smaller

subformulas : the truthvalue of an (immediate) component is

related to the truthvalue of a formula.

Principle of the method

A literal is an atom or a negated atom. If p is an atomic proposition,

{p,¬p} is a complementary pair of literals. A literal set (set of literals)

is consistent if and only if it includes no complementary pair (which is

determined by inspection).

The principle of the tableau method is to reduce the question

Is formula A consistent ?

to the easier question

Are all members of the (finite) set A consistent literal sets ?

A semantic tableau is a tree ; its root is formula A and its leaves are

the elements of A.

The method is nondeterministic, but all (correctly built) semantic tableaux based on
root A will lead to the same conclusion.

How to build a tableau ?

It is convenient (and not really restrictive) to avoid double negations

and two binary connectives : equivalence and exclusive disjunction.

This allows to partition the set of formulas into three subsets :

— literals ;

— conjunctive formulas ;

— disjunctive formulas.

Formula ¬(X ⇒ Y) is conjunctive since it is logically equivalent to the conjunction
X ∧ ¬Y . Formula X ⇒ Y is disjunctive since it is logically equivalent to the
disjunction ¬X ∨ Y . Besides, ¬¬X is rewritten into X.

Two kinds of expansion rules : α-rules give a node a single child ;

β-rules give a node two children.

For semantic tableaux, α-rules are used to break conjunctive formulas and β-rules
are used to break disjunctive formulas.

Examples I

Let A = p ∧ (¬q ∨ ¬p).
It is an α-formula, that is, a formula to which an α-rule will apply, since it is a
conjunctive formula ;
its components are p and ¬q ∨ ¬p.
We can draw the semantic tableau :

p ∧ (¬q ∨ ¬p)
↓

p,¬q ∨ ¬p
Its meaning is : “v is a model of A if and only if v is a model of p and of ¬q ∨ ¬p”.

Formula ¬q ∨ ¬p is a disjunctive, β-formula ;
its components are ¬q and ¬p.
We can draw the semantic tableau further :

p,¬q ∨ ¬p
ւ ց

p,¬q p,¬p
Its meaning is : “v is a model of p and of ¬q ∨ ¬p if and only if v is a model of p and
of ¬q or of p and of ¬p”.

Last, set {p,¬q} is consistent (symbol
, open leaf) whereas {p,¬p} is inconsistent
(symbol ×, closed leaf). The completed semantic tableau is :

p ∧ (¬q ∨ ¬p)
↓

p,¬q ∨ ¬p
ւ ց

p,¬q p,¬p

 ×

Examples II

Conclusion. The tableau is open (its root is consistent) if and only if some (at least
one) of its leaves is open (consistent). Therefore A is consistent since {p,¬q} is.
A model v (for both the leaf and the root) is v(p) = T, v(q) = F .

Let B = (p ∨ q) ∧ (¬p ∧ ¬q).
This is a conjunctive, α-formula ;
its (semantic) components are B1 =def p ∨ q and B2 =def ¬p ∧ ¬q.
Formula B1 is a disjunctive, β-formula ; its components are p and q.

Formula B2 is a conjunctive, α-formula ; its components are ¬p and ¬q.

The tableau on the left is obtained if B1 is broken before B2, else we get the tableau
on the right. Both tableaux induce the same conclusion : all leaves are closed, the
tableaux are closed and the root B is inconsistent.

(p ∨ q) ∧ (¬p ∧ ¬q)
↓

p ∨ q,¬p ∧ ¬q
ւ ց

p,¬p ∧ ¬q q,¬p ∧ ¬q
↓ ↓

p,¬p,¬q q,¬p,¬q
× ×

(p ∨ q) ∧ (¬p ∧ ¬q)
↓

p ∨ q,¬p ∧ ¬q
↓

p ∨ q,¬p,¬q
ւ ց

p,¬p,¬q q,¬p,¬q
× ×

Expansion rules, semantic components

— Conjunctive, α-formulas give rise to a single child ; v(α) = T if

and only if v(α1) = v(α2) = T .

α α1 α2

A1 ∧A2 A1 A2

¬(A1 ∨A2) ¬A1 ¬A2

¬(A1 ⇒ A2) A1 ¬A2

¬(A1 ⇐ A2) ¬A1 A2

— Disjunctive, β-formulas give rise to two children ;

v(β) = T if and only if v(β1) = T or v(β2) = T .

β β1 β2

B1 ∨B2 B1 B2

¬(B1 ∧B2) ¬B1 ¬B2

B1 ⇒ B2 ¬B1 B2

B1 ⇐ B2 B1 ¬B2

Semantic tableau : the algorithm for formula C.

Each node is labelled with a formula set.

Init : root is labelled {C} ; it is an unmarked leaf.

Induction step : select an unmarked leaf ℓ labelled U(ℓ).

— If U(ℓ) is a literal set :
— if U(ℓ) contains a complementary pair,

then mark ℓ as closed ‘×’ ;
— else mark ℓ as open ‘
’.

— If U(ℓ) is not a literal set, select a non-literal formula in U(ℓ) :
— If it is an α-formula A, generate a child node ℓ′ and label it with

U(ℓ′) = (U(ℓ)− {A}) ∪ {α1,α2};
— if it is a β-formula B, generate two child nodes ℓ′ and ℓ′′ ; their labels

respectively are

U(ℓ′) = (U(ℓ)− {B}) ∪ {β1}
U(ℓ′′) = (U(ℓ)− {B}) ∪ {β2}.

Termination : when all leaves are marked ‘×’ or ‘
’.

Termination

Theorem. The expansion algorithm always terminates.

Proof. Let T be an A-tableau, maybe not fully expanded.

Let ℓ be a leaf of T .

Let b(ℓ), the number of binary connectives in U(ℓ)

and n(ℓ), the number of negations in U(ℓ).

The size W (ℓ) of ℓ is defined as 2b(ℓ) + n(ℓ).

The size of any child node is always less than the size of its father.

(Check this for all α-rules and β-rules.)

As sizes are natural numbers, no infinite branch is possible.

A (fully-expanded) tableau is closed if all its leaves are closed.

It is open if at least one leaf is open.

Soundness and completeness of decision procedures (in logic)

Let S be a decision procedure for logical formulas.

Soundness : every S-valid formula is valid.

Completeness : every valid formula is S-valid.

What about our case : S is the method of semantic tableaux.

A formula is S-valid if any ¬S-tableau is closed.

Soundness :

If T(A) is closed, then A is inconsistent ;

if T(¬B) is closed, then B is valid.

Completeness :

If A is inconsistent, then T(A) is closed ;

If B is valid, then T(¬B) is closed.

Soundness : the proof I

If T(A) is closed, then A is inconsistent.

Proof. T(A) is closed ; so are all its subtableaux. We prove by induction on the
height h of node n in T(A) that U(n) is inconsistent. A leave has height 0 ; an
α-node height is one more than the height of its child ; a β-node height is one more
than the height of its highest child.

— h = 0 : n is a closed leaf
therefore U(n) contains a complementarry pair of literals and U(n) is
inconsistent.

— h > 0 : An α-rule or a β-rule has been used to expand node n.

α-rule : n : {α} ∪ U0

↓
n′ : {α1,α2} ∪ U0

As h(n′) < h(n), induction hypothesis applies and U(n′) is inconsistent.
For each valuation v,
there is a formula A′ ∈ U(n′) such that v(A′) = F .

Soundness : the proof II

Three possibilites for A′ :

1. A′ ∈ U0 ⊆ U(n) ;

2. A′ = α1 : v(α1) = F hence v(α) = F
(cf. α-rules) ;

3. A′ = α2 : v(α2) = F hence v(α) = F .

In all case a v-false formula exists in U(n) which is therefore inconsistent.

β-rule : n : {β} ∪ U0

ւ ց
n′ : {β1} ∪ U0 n′′ : {β2} ∪ U0

h(n′) < h(n) and h(n′′) < h(n) ;
sets U(n′) and U(n′′) are both inconsistent.

For each valuation v, either

1. there is a formula A′ ∈ U0 ⊆ U(n) : v(A′) = F

2. v(β1) = v(β2) = F , hence v(β) = F (cf. β-rules).

In both cases, there is a v-false formula in U(n) hence U(n) is inconsistent.

Completeness : the proof

If A is inconsistent, then T(A) is closed.

Proof (contraposition). Assume T(A) is open and check A is consistent.

Key point : Every open leaf in T(A) determines a model for A.

Example : A =def p ∧ (¬q ∨ ¬p)
p ∧ (¬q ∨ ¬p)

↓
p,¬q ∨ ¬p

ւ ց
p,¬q p,¬p

 ×

Interpretation v(p) = T , v(q) = F : model of A.

Example : B = p ∨ (q ∧ ¬q)
p ∨ (q ∧ ¬q)

ւ ց
p q ∧ ¬q

 ↓

q,¬q
×

Interpretation v(p) = T : model of A ? Yes, with any v(q).

Hintikka sets

Definition : Formula set U is a Hintikka set if three conditions are

satisfied :

1. For each atom p, p 6∈ U or ¬p 6∈ U

2. If α ∈ U is an α-formula, then α1 ∈ U and α2 ∈ U .

3. If β ∈ U is a β-formula, then β1 ∈ U or β2 ∈ U .

Example :
p ∨ (q ∧ ¬q)

ւ ց
p q ∧ ¬q

 ↓

q,¬q
×

U = {p, p ∨ (q ∧ ¬q)} is a Hintikka set.

To be proved :
The union set associated with an open branch is a Hintikka set.
Every Hintikka set is consistent.

Open branch lemma

Let b an open branch in fully expanded tableau T : U =def
�

n∈b U(n)

is a Hintikka set.

Proof. U satisfies the three Hintikka conditions :

1. Let ℓ the (open) leaf in b.

For each literal m (m ∈ {p,¬p}),
m ∈ U implies m ∈ U(ℓ) (no expansion rule for literals).

Leaf ℓ is open, so no complementary pair.

Therefore, p 6∈ U or ¬p 6∈ U .

2. For each α-formula α ∈ U , there is a node n whose child n′

contains both α-components : α1,α2 ∈ U(n′) ⊆ U .

3. For each β-formula β ∈ U , there is a node n whose children n′

and n′′ contain components β1 and β2, respectively. If, say,

n′ ∈ b, then U(n′) ⊆ U and β1 ∈ U .

Hintikka’s theorem

Every Hintikka set is consistent.

Proof. Let U a Hintikka set and P = {p1, . . . , pm} the atom set used in U .

We define valuation v of U :

v(p) = T if p ∈ U or ¬p 6∈ U
v(p) = F if ¬p ∈ U

v assigns a single truthvalue to every atom of P (since U is a Hintikka set).

We have to prove that for each A ∈ U , v(A) = T .

by structural induction on A :

A is a literal. • If A = p, then v(A) = v(p) = T .
• If A = ¬p, then v(p) = F , hence v(A) = T .

A is an α-formula α : α1,α2 ∈ U .
The induction hypothesis applies : v(α1) = T and v(α2) = T ,
hence v(α) = T .

A is a β-formula β : β1 ∈ U or β2 ∈ U .
The induction hypothesis applies : v(β1) = T or v(β2) = T ,
hence v(β) = T .

Completeness : the proof

Theorem.

If A is inconsistent, then T(A) is closed.

Proof (contraposition). If T(A) is open, then A is consistent.

If T(A) is open, there is an open branch b in T(A). The set of all

formulas in b is a Hintikka set, therefore a consistent set ;

any model of this set is a model of A.

Summary

Formula A is inconsistent if and only if T(A) is closed.

Formula B is valid if and only if T(¬B) is closed.

Formula C is simply consistent (contingent) if and only if both T(C)

and T(¬C) are open.

The tableau method is a decision algorithm for validity, consistency,

contingency, inconsistency.

A practical approach

If we suspect inconsistency for formula X,

T(X) will be considered first ;

if we suspect validity, T(¬X) will be considered first.

If T(Y) is closed, analysis is over : Y is known to be inconsistent and ¬Y is valid.

If T(Z) is open, Z is known to be consistent and ¬Z is not valid ; T(¬Z) has to be
considered to obtain more information, and to determine whether Z is valid or not.

Simplification : a branch can be closed as soon as a complementary

pair {A,¬A} occurs, even if A is not an atom.

Heuristics : use α-rules first.

Interpolation and definability I

Two real functions f and g, domain R2 ; a subset D ⊂ R
3.

If ∀(x, y, z) ∈ D : f(x, y) ≤ g(x, z) , then an interpolant function h satisfies

∀(x, y, z) ∈ D : [f(x, y) ≤ h(x) ≤ g(x, z)] .

Does h exists ? It depends on the chosen domain D.

Example. D = D1 ×D2 ×D3, two possible, “extreme” interpolants are

x 7→ sup
y∈D2

f(x, y) and x 7→ inf
z∈D3

g(x, z)

Counter-example. D = {(0,0,0), (0,1,1)}, the hypothesis is

f(0,0) ≤ g(0,0) ∧ f(0,1) ≤ g(0,1)

and the thesis is

f(0,0) ≤ h(0) ≤ g(0,0) ∧ f(0,1) ≤ h(0) ≤ g(0,1) .

Obviously, the thesis is not a logical consequence of the hypothesis.
Counterexample : f(0,0) = 0, g(0,0) = 1, f(0,1) = 2, g(0,1) = 3.

Interpolation and definability II

In R+, equation x2 = x+1 has a single solution, the golden ratio ;

if y2 = y +1 and z2 = z +1, then y = z ;

the equation is an implicit definition of the golden ratio x.

Can this implicit definition turned into an explicit definition ?

Yes : x = (1+
√
5)/2.

Definability corresponds to equation solving.

Interpolation corresponds to inequation solving.

In algebra and calculus,

(in)equation solving can be an intricate business.

In propositional logic, these notions are easy. Predicates “a ≤ b” and

“a = b” respectively become “|= a ⇒ b” and “|= a ≡ b”.

Craig’s interpolation theorem

If |= A ⇒ B, then a formula C exists, containing only atoms occurring

in both A and B, such that |= A ⇒ C and |= C ⇒ B.

Proof. Induction on the set Π of atoms occurring in both A and B.

Base case. If Π = ∅, |= A ⇒ B implies either A is inconsistent (and

C =def false is an appropriate choice) or B is valid (and C =def true is

an appropriate choice). This can be proved by contradiction. If there

were valuations u and v (defined on disjoint domains) such that

u(A) = T et v(B) = F , the valuation w =def u ∪ v would be such that

w(A ⇒ B) = F .

Induction step. If p ∈ Π, induction hypothesis applies to formulas

A(p/true), B(p/true) and also to formulas A(p/false), B(p/false) (why is

that ?). If CT and CF are corresponding interpolants, then formula

(p∧CT)∨ (¬p∧CF) is an interpolant for A and B (again, why is that ?).

Beth’s definability theorem

Let A be a formula with no occurrence of q and r,

such that formula [A(p/q) ∧ A(p/r)] ⇒ (q ≡ r) is a tautology.

Some formula B exists, with no occurrence of p, q and r,

such that formula A ⇒ (p ≡ B) is a tautology.

Hypothesis states that as soon as a valuation v assigns T to formula A,

it also assigns some fixed truthvalue v(p) to proposition p.

Thesis states that the value v(p) can be explicited into v(B),

for some B without occurrence of the “unknown”, proposition p.

Proof. Sequence of elementary steps.

|= [A(p/q) ∧A(p/r)] ⇒ (q ≡ r)] ,

|= [A(p/q) ∧A(p/r) ∧ q] ⇒ r ,

|= [A(p/q) ∧ q] ⇒ [A(p/r) ⇒ r] .

Let B be an interpolant (Craig’s theorem), without p, q, r :

|= [A(p/q) ∧ q] ⇒ B , and therefore

|= A(p/q) ⇒ (q ⇒ B) , and by uniform substitution

|= A(p/r) ⇒ (r ⇒ B) .

On the other hand :

|= B ⇒ [A(p/r) ⇒ r] , hence

|= [B ∧A(p/r)] ⇒ r , hence

|= A(p/r) ⇒ (B ⇒ r) , and by uniform substitution

|= A(p/q) ⇒ (B ⇒ q) .

The thesis follows :

|= A(p/q) ⇒ (q ≡ B) , or

|= A(p/r) ⇒ (r ≡ B) , or

|= A ⇒ (p ≡ B) .

Finitely consistent sets

Definition. A set is finitely consistent if all its finite subsets are

consistent.

Comment. Every consistent set is finitely consistent.

Definition. A finitely consistent set S is maximal if no proper superset

of S is finitely consistent.

Theorem. Let Π a set of atoms and F the set of formulas based on Π.

A set E ⊂ F is maximal finitely consistent if and only if a valuation v

on Π exists such that E = {ϕ ∈ F : v(ϕ) = T}.

Corollary. Every maximal finitely consistent set is a consistent set with

a unique model.

The unique model of a maximal finitely consistent set

Comment. The proof emphasises the one-to-one correspondence between valuations
and maximal finitely consistent sets (when the atom set is fixed).

Proof. The condition is sufficient. The set E = {ϕ ∈ F : v(ϕ) = T} is (finitely)
consistent, since v is a model of S, and is maximal : if ψ 6∈ E, then the set E ∪ {ψ}
includes the finite inconsistent subset {¬ψ,ψ}.
The condition is necessary. (We consider only the case where Π is a countable set,
say Π = {p1, p2, . . .}.)
Let E be a maximal finitely consistent subset of F.
For each i, E contains either pi or ¬pi. It cannot contain both and, if pi 6∈ E, the set
E ∪ {pi} is not finitely consistent so there is a finite subset E′ of E such that E′ ∪ {pi}
is inconsistent and therefore E′ |= {¬pi}. This means E ∪ {¬pi} is finitely consistent
[if E′′ ⊂ E, every model of E′′ ∪ E′ is a model of E′′ ∪ {¬pi}] so, ¬pi ∈ E since E is
maximal. (In the same way, if ¬pi 6∈ E, then pi ∈ E.) For each i, let ℓi the unique
element of {pi,¬pi} belonging to E ; let v the unique interpretation such that all ℓi
are true. Let ϕ ∈ E and {pi1, . . . , pin} the propositions occurring in ϕ. Since E is
finitely consistent, the finite subset {ℓi1, . . . , ℓin,ϕ} is consistent, hence v(ϕ) = T and
E ⊂ {ϕ ∈ F : v(ϕ) = T}. Since E is maximal the inclusion is an equality.

Compactness theorem I

Every finitely consistent set is a consistent set.

Comment. It is sufficient to prove that every finitely consistent set is

included in a maximal finitely consistent set.

Proof. Let D be a finitely consistent set. A chain of supersets is

designed as follows : E0 = D and if n > 0, En = En−1 ∪ {pn} if this set

is finitely consistent and En = En−1 ∪ {¬pn} otherwise.

All these sets are finitely consistent. The base case E0 is obvious. The

induction step is also obvious when En = En−1 ∪ {pn} ; let us therefore

consider the case En = En−1 ∪ {¬pn}. In this case a finite subset

E′ ⊂ En−1 exists such that E′ ∪ {pn} is inconsistent and therefore

E′ |= ¬pn. As a result En = En−1 ∪ {¬pn} is finitely consistent since for

each finite subset E′′ ⊂ En−1, every model of E′′ ∪ E′ (such a model

exists) is also a model of E′′ ∪ {¬pn}.

Compactness theorem II

Now, let E =def
�

n En. The intersection {pi,¬pi} ∩ E contains a single

element ℓi.

The ℓi : l = 1,2, . . . define a single valuation v. For each ϕ ∈ D, the

value v(ϕ) must be T , otherwise {ℓi : pi occurs in ϕ} ∪ {ϕ}, would be a

finite inconsistent subset of some En, which is impossible.

The set D is therefore included in the maximal finitely consistent set

{ϕ ∈ F : v(ϕ) = T}.

Mathematical comments.
The compactness theorem remains true for uncountable sets (proof by ordinal
induction, AC is used).
The compactness theorem is a special case of Tychonoff’s theorem : the product of
any set of compact (topological) spaces is a compact space.

DEDUCTIVE METHODS

How to develop a theory ?

1. Decision method (for validity) ;

�� this is the analytical approach :

If U = {A1, . . . , An} and T (U) = {A : U |= A},
then A ∈ T (U) iff |= (A1 ∧ . . . ∧An) ⇒ A.

Problems :

— There can be infinitely many axioms.

— Few logics allow for a validity decision method.

— The decision method provides no information about the

“causal link” from axioms to theorems.

— Old theorems are of no use to obtain new ones.

2. Proof method ;

�� this is the deductive, synthetic approach :

A theorem results from a deductive, syntactic process, which starts

from axioms.

Advantages :

— Even if infinitely many axioms are available, a proof uses only a

finite subset of axioms.

— The proof emphasises the “causal link” between axioms and

the proved theorem.

— As soon as it is obtained, any theorem can be used as an

additional axiom, in order to deduce more theorems.

Problem : The deductive approach is a highly nondeterministic

process.

HILBERT SYSTEM

The formal system H consists of

— three axiom schemes :

1. ⊢ A ⇒ (B ⇒ A)

2. ⊢ (A ⇒ (B ⇒ C))

⇒ ((A ⇒ B) ⇒ (A ⇒ C))

3. ⊢ (¬B ⇒ ¬A) ⇒ (A ⇒ B)

— the Modus Ponens (MP) rule :

⊢ A ⊢ A ⇒ B
⊢ B

A,B and C are any formulas,

involving only “¬” and “⇒” connectives.

Proofs

A proof in H is a formula sequence ; each formula is

— an axiom (a scheme instance), or

— inferred from two earlier formulas (occurring earlier in the

sequence) by the Modus Ponens rule.

The last member A of the sequence is a theorem ; the sequence is a

proof of A.

This is written ⊢H A or ⊢ A .

Comment. Any proof prefix is also a proof (of its last element).

Example : a proof in H

1. ⊢ p ⇒ ((p ⇒ p) ⇒ p) (Axiom 1)

2. ⊢ (p ⇒ ((p ⇒ p) ⇒ p)) ⇒ ((p ⇒ (p ⇒ p)) ⇒ (p ⇒ p)) (Axiom 2)

3. ⊢ (p ⇒ (p ⇒ p)) ⇒ (p ⇒ p) (1, 2, MP)

4. ⊢ p ⇒ (p ⇒ p) (Axiom 1)

5. ⊢ p ⇒ p (4, 3, MP)

Comments. “Axiom 1” means “instance of axiom scheme 1” and “4, 3, MP” means
“results from formulas 4 and 3 by Modus Ponens rule”.

This example 5-line proof witnesses that (p ⇒ p) is a theorem, or that assertion
⊢ (p ⇒ p) (read : “(p ⇒ p) is a theorem”) is a metatheorem (i.e., a usual theorem, in
the mathematical sense ; the “meta” is often omitted).

(A ⇒ A) is a theorem scheme ; any instance is a theorem.

A proof of (p ⇒ p) is easily converted into a proof of, say, (p ⇒ q) ⇒ (p ⇒ q).

Only the negation and the conditional are used in this (economical) version of
Hilbert system ; this is a nonessential but convenient restriction.

Proofs as trees

⊢ p ⇒ ((p ⇒ p) ⇒ p)
⊢ (p ⇒ ((p ⇒ p) ⇒ p)) ⇒
((p ⇒ (p ⇒ p)) ⇒ (p ⇒ p))

⊢ (p ⇒ (p ⇒ p)) ⇒ (p ⇒ p) ⊢ p ⇒ (p ⇒ p)

⊢ p ⇒ p

Proofs really are trees but the sequence representation is more

convenient . . . at least from the typographic point ov view.

1 2

3 4

5

Derivations

A U-based derivation in H is a formula sequence where every formula

is

— a hypothesis (element of U), or

— an axiom, our

— inferred from two earlier formula by Modus Ponens.

If A is the last member of the sequence, the corresponding

metatheorem is written U ⊢H A or U ⊢ A .

A proof is an ∅-based derivation.

Remarque. The last member A of a derivation is (usually) not a theorem. We will
prove later that U ⊢ A holds if and only if U |= A holds ; as a result, ⊢ A holds if
and only if A is a tautology.

Derivation : an example

1. p ⇒ (q ⇒ r), q, p ⊢ p ⇒ (q ⇒ r) (Hypothesis)

2. p ⇒ (q ⇒ r), q, p ⊢ p (Hypothesis)

3. p ⇒ (q ⇒ r), q, p ⊢ q ⇒ r (1, 2, MP)

4. p ⇒ (q ⇒ r), q, p ⊢ q (Hypothesis)

5. p ⇒ (q ⇒ r), q, p ⊢ r (3, 4, MP)

Comments.

Proving A,B,C ⊢ D is usually easier than proving ⊢ A ⇒ (B ⇒ (C ⇒ D)), but we will
show that any derivation for the first assertion can be mechanically converted into a
derivation for the second assertion ; the derivation above therefore witnesses the
assertion

⊢ (p ⇒ (q ⇒ r)) ⇒ (q ⇒ (p ⇒ r)) .

Composition principle

Any theorem can be used as an additional axiom.

Proof. A proof using this can be converted into a “real”proof by replacing every
theorem by a proof of this theorem.

Uniform substitution principle

If C is a theorem and if p1, . . . , pn are pairwise distinct propositions,

then C(p1/A1, . . . , pn/An) is a theorem.

Proof. The application of any uniform substitution to a proof always produces a
proof.

Derived inference rules

The notation
U1 ⊢ A1 , · · · , Un ⊢ An

U ⊢ B

is a derived inference rule. Its meaning is, if the assertions above the

line can be proved, then so can the assertion below the line. A derived

inference rule is sound or correct if that is really the case.

Comment. A derived inference rule is sound if any derivation using it can be
converted into a proper derivation. If we show first that U ⊢ A holds iff U |= A
holds, proving the soundness of a derived inference rule will be easy. For instance,

the derived inference rule
¬X ⊢ X

⊢ X
is sound, since, if X is a logical consequence

of ¬X, then X is valid.

However, the soundness of some derived rules will be established directly since they
will make easier to investigate the link between ⊢ and |=.

Deduction rule

This is the rule

U,A ⊢ B
U ⊢ A ⇒ B

Comments. “U,A” is short for “U ∪ {A}”.
This rule is very often used in mathematics :

— In order to prove A ⇒ B ;
— we assume A ;
— from which we deduce B.

If this rule can be proved sound, we already know it will be useful :

p ⇒ (q ⇒ r), q, p ⊢ r is trivial ;

⊢ (p ⇒ (q ⇒ r)) ⇒ (q ⇒ (p ⇒ r)) is not.

Soundness of the deduction rule : a direct proof

We have to convert step by step a derivation for U,A ⊢ B into a

derivation for U ⊢ A ⇒ B .

Proof. Let Π1 a derivation for U,A ⊢ B ; we designed a derivation Π2 for U ⊢ (A ⇒ B)
by replacing each line of Π1 by a sequence of lines for Π2. More specifically, nth line
X in Π1 establishes

n. U,A ⊢ X

and is converted into a sequence of lines ending in establishing

n′. U ⊢ A ⇒ X.

Four cases are possible :

1. X is an axiom ;

2. X is a hypothesis (X ∈ U) ;

3. X is the new hypothesis A ;

4. X is inferred by Modus Ponens.

In cases 1 and 2, we convert

n. U,A ⊢ X (Ai or H)

into a three-line sequence

n′−2. U ⊢ X (Ai or H)
n′−1. U ⊢ X ⇒ (A ⇒ X) (A1)
n′. U ⊢ A ⇒ X (n′−2, n′−1, MP)

In case 3, we convert U,A ⊢ A by a five-line sequence adapted fron the proof of
⊢ (p ⇒ p) ; the last line is therefore U ⊢ (A ⇒ A).

In case 4, we know the derivation Π1 contains

i. U,A ⊢ Y (. . .)
j. U,A ⊢ Y ⇒ X (. . .)
n. U,A ⊢ X (i, j, MP)

We can assume Π2 already contains

i′. U ⊢ A ⇒ Y (. . .)
j′. U ⊢ A ⇒ (Y ⇒ X) (. . .)

and we add

n′−2. U ⊢ (A ⇒ (Y ⇒ X)) ⇒ ((A ⇒ Y) ⇒ (A ⇒ X)) (A2)
n′−1. U ⊢ (A ⇒ Y) ⇒ (A ⇒ X) (j′, n′−2, MP)
n′. U ⊢ (A ⇒ X) (i′, n′−1, MP)

Some useful theorems

Hilbert-like proofs are easy to check but sometimes their design are

tricky ; this is usual with synthetic methods.

Here are some useful theorems, given without proof.

1. ⊢ (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))

2. ⊢ (A ⇒ (B ⇒ C)) ⇒ (B ⇒ (A ⇒ C))

3. ⊢ ¬A ⇒ (A ⇒ B)

4. ⊢ A ⇒ (¬A ⇒ B)

5. ⊢ ¬¬A ⇒ A

6. ⊢ A ⇒ ¬¬A
7. ⊢ (A ⇒ B) ⇒ (¬B ⇒ ¬A)

8. ⊢ ¬C ⇒ (B ⇒ ¬(B ⇒ C))

9. ⊢ (B ⇒ A) ⇒ ((¬B ⇒ A) ⇒ A)

Proof design

The deduction rule and the composition principle are used to prove theorem 6. Even
with them, the designis not easy.

1. A, ¬¬¬A ⊢ ¬¬¬A ⇒ ¬A (Composition, th. 5)

2. A, ¬¬¬A ⊢ ¬¬¬A (Hypothesis)

3. A, ¬¬¬A ⊢ ¬A (1, 2, MP)

4. A ⊢ ¬¬¬A ⇒ ¬A (Deduction, 3)

5. A ⊢ (¬¬¬A ⇒ ¬A) ⇒ (A ⇒ ¬¬A) (Axiom 3)

6. A ⊢ A ⇒ ¬¬A (4, 5, MP)

7. A ⊢ A (Hypothesis)

8. A ⊢ ¬¬A (6, 7, MP)

9. ⊢ A ⇒ ¬¬A (Deduction, 8)

Comment. The augmentation rule is obviously sound :

U ⊢ A
U,B ⊢ A

Further useful (sound) derived inference rules

If ⊢ A ⇒ B is known then rule
U ⊢ A
U ⊢ B

is sound.

This formalizes some kind of common-sense reasoning :

1. If A follows from U , i.e. U ⊢ A,

2. use theorem ⊢ A ⇒ B,

3. apply Modus Ponens to (1) and (2) and obtain U ⊢ B.

U ⊢ ¬B ⇒ ¬A
U ⊢ A ⇒ B

Contraposition rule

U ⊢ A⇒B U ⊢ B⇒C
U ⊢ A ⇒ C

Transitivity rule

U ⊢ ¬¬A
U ⊢ A

Double negation rule

U ⊢ A ⇒ (B ⇒ C)

U ⊢ B ⇒ (A ⇒ C)
Antecedent switching rule

Interpretation of rules I

Contraposition rule formalizes contradiction reasoning.

Transitivity formalizes chain reasoning :

to prove ⊢ A ⇒ B,

lemmas are proved :

⊢ A ⇒ C1 ,⊢ C1 ⇒ C2 , . . . , ⊢ Cn ⇒ B .

Repeated use of transitivity rule leads to ⊢ A ⇒ B.

Antecedent switching rule means that the set of hypotheses is not

ordered ; they can be used in any order.

Interpretation of rules II

Double negation rule is often used in mathematics . . .

. . . but can be misleading outside mathematics.

Examples : The sentence

It is not true that I am unhappy

is not fully equivalent to

I am happy

A program which does not produce two values x 6= y is not necessarily a program
which produces two equal values x = y.

Case disjunction

This is a very useful derived rule.

U,B ⊢ A U,¬B ⊢ A
U ⊢ A

Proof outline :

U,B ⊢ A Hypothesis

U ⊢ B ⇒ A Deduction

⊢ (B ⇒ A) ⇒ ((¬B ⇒ A) ⇒ A) Theorem

U ⊢ (¬B ⇒ A) ⇒ A MP

U,¬B ⊢ A Hypothesis

U ⊢ ¬B ⇒ A Deduction

U ⊢ A MP

Kalmar’s lemma

Let A be a formula based on propositions p1, . . . , pn and

connectives “¬” and “⇒” ; let v be some valuation.

If p′k is defined as pk if v(pk) = T and as ¬pk if v(pk) = F ,

and if A′ is defined as A if v(A) = T and as ¬A if v(A) = F ,

then

{p′1, . . . , p′n} ⊢ A′

Example. From the truthtable line

p q r s (p ⇒ q) ⇒ ¬(¬r ⇒ s)

F F T T F

Kalmar’s lemma allows us to deduce

{¬p,¬q, r, s} ⊢ ¬[(p ⇒ q) ⇒ ¬(¬r ⇒ s)] .

Kalmar’s lemma : the proof

Comment. Kalmar’s lemma allows us to “encode” a truthtable line into the Hilbert
system ; this will be used to show that U |= A implies U ⊢ A.

Mathematical induction is used ;

the induction is based on the syntactic structure of formula A.

Base case : A is pk.

First inductive step : A is ¬B.

Second inductive step : A is B ⇒ C.

Base case

If v(pk) = T , then Kalmar’s thesis reduces to {. . . , pk, . . .} ⊢ pk .

If v(pk) = F , it reduces to {. . . ,¬pk, . . .} ⊢ ¬pk .

First inductive step : A is ¬B.

If v(B) = F and v(A) = T then

{p′1, . . . , p′n} ⊢ B′ ,
{p′1, . . . , p′n} ⊢ ¬B ,

{p′1, . . . , p′n} ⊢ A ,

{p′1, . . . , p′n} ⊢ A′ .

If v(B) = T and v(A) = F then

{p′1, . . . , p′n} ⊢ B′ ,
{p′1, . . . , p′n} ⊢ B ,

B ⊢ ¬¬B ,

{p′1, . . . , p′n} ⊢ ¬¬B ,

{p′1, . . . , p′n} ⊢ ¬A ,

{p′1, . . . , p′n} ⊢ A′ .

Second inductive step : A is B ⇒ C.

If v(C) = T and v(A) = T then

{p′1, . . . , p′n} ⊢ C′ ,
{p′1, . . . , p′n} ⊢ C ,

C ⊢ (B ⇒ C) ,

{p′1, . . . , p′n} ⊢ (B ⇒ C) ,

{p′1, . . . , p′n} ⊢ A ,

{p′1, . . . , p′n} ⊢ A′ .

If v(B) = F and v(A) = T then

{p′1, . . . , p′n} ⊢ B′ ,
{p′1, . . . , p′n} ⊢ ¬B ,

¬B ⊢ (B ⇒ C) ,

{p′1, . . . , p′n} ⊢ (B ⇒ C) ,

{p′1, . . . , p′n} ⊢ A ,

{p′1, . . . , p′n} ⊢ A′ .

Second inductive step (bis)

If v(B) = T , v(C) = F and v(A) = F on a

{p′1, . . . , p′n} ⊢ B′ ,
{p′1, . . . , p′n} ⊢ B ,

{p′1, . . . , p′n} ⊢ C′ ,
{p′1, . . . , p′n} ⊢ ¬C ,

¬C, B ⊢ ¬(B ⇒ C) ,

{p′1, . . . , p′n} ⊢ ¬(B ⇒ C) ,

{p′1, . . . , p′n} ⊢ ¬A ,

{p′1, . . . , p′n} ⊢ A′ .

These lemmas have been used :

B ⊢ ¬¬B , C ⊢ B ⇒ C ,

¬B ⊢ B ⇒ C , ¬C, B ⊢ ¬(B ⇒ C) .

Completeness of Hilbert system

Let A be a tautology based on propositions p1, . . . , pn and

connectives “¬” and “⇒” only. Kalmar’s lemma leads to

{p′1, . . . , p′n} ⊢ A ,

where p′k can be either pk or ¬pk (but A′ = A.)

From these 2n theorems, we obtain (by Case disjunction rule) 2n−1

new theorems :

{p′1, . . . , p′n−1} ⊢ A ,

and, more generally, 2k theorems, for k = 0,1, . . . , n :

{p′1, . . . , p′k} ⊢ A ,

The special case k = 0 gives the intended conclusion :

⊢ A .

RESOLUTION

Most useful proof method in implementations.

Proof method by refutation :

as with semantic tableaux, instead of proving A is valid,

we prove ¬A is inconsistent ;

instead of proving E |= A

we prove E ∪ {¬A} is inconsistent.

Classical resolution requires formulas in clausal form,

or conjunctive normal form.

Normal forms

The expression (x2 − 4x)(x+3)+ (2x− 1)2 + 4x− 19

is a polynomial, but its properties are not obvious. A more convenient

form for the same polynomial will emphasise its degree, its roots,

Normal forms (or canonical forms) are used for that purpose. The

most used forms are :

x3 + 3x2 − 12x− 18 (sum of monomials, decreasing degrees) ;

(x− 3)(x+3−
√
3)(x+3+

√
3) (product of linear factors) ;

[(x+3)x− 12]x− 18 (Horner form).

Disjunctive normal form I

p q r p ⇒ q (p ⇒ q) ⇒ r

T T T T T
T T F T F
T F T F T
T F F F T
F T T T T
F T F T F
F F T T T
F F F T F

(p ∧ q ∧ r)
∨ (p ∧ ¬q ∧ r)
∨ (p ∧ ¬q ∧ ¬r)
∨ (¬p ∧ q ∧ r)
∨ (¬p ∧ ¬q ∧ r)

The truthtable of (p ⇒ q) ⇒ r (left), demonstrates that this formula is

logically equivalent to the disjunctive formula (right). Each disjunct

corresponds to a “true” line of the table.

A disjunctive normal form is a disjunction of cubes, which are

conjunctions of literals. Every formula has a truthtable and is

therefore logically equivalent to a disjunctive normal form (DNF).

Comment. A DNF can contain any (finite) number of cubes ; a cube can contain
any (finite) number of literals.

Disjunctive normal form II

The cube (ℓ1 ∧ ℓ2 ∧ · · · ∧ ℓn) , (n ∈ N) , is sometimes written
�{ℓ1, . . . , ℓn}, or

�

i ℓi, or simply {ℓ1, . . . , ℓn}.

Comment. true et false are not literals, but they are cubes.

A cube is inconsistent if and only if it contains a pair of opposite

literals, a complementary pair.

A cube is valid if and only if it is empty.

A DNF is inconsistent if and only if all its cubes are inconsistent.

The empty DNF is therefore inconsistent.

Conjunctive normal form I

A clause is a disjunction of literals.

A clause can be represented as
�{ℓi : i = 1, . . . , n}, and even as

{ℓi : i = 1, . . . , n}, although the latter is ambiguous and should be

avoided.

Comment. Sometimes, a notation like pqr is used to denote the cube

p ∧ ¬q ∧ r or the clause p ∨ ¬q ∨ r. This is ambiguous and should be

avoided.

The only inconsistent clause is the empty clause, denoted ✷.

A clause is valid if and only if it contains a pair of opposite literals, a

complementary pair.

A unit clause contains a single literal.

Conjunctive normal form II

A conjunctive normal form or CNF is a conjunction of clauses.

Examples :

— (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬r) – CNF

— (¬p ∨ q ∨ r) ∧ ¬(¬q ∨ r) ∧ (¬r) – not CNF

A CNF is valid if and only if all its clauses are valid ; as a consequence,

the empty CNF is valid.

Every formula is logically equivalent to some CNF.

Comment. Clauses, cubes, DNF and CNF are formulas and therefore contain finitely
many terms.

Why normal forms ?

A useful normal form must be

— general enough : any formula should have a logically equivalent

normal form ;

— as specific as possible, so specific algorithms can be designed

to deal with normal forms, more efficient than the general

algorithms.

Normal forms could be unique, but that is not true for DNF and CNF.

Example. The DNF

(p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∨
(¬p ∧ q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r)
is logically equivalent to a shorter DNF :

(p ∧ r) ∨ (¬q ∧ ¬r) ∨ (¬p ∧ q ∧ r)

Normalization algorithm I

From now on, only CNF is considered.

1. Eliminate all connectives but ¬, ∨, ∧.
2. Use De Morgan laws for propagating ¬ occurrences down the syntactic tree.

¬(A ∧B) ↔ (¬A ∨ ¬B)
¬(A ∨B) ↔ (¬A ∧ ¬B)

3. Eliminate double negations.

¬¬A ↔ A

4. Use distributivity laws to propagate ∨ downward.

A ∨ (B ∧ C) ↔ (A ∨B) ∧ (A ∨ C)
(A ∧B) ∨ C ↔ (A ∨ C) ∧ (B ∨ C)

A CNF can be viewed as a set of clauses, a clausal form.

Exercise. Observe the link beteen a CNF logically equivalent to A and a DNF
logically equivalent to ¬A.

Normalization algorithm II

Variable L is a (conjunctive) set of disjunctions ; its initial value is {A} where A is
any formula (viewed as a disjunction of one term). The final value of L is a CNF,
logically equivalent to A. We call disclause any disjunction containing at least one
term which is not a literal.

L := {A} ;
As long as L contains some disclause do

{�L ↔ A is invariant }
select a disclause D ∈ L ;
select a non-literal t ∈ D ;
if t = α do

t1 := α1; t2 := α2;
D1 := (D − t) + t1; D2 := (D − t) + t2;
{D ←→ D1 ∧ D2 }
L := (L\{D}) ∪ {D1, D2}

else (t = β) do
t1 := β1; t2 := β2;
D′ := ((D − t) + t1) + t2;
{D ←→ D′ }
L := (L\{D}) ∪ {D′}

Example

Design a CNF logically equivalent to (¬p ⇒ ¬q) ⇒ (p ⇒ q).

(¬p ⇒ ¬q) ⇒ (p ⇒ q)

¬(¬¬p ∨ ¬q) ∨ (¬p ∨ q) (⇒ elimination)

(¬¬¬p ∧ ¬¬q) ∨ (¬p ∨ q) (downward propagation, ¬)
(¬p ∧ q) ∨ (¬p ∨ q) (double negation)

(¬p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q) (distributivity)

Formula (¬p ⇒ ¬q) ⇒ (p ⇒ q) is logically equivalent to CNF

(¬p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q) .

It is also logically equivalent to ¬p ∨ q .

Example (bis)

1. {(¬p ⇒ ¬q) ⇒ (p ⇒ q)} Init

2. {¬(¬p ⇒ ¬q) ∨ (p ⇒ q)} β,1
3. {¬(¬p ⇒ ¬q) ∨ ¬p ∨ q} β,2
4. {¬p ∨ ¬p ∨ q , ¬¬q ∨ ¬p ∨ q} α,3
5. {¬p ∨ ¬p ∨ q , q ∨ ¬p ∨ q} α,4

Therefore the CNF is

(¬p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q) .

It can be simplified into

(¬p ∨ q) ∧ (¬p ∨ q) ,

and further into

¬p ∨ q .

Simplification of clausal forms

The normalization algorithm usually leads to CNF that can (should) be simplified.

1. Keep only one occurrence of a literal inside a clause.

Example : (¬p ∨ q ∨ ¬p) ∧ (r ∨ ¬p) ←→ (¬p ∨ q) ∧ (r ∨ ¬p)

2. Valid clauses (containing a complementary pair) can be

omitted.

Example : (¬p ∨ q ∨ p) ∧ (r ∨ ¬p) ←→ (r ∨ ¬p)

3. If a clause c1 is included into a clause c2, then c2 can be

omitted.

Example : (r ∨ q ∨ ¬p) ∧ (¬p ∨ r) ←→ (¬p ∨ r)

These simplifications lead to a pure normal form, which is still not unique. For
instance, (p ∨ ¬q) ∧ q and p ∧ q are pure, logically equivalent CNFs.

Resolution rule I

A clause set (set of clauses) S is inconsistent if and only if S |= ✷.

(✷ is the empty clause, also denoted false.)

Idea. Demonstrate S inconsistency by “deriving” ✷ (false) from S.

Let A,B,X be formulas, let v be a valuation.

Assume v(A ∨X) = T and v(B ∨ ¬X) = T .

If v(X) = T , then v(B) = T ,

If �(�) = � , therefore v(A ∨B) = T .

If v(X) = F , then v(A) = T ,

If �(�) = � , therefore v(A ∨ B) = T .

As a result, {(A ∨X), (B ∨ ¬X)} |= (A ∨B).

Resolution rule : special case where X is a proposition and where A,B

are clauses.

Resolution rule II

Relation ⊢R (or ⊢) is inductively defined

between a clause set and a clause ;

it is the smallest relation satisfying these conditions :

1. If C ∈ S, then S ⊢ C.

2. Let C1 = (C′
1 ∨ p) and C2 = (C′

2 ∨ ¬p) ;
if S ⊢ C1 and S ⊢ C2, then S ⊢ C′

1 ∨ C′
2.

Clauses C1 and C2 can be resolved (with respect to p) ;

clause Res(C1, C2) =def C′
1 ∨ C′

2 is their resolvent.

If S is a clause set, SR is defined as the smallest superset of S

containing the resolvents of its elements.

SR = {C : S ⊢ C} = {C : SR ⊢ C}.

Soundness of resolution rule

Let S a clause set and C a clause. We must prove, if S ⊢ C, then

S |= C. It is sufficient to see that relation |= (restricted to clause sets

and clauses) satisfies the characteristic conditions of relation ⊢R :

1. If C ∈ S, then S |= C.

2. Let C1 = (C′
1 ∨ p) and C2 = (C′

2 ∨ ¬p) ;
ifS |= C1 and S |= C2, then S |= C′

1 ∨ C′
2.

Condition 1 is obviously satisfied ; condition 2 results from

{(A ∨X), (B ∨ ¬X)} |= (A ∨B).

Comment. Clause sets S and SR are always logically equivalent.

Completeness of resolution rule I

If S is a clause set, if A is a clause and if S |= A, can we deduce

S ⊢R A ?

Obviously not :

{p,¬p} |= q ,

but

{p,¬p} 6⊢R q .

Fortunately, we do not need so much ; instead of proving S |= A, we prove the
equivalent S,¬A |= ✷.
The following result can be used :

Theorem. If S |= ✷, then S ⊢R ✷.

This “weak completeness” is in fact as powerful as completeness (why ?).

Semantic tree

Let S a formula or a formula set, with ΠS = {p1, p2, . . .}.
A semantic tree is a complete, balanced binary tree, labelled as

follows : left branches at level i are labelled pi and right branches are

labelled ¬pi.

The leaves (or full branches) of the semantic tree S correspond to the

valuations of ΠS and S.

Each path C from the root to some node n at level i defines

— a proposition set, Π(n) = {p1, . . . , pi} ;
— a valuation vn on this set ;

vn(pk) = T if pk ∈ C and vn(pk) = F if ¬pk ∈ C.

Semantic tree : an example

Let S = {p ∨ q, p ∨ r,¬q ∨ ¬r,¬p} , a clause set.

ΠS = {p, q, r}.
A semantic tree is :

� �� � � � � �

��

��

��

¬p ¬p ¬p ¬p ¬q ∨ ¬r p ∨ r p ∨ q p ∨ q

The tree is finite since ΠS is finite.

As S is inconsistent, each leaf can be labelled with a clause made false

by the valuation associated with that leaf.

Completeness of the resolution method (finite case) I

If S is a finite inconsistent clause set, then S ⊢ ✷.

Let A be a semantic tree for S.

The path from the root to node n defines a proposition set Π(n) and a valuation vn
for this set ; vn(ℓ) = T for each labelling literal ℓ on the path.

S is inconsistent, so the valuation associated with any leaf f of A falsifies some
clause Cf ∈ S. We label f with Cf . Observe that

ΠCf
⊆ Π(f) = ΠS et vf(Cf) = F .

(ΠCf is the set of atoms occurring in Cf .)

We will attempt to propagate leaf labelling upward : each node n will be labelled
with some clause Cn ∈ SR such that

ΠCn
⊆ Π(n) ⊆ ΠS and vn(Cn) = F.

If this propagation succeeds, root r will be labelled with Cr ∈ SR such that

ΠCr
⊆ Π(r) et vr(Cr) = F.

As Π(r) = ∅ and vr(Cr) = F , the only possibility is Cr = ✷.

Completeness of the resolution method (finite case) II

How to label node n ?

Let n1, n2 the children of node n ; assume

Π(n1) = Π(n2) = Π(n) ∪ {p}.

n(Cn)
p ւ ց ¬p

n1(Cn1
) n2(Cn2

)

Assume

Cn1
∈ SR and ΠCn1

⊆ Π(n1) and vn1
(Cn1

) = F

Cn2
∈ SR and ΠCn2

⊆ Π(n2) and vn2
(Cn2

) = F

Node n is labelled as follows :
— If p 6∈ ΠCni

for i = 1 or 2, then Cn = Cni.
— If p ∈ ΠCn1

and p ∈ ΠCn2
:

vn1
(Cn1

) = F so Cn1
= C ′

n1
∨ ¬p and vn2

(Cn2
) = F so Cn2

= C ′
n2

∨ p.

Let Cn = C ′
n1

∨ C ′
n2
(= Resp(Cn1

, Cn2
)).

In both cases : Cn ∈ SR and ΠCn
⊆ Π(n) et vn(Cn) = F.

and the completeness (finite case) is proved.

Completeness of the resolution method (infinite case)

Due to the compactness theorem, the statement

✷ ∈ SR iff S is inconsistent

remains true if S is infinite.

If ✷ ∈ SR, then SR and therefore S are inconsistent.

If S is inconsistent, there is a finite inconsistent subset Sf , so ✷ ∈ SR
f

and therefore ✷ ∈ SR since SR
f ⊂ SR.

Resolution procedure I

If S is a clause set,

let MS be the set of all models of S.

S is inconsistent iff MS = ∅.

Resolution procedure

S := S0 ; (S0 clause set)

{MS = MS0
}

While ✷ 6∈ S, do :

select p ∈ ΠS,

sele
t C1 = (C′
1 ∨ p) ∈ S,

sele
t C2 = (C′
2 ∨ ¬p) ∈ S ;

S := S ∪ {Res(C1, C2)}
{MS = MS0

}

Comment on selection procedure : each resolvent pair can be selected only once ;
this provides termination since, if the lexicon size is n, no more than 3n (non valid)
clauses can be generated.

Resolution procedure II

Invariant : only logical consequences are inserted into S so the set MS

does not change.

The procedure terminates smoothly (false guard) or aborts (no

possible selection).

Smooth termination : when the guard is false and the computation stops, the final

value Sf is such that MSf
= MS0

and ✷ ∈ Sf , so Sf and S0 are inconsistent.

Abortion : If all resolvents have been produced and none of them is ✷, then

MSf
= MS0

and ✷ 6∈ Sf ; both Sf and S0 are consistent.

A derivation of ✷ (false) from S is a refutation of S.

Refutations : examples I

Let S = {(p ∨ q), (p ∨ r), (¬q ∨ ¬r), (¬p)}.

Clause numbering :

1. p ∨ q
2. p ∨ r
3. ¬q ∨ ¬r
4. ¬p

Two refutations :

5. p ∨ ¬r (1,3)
6. q (1,4)
7. p ∨ ¬q (2,3)
8. r (2,4)
9. p (2,5)

10. ¬r (3,6)
11. ¬q (3,8)
12. ¬r (4,5)
13. ¬q (4,7)
14. ✷ (4,9)

5. q (1,4)
6. r (2,4)
7. ¬q (3,6)
8. ✷ (5,7)

Refutations : examples II

Let S = {p,¬p ∨ q}.
Clause numbering :

1. p
2. ¬p ∨ q

Derivation :

3. q (1,2)

Let S = {p,¬p ∨ q,¬q}.
Clause numbering :

1. p
2. ¬p ∨ q
3. ¬q

Refutation :

4. q (1,2)
5. ✷ (3,4)

