
PREDICATE CALCULUS

Predicate language is more expressive than propositional language.
It is used to express object properties and relations between objects.

A relation R on D1, D2, . . . , Dn is a subset of the cartesian product
D1 ×D2 × · · · ×Dn ; number n is the arity of the relation.

LESS(x, y) = {(x, y) ∈ (N×N) | x < y}

LESS(x; y) = {(0,1), (0,2), (0,3), . . . ,

LESS(x; y) = f(1,2), (1,3), (1,4), . . . ,

LESS(x; y) = f(2,3), (2,4), (2,5), . . . ,

LESS(x; y) = f

... }

SQUARE(x, y) = {(x, y) ∈ (N×N) | y = x2} = {(0,0), . . . , (3,9), . . .}

PR(x) = {x ∈ N | x is a prime number} = {2,3,5,7,11,13, . . .}

R is an n-ary relation on domain D if R is a subset of Dn.

The predicate R associated with the n-ary relation R is defined by

R(d1, . . . , dn) = T iff (d1, . . . , dn) ∈ R.

Examples. :

LESS(0,1) = T LESS(8,4) = F LESS(3,6) = T · · ·

SQUARE(0,0) = T SQUARE(0,2) = F SQUARE(2,4) = T

SQUARE(2,7) = F · · ·

PR(3) = T PR(8) = F · · ·

Proposition : property, true or false

Predicate : property, true for some elements of a domain.

Predicate logic

— quantification

— interpretation : domain D

+ predicate : relation on the domain, subset of Dn

+ function : Dn 7→ D

Valid formulas can be enumerated but there is no decision procedure.

Complete methods :

— Semantic tableaux (Hintikka)

— Axiomatic systems (Hilbert)

— Canonical models (Herbrand)

— Resolution (Robinson)

PREDICATE CALCULUS (without functions) : THE SYNTAX

— P = {p, q, r, . . .} : a set of predicate symbols (with arity).

NB : propositions are 0-ary predicates.

— A = {a, a1, a2, . . . , b, c, . . .} : a set of (individual) constants.

— X = {x, x1, x2, x
′, . . . , y, z, , . . .} : a set of (individual) variables.

Atomic formulas involve terms.

We define terms, then atoms, then (general) formulas.

Terms and formulas

A term is a constant a ∈ A or a variable x ∈ X .

An atomic formula (atom) is an expression p(t1, . . . , tn), where p ∈ P is

an n-ary predicate symbol and t1, . . . , tn are terms.

Formulas are recursively defined :

— An atomic formula is a formula.

— true, false are formulas.

— If A is a formula, then ¬A is a formula.

— If A1 and A2 are formulas, then (A1 ∨A2), (A1 ∧A2),

(A1 ⇒ A2), (A1 ≡ A2) . . . are formulas.

— If A is a formula and x is a variable, then ∀xA and ∃xA are

formulas.

Parentheses, precedence

Some precedence rules are used :

Precedence for connectives :

Quantifications and negation are more binding than binary

connectives.

Example :

(

∀x
(

(¬(∃y p(x, y))) ∨ (¬(∃y p(y, x)))
))

can be written

∀x
(

¬∃ yp(x, y) ∨ ¬∃ yp(y, x)
)

Quantification, scope, bound variable, free variable

— In ∀xA and ∃xA,

the scope of x is A.

Scope in logic is similar to scope in programming languages.

— The occurrence of variable x in quantification ∀x or ∃x is

quantified.

— Any occurrence of x in the scope of a quantification is bound.

— A variable occurrence is free when it is neither quantified nor

bound.

— The scopes of two distinct variables x and y are disjoint

or one is included in the other.

Scope in programming languages

program Principal;

var x : integer;

procedure p;
var x : integer;

begin
x := 1;
writeln(x + x)

end;

procedure q;
var y : integer;

begin
y := 1;
writeln(x + y)

end;

begin
x := 5 ;

p;

q
end.

The scopes of two distinct variables are disjoint or one is included in the other.

Free and bound variables, examples

1. ϕ1 =def ∀x(p(x, a) ⇒ ∃x q(x))

Two imbricated quantifications on x.

Best avoid this and rewrite

into ∀x(p(x, a) ⇒ ∃y q(y)) or into ∀y(p(y, a) ⇒ ∃x q(x)).

2. ϕ2 =def ∃x∀xA

Two imbricated quantifications on x.

Best avoid this and rewrite into ∀xA.

3. ϕ3 =def ∀x p(x, a) ⇒ ∃x q(x)

Two distinct variables share the same name.

As the scopes are disjoint, there is no problem..

4. ϕ4 =def ∀x p(x, a) ⇒ q(x)

A free variable and a bound variable share the name x.

It is best to rewrite this into ∀y p(y, a) ⇒ q(x).

Renaming is allowed for bound variables only !

Universal and existential closure

A formula is closed if all variable occurrences are bound.

When a formula A contains free occurrences of x1, x2, . . . , xn, this can

be emphasised by using the notation A(x1, x2, . . . , xn).

If x1, x2, . . . , xn (and only them) have free occurrences in formula A,

— ∀x1∀x2 · · · ∀xnA

is the universal closure of A (sometimes denoted ∀ ∗A).

— ∃x1∃x2 · · · ∃xnA

is the existential closure de A (sometimes denoted ∃ ∗A).

The universal closure of p(x) ⇒ q(x)

is ∀x (p(x) ⇒ q(x)) and not ∀x p(x) ⇒ q(x).

Examples of formulas

1. ∀x∀y
(
p(x, y) ⇒ p(y, x)

)

This formula is true for all interpretations
associating with p a symmetric relation.

2. ∀x∃y p(x, y)

3. ∃y∀x p(x, y)

4. ∀x p(a, x)

5. ∃x∃y
(
p(x) ∧ ¬p(y)

)

This formula cannot be true if the interpretation relies
on a one-element domain.

6. ∀x
(
p(x) ∧ q(x)

)
≡

(
∀x p(x) ∧ ∀x q(x)

)

This formula is valid.

7. ∃x
(
p(x) ∨ q(x)

)
≡

(
∃x p(x) ∨ ∃x q(x)

)

This formula is valid.

8. ∀x
(
p(x) ⇒ q(x)

)
⇒

(
∀x p(x) ⇒ ∀x q(x)

)

This formula is valid.

9.
(
∀x p(x) ⇒ ∀x q(x)

)
⇒ ∀x

(
p(x) ⇒ q(x)

)

This formula is not valid.

PREDICATE CALCULUS (without functions)

THE SEMANTICS

In predicate logic, valuations assign objects to terms and truthvalues

to formulas.

A valuation or interpretation I is a triple (D, Ic, Iv) such that :

— D is a non-empty set, the domain ;

— Ic is a function that maps

— an objet Ic[a] ∈ D to each constant a,

— an n-ary relation on D to each n-ary predicate symbol p

(an n-ary relation on D is also a function Dn 7→ {T, F}) ;

— Iv is a function that maps an objet Iv[x] ∈ D to each variable x.

Interpretations : examples

Even a short formula like ∀x p(a, x) can be interpreted in infinitely

many ways ; some of them are :

— I1 = (N, I1c[p] = ≤, I1c[a] = 0)

— I2 = (N, I2c[p] = ≤, I2c[a] = 1)

— I3 = (Z, I3c[p] = ≤, I3c[a] = 0)

— I4 = (S, I4c[p] = ⊑, I4c[a] = ε)

The first three interpretations are about numbers ; the fourth one is

about strings.

Interpretation rules I

An interpretation I = (D, Ic, Iv) assigns an element of D to every term

and a truthvalue to every formula.

Interpretation : terms :

— If x is a free variable, I[x] = Iv[x].

— If a is a constant, I[a] = Ic[a].

Interpretation : formulas :

— If p is an n-ary predicate symbol and if t1, . . . , tn are terms, then

I[p(t1, . . . , tn)] = (Ic[p])(I[t1], . . . , I[tn]).

— I[true] = T and I[false] = F .

— If A is a formula, then

I[¬A] = T if I[A] = F ,

I[¬A] = F if I[A] = T .

Interpretation rules II

— If A1 and A2 are formulas, then (A1 ∨A2), (A1 ∧A2),

(A1 ⇒ A2), (A1 ≡ A2) are interpreted as in propositional logic :

I[(A1 ∧A2)]

= T if I[A1] = T and I[A2] = T ,

= F else.

I[(A1 ∨A2)]

= T if I[A1] = T or I[A2] = T ,

= F else.

I[(A1 ⇒ A2)]

= T if I[A1] = F or I[A2] = T ,

= F else.

I[(A1 ≡ A2)]

= T if I[A1] = I[A2],

= F if I[A1] 6= I[A2].

Interpretation rules III

Notation : If I = (DI, Ic, Iv) is an interpretation, if x is a variable and d

is an element of DI, then Ix/d is the interpretation J = (DJ , Jc, Jv)

such that

– DJ = DI,
– Jc = Ic,
– Jv[x] = d et Jv[y] = Iv[y] for each variable y other than x.

— If A is a formula and x is a variable,

I[∀xA]

= T if Ix/d[A] = T for each element d ∈ D,

= F else.

— If A is a formula and x a variable,

I[∃xA]

= T if Ix/d[A] = T for at least one element d ∈ D,

= F else.

Avoid capturing variables. . .

Formal rules only make the intuition more precise, but . . .

Observe that I[∀xA(x)] does not depend on I[x].

Observe that if I[∀xA(x)] = T then I[A(t)] = T for each term t.

Example. If ∀x∃y p(x, y) is true, then so are its instances, like

∃y p(a, y), ∃y p(x, y) and ∃y p(z, y)

However, the “pseudo-instance” ∃y p(y, y) might be false !

If we want to instantiate x into y, we must first rewrite ∀x∃y p(x, y)

into, say, ∀x∃z p(x, z) ; instantiation into ∃z p(y, z) is now possible.

Conclusion. Formula ∃y p(y, y) is not really an instance of ∀x∃y p(x, y) ;

y cannot be substituded to x in ∃y p(x, y), since the free x would be

replaced by a bound y. Binding without warrant is forbidden !

Satisfaction, model

A formula A is true for an interpretation I or A is satisfied by an

interpretation I or I is a model of A if I[A] = T . This can be written

as |=I A.

NB : This is sometimes written I |= A, which can be misleading.

Examples : Formula A : ∀x p(a, x)

— DI1 = N, I1c[p] =≤, I1c[a] = 0 : |=I1 A

— DI2 = N, I2c[p] =≤, I2c[a] = 1 : 6|=I2 A

— DI3 = Z, I3c[p] =≤, I3c[a] = 0 : 6|=I3 A

— DI4 = S, I4c[p] =⊑, I4c[a] = ε : |=I4 A

Satisfiability, validity

Just like in propositional logic !

Definitions.

If A is a formula of predicate logic,

— A is satisfiable or consistent

if A has at least one model.

— A is valid (this is noted |= A),

if I[A] = T for each interpretation I.

(The word tautology is more often used in propositional logic.)

— A is unsatisfiable or inconsistent

if A is not satisfiable, that is,

if I[A] = F for each interpretation I.

Theorem (duality between validity and consistency).

A is valid iff ¬A is inconsistent.

Examples

— ∀x p(a, x) is consistent but not valid.

DI1 = N, I1c[p] =≤, I1c[a] = 0 : |=I1 A

DI3 = Z, I3c[p] =≤, I3c[a] = 0 : 6|=I3 A

— ∀x p(x) ⇒ p(a) is valid.

— ∃x p(x) ⇒ p(a) is consistent but not valid.

Simply consistent or contingent means consistent but not valid.

Comment. Propositional valid schemes are also predicate valid

schemes ; for instance, from

¬¬A ≡ A,

¬¬(p ∧ q) ≡ (p ∧ q) can be deduced, but also ¬¬∀x p(x) ≡ ∀x p(x).

Examples, valid formulas

— (∀xA ∧ ∀xB) ≡ ∀x(A ∧B)

— (∀xA ∨ ∀xB) ⇒ ∀x(A ∨B)

— ∀x(A ⇒ B) ⇒ (∀xA ⇒ ∀xB)

— ∀x(A ≡ B) ⇒ (∀xA ≡ ∀xB)

— ∃x(A ∨B) ≡ (∃xA ∨ ∃xB)

— ∃x(A ∧B) ⇒ (∃xA ∧ ∃xB)

— ∃x(A ⇒ B) ≡ (∀xA ⇒ ∃xB)

— ∀xA ≡ ¬(∃x¬A)

— ∀x∀yA ≡ ∀y∀xA

— ∃x∃yA ≡ ∃y∃xA

— ∃x∀yA ⇒ ∀y∃xA

Logical consequence, logical equivalence I

Just like in propositional logic !

Definitions. If U is a formula set and if A and B are formulas,

— A is a logical consequence of U (noted U |= A) if A is true in

all models of U .

Comment. Usually, U contains only closed formulas ; in this case,U |= A iff
U |= ∀ ∗ A .

— A et B are logically equivalent (noted A ↔ B) if I[A] = I[B]

for each interpretation I.

As in propositional logic,

|= A ssi ∅ |= A .

Logical consequence, logical equivalence II

Theorem. A formula is valid (resp. consistent) if and only if its

universal (resp. existential) closure is valid (resp. consistent).

Theorem. Two formulas A and B are logically equivalent if and only if

formula A ≡ B is valid.

As a result, validity and consistency proving methods can be restricted

to closed formulas.

Substitution theorem and replacement theorem can be adapted to

predicate logic.

SEMANTIC TABLEAUX

Principle : systematic search for models.

Quantifications are instantiated.

Example 1.

¬
(

∀x(p(x) ⇒ q(x)) ⇒ (∀x p(x) ⇒ ∀x q(x))
)

↓
∀x(p(x) ⇒ q(x)),¬(∀x p(x) ⇒ ∀x q(x))

↓
∀x(p(x) ⇒ q(x)),∀x p(x),¬∀x q(x)

↓
∀x(p(x) ⇒ q(x)),∀x p(x),¬q(a)

↓
∀x(p(x) ⇒ q(x)), p(a),¬q(a)

↓
p(a) ⇒ q(a), p(a),¬q(a)

ւ ց
¬p(a), p(a),¬q(a) q(a), p(a),¬q(a)

× ×

Example 2. This is not correct !

¬
(

∀x(p(x) ∨ q(x)) ⇒ (∀x p(x) ∨ ∀x q(x))
)

↓
∀x(p(x) ∨ q(x)),¬(∀x p(x) ∨ ∀x q(x))

↓
∀x(p(x) ∨ q(x)),¬∀x p(x),¬∀x q(x)

↓
∀x(p(x) ∨ q(x)),¬∀x p(x),¬q(a)

↓
∀x(p(x) ∨ q(x)),¬p(a),¬q(a)

↓
p(a) ∨ q(a),¬p(a),¬q(a)

ւ ց
p(a),¬p(a),¬q(a) q(a),¬p(a),¬q(a)

× ×

∀x(p(x) ∨ q(x)) ⇒ (∀x p(x) ∨ ∀x q(x)) is not valid !

Where is the mistake ?

Example 2 : the correct version.

¬
(

∀x
(
p(x) ∨ q(x)

)
⇒

(
∀x p(x) ∨ ∀x q(x)

))

↓
∀x

(
p(x) ∨ q(x)

)
,¬

(
∀x p(x) ∨ ∀x q(x)

)

↓
∀x

(
p(x) ∨ q(x)

)
,¬∀x p(x),¬∀x q(x)

↓
∀x

(
p(x) ∨ q(x)

)
,¬∀x p(x),¬q(a)

↓
∀x

(
p(x) ∨ q(x)

)
,¬p(b),¬q(a)

↓
∀x

(
p(x) ∨ q(x)

)
, p(a) ∨ q(a),¬p(b),¬q(a)
↓

∀x
(
p(x) ∨ q(x)

)
, p(b) ∨ q(b), p(a) ∨ q(a),¬p(b),¬q(a)
ւ ց

∀x
(
p(x) ∨ q(x)

)
, p(b), ∀x

(
p(x) ∨ q(x)

)
, q(b)

p(a) ∨ q(a),¬p(b), p(a) ∨ q(a),¬p(b),¬q(a)
¬q(a) ւ ց

× ∀x
(
p(x) ∨ q(x)

)
, ∀x

(
p(x) ∨ q(x)

)
,

q(b), p(a), q(b), q(a),
¬p(b),¬q(a) ¬p(b),¬q(a)

© ×

Formula ¬
(

∀x
(
p(x) ∨ q(x)

)
⇒

(
∀x p(x) ∨ ∀x q(x)

))

has a model I such that

I[p(a)] = I[q(b)] = T and I[p(b)] = I[q(a)] = F .

Example 3.

∀x∃y p(x, y) ∧ ∀x¬p(x, x) ∧ ∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)

↓
∀x∃y p(x, y),∀x¬p(x, x) ∧ ∀x∀y∀z

(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)

↓
∀x∃y p(x, y),∀x¬p(x, x), ∀x∀y∀z

(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)

↓
∀x∃y p(x, y),∃y p(a1, y),

∀x¬p(x, x), ∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)

↓
∀x∃y p(x, y), p(a1, a2),

∀x¬p(x, x), ∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)

↓
∀x∃y p(x, y), p(a1, a2),∃y p(a2, y),

∀x¬p(x, x), ∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)

↓
∀x∃y p(x, y), p(a1, a2), p(a2, a3),

∀x¬p(x, x), ∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)

↓
∀x∃y p(x, y), p(a1, a2), p(a2, a3),∃y p(a3, y),

∀x¬p(x, x), ∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)

↓
...

Infinite semantic tableau !
The formula has only infinite models.

Example 4.

∀x∃y p(x, y) ∧ ∀x¬p(x, x) ∧ ∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)
∧ ∀x

(
q(x) ∧ ¬q(x)

)

↓
∀x∃y p(x, y),∀x¬p(x, x) ∧ ∀x∀y∀z

(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)
∧ ∀x

(
q(x) ∧ ¬q(x)

)

↓
∀x∃y p(x, y),

∀x¬p(x, x), ∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)
∧ ∀x

(
q(x) ∧ ¬q(x)

)

↓
∀x∃y p(x, y),

∀x¬p(x, x),∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)
,

∀x
(
q(x) ∧ ¬q(x)

)

↓
∀x∃y p(x, y),

∀x¬p(x, x),∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)
,

∀x
(
q(x) ∧ ¬q(x)

)
, q(a) ∧ ¬q(a)

↓
∀x∃y p(x, y),

∀x¬p(x, x) ∧ ∀x∀y∀z
(
p(x, y) ∧ p(y, z) ⇒ p(x, z)

)
,

∀x
(
q(x) ∧ ¬q(x)

)
, q(a),¬q(a)

×

Should we endlessly instantiate ∀x∃y p(x, y) ,
the branch would not close !

Example 5. ¬
(
∀x∃y (p(x) ⇒ q(y)) ⇒ ∃y∀x (p(x) ⇒ q(y))

)

↓
∀x∃y (p(x) ⇒ q(y)) , ¬∃y∀x (p(x) ⇒ q(y))

↓
∀x∃y (p(x) ⇒ q(y)) , ¬∀x (p(x) ⇒ q(c)) , ¬∃y∀x (p(x) ⇒ q(y))

↓
∀x∃y (p(x) ⇒ q(y)) , ¬(p(a) ⇒ q(c)) , ¬∃y∀x (p(x) ⇒ q(y))

↓
∀x∃y (p(x) ⇒ q(y)) , p(a) , ¬q(c) , ¬∃y∀x (p(x) ⇒ q(y))

↓
∀x∃y (p(x) ⇒ q(y)) , ¬∃y∀x (p(x) ⇒ q(y)) , ∃y (p(a) ⇒ q(y)) , p(a) , ¬q(c)

↓
∀x∃y (p(x) ⇒ q(y)) , ¬∃y∀x (p(x) ⇒ q(y)) , p(a) ⇒ q(b) , p(a) , ¬q(c)

↓
∀x∃y (p(x) ⇒ q(y)) , ¬∀x (p(x) ⇒ q(b)) , ¬∃y∀x (p(x) ⇒ q(y)) , p(a) ⇒ q(b) , p(a) , ¬q(c)

↓
∀x∃y (p(x) ⇒ q(y)) , ¬∃y∀x (p(x) ⇒ q(y)) , ¬(p(d) ⇒ q(b)) , p(a) ⇒ q(b) , p(a) , ¬q(c)

↓
∀x∃y (p(x) ⇒ q(y)) , ¬∃y∀x (p(x) ⇒ q(y))
p(d) , ¬q(b) , p(a) ⇒ q(b) , p(a) , ¬q(c)

ւ ց
∀x∃y (. . .) , ¬∃y∀x (. . .) ∀x∃y (. . .) , ¬∃y∀x (. . .)

p(d), ¬q(b), ¬p(a), p(a), ¬q(c) p(d), ¬q(b), q(b), p(a), ¬q(c)
↓ ↓
× ×

Example 6. ¬
(
∀x∃y (p(x) ∧ q(y)) ⇒ ∃y∀x (p(x) ∧ q(y))

)

↓
∀x∃y (p(x) ∧ q(y)) , ¬∃y∀x (p(x) ∧ q(y))

↓
∀x∃y (p(x) ∧ q(y)) , ∃y (p(c) ∧ q(y)) , ¬∃y∀x (p(x) ∧ q(y))

↓
∀x∃y (p(x) ∧ q(y)) , (p(c) ∧ q(a)) , ¬∃y∀x (p(x) ∧ q(y))

↓
∀x∃y (p(x) ∧ q(y)) , p(c) , q(a) , ¬∃y∀x (p(x) ∧ q(y))

↓
∀x∃y (p(x) ∧ q(y)) , ¬∃y∀x (p(x) ∧ q(y)) , p(c) , q(a) , ¬∀x (p(x) ∧ q(a))

↓
∀x∃y (p(x) ∧ q(y)) , ¬∃y∀x (p(x) ∧ q(y)) , p(c) , q(a) , ¬(p(b) ∧ q(a))

↓
∀x∃y (p(x) ∧ q(y)) , ¬∃y∀x (p(x) ∧ q(y)) , ∃y (p(b) ∧ q(y)) , p(c) , q(a) , ¬(p(b) ∧ q(a))

↓
∀x∃y (p(x) ∧ q(y)) , ¬∃y∀x (p(x) ∧ q(y)) , (p(b) ∧ q(d)) , p(c) , q(a) , ¬(p(b) ∧ q(a))

↓
∀x∃y (p(x) ∧ q(y)) , ¬∃y∀x (p(x) ∧ q(y)) , p(b) , q(d) , p(c) , q(a) , ¬(p(b) ∧ q(a))

ւ ց
∀x∃y (. . .) , ¬∃y∀x (. . .) ∀x∃y (. . .) , ¬∃y∀x (. . .)

p(b) , q(d) , p(c) , q(a) , ¬p(b) p(b) , q(d) , p(c) , q(a) , ¬q(a)
↓ ↓
× ×

Examples : the interpretation

Examples 1 and 2 suggest that examplification, i.e. existential instantiations, should
use fresh constants. As constants are used as model elements, is there a risk to miss
small models ? No : our basic predicate logic is missing identity ; nothing prevents us
assigning the same semantic object to distinct syntactic constants. Any model in
our logic can be extended into a larger model, simply by adding “clones” to existing
elements. Otherwise stated, there is no quantification like ∃!xP (x), which would be
logically equivalent to ∃x [P (x) ∧ ∀y(P (y) => x = y)].

Example 3 shows that semantic tableaux can be infinite, when the corresponding
formula is consistent but has only infinite models. Hopefully, this will not preclude
completeness, which is concerned with inconsistent formulas.

Example 4 shows however that unfair selections in the construction process might
prevent inconsistency detection. The culprit is universal formula instantiation, which
can be applied endlessly, and must be applied every time a new constant appears on
an open branch.

Decomposition rules

— Prolongation rules (α-rules) and ramification rules (β-rules)

α α1 α2

A1 ∧A2 A1 A2

¬(A1 ∨A2) ¬A1 ¬A2

¬(A1 ⇒ A2) A1 ¬A2

¬(A1 ⇐ A2) ¬A1 A2

β β1 β2

B1 ∨B2 B1 B2

¬(B1 ∧B2) ¬B1 ¬B2

B1 ⇒ B2 ¬B1 B2

B1 ⇐ B2 B1 ¬B2

— Generative rule (γ-rule) and examplification rule (δ-rule)

γ γ(a)

∀xA(x) ∀xA(x) , A(c)
¬∃xA(x) ¬∃xA(x) , ¬A(c)

δ δ(a)

∃xA(x) A(a)
¬∀xA(x) ¬A(a)

The choice of constant c is free but a must be a fresh constant.

Construction of a semantic tableau

Init : a root labelled {A}.

Induction step : select an unmarked leaf ℓ ; let U(ℓ) the labelling formula set..
— If U(ℓ) contains a complementary pair, mark ℓ as closed ‘×’ ;

— If U(ℓ) is not a literal set, select a non-literal formula in U(ℓ) :
— if it is an α-formula A, create a single child ℓ′ and label it with

U(ℓ′) = (U(ℓ)− {A}) ∪ {α1, α2} ;

— if it is a β-formula B, create two children ℓ′ and ℓ′′ and label them with
U(ℓ′) = (U(ℓ)− {B}) ∪ {β1} and U(ℓ′′) = (U(ℓ)− {B}) ∪ {β2};

— if it is a γ-formula C, create a single child ℓ′ and label it with
U(ℓ′) = U(ℓ) ∪ {γ(c)}, where c is a constant occurring in U(ℓ) (if any).

— if it is a δ-formula D, create a single child ℓ′ and label it with
U(ℓ′) = (U(ℓ)− {D}) ∪ {δ(a)} where a is a fresh constant, not occurring
in U(ℓ).

Termination : occurs when each leaf is either closed, or contains only literals and
fully instantiated γ-formulas ; such a leaf can be marked open.
The γ-rule may prevent termination.

Semantic tableaux, soundness

Theorem. If T(A) is closed then A is inconsistent.
Proof. We show that all labelling sets in a closed tableau are inconsistent, by
induction on the height of the nodes.

— h = 0 : n is a closed leaf, so U(n) is inconsistent.
— h > 0 : a rule, α, β, γ or δ, has been used to create n’s child(ren).

α-rule or β-rule : like in propositional logic.

γ-rule : n : {∀xA(x)} ∪ U0

↓
n′ : {∀xA(x), A(a)} ∪ U0

U(n′) is inconsistent (induction hypothesis),
so U(n) is inconsistent (why ?).

Regle δ : n : {∃xA(x)} ∪ U0

↓
n′ : {A(a)} ∪ U0

where a does not occur in any formula of U(n).
Should U(n) be consistent, a valuation I = (D, Ic, Iv) : I[∃xA(x)] = T ,
would exist, and a d ∈ D such that Ix/d[A(x)] = T .
Define J = (D, Jc, Iv) with Jc like Ic but with Jc[a] = d.
Then, J [A(a)] = T and J [U0] = I[U0] = T ,
so J would be a model of U(n′), which is impossible.

Construction strategy

Two conditions must be fulfilled.

— Every non literal formula on an open branch is decomposed on

this branch.

— For each γ-formula A and each constant a occurring on an

open branch, an a-instantiation of A occurs on the branch.

Hintikka set, definition

Definition. Let U a formula set and CU the set of constants occurring

in U .

U is a Hintikka set if five conditions are fulfilled :

1. No complementary pair is included in U .

2. If α ∈ U is an α-formula, then α1 ∈ U and α2 ∈ U .

3. If β ∈ U is a β-formula, then β1 ∈ U or β2 ∈ U .

4. If γ is a γ-formula, then for each a ∈ CU , γ(a) ∈ U .

5. If δ is a δ-formula, then for some a ∈ CU , δ(a) ∈ U .

Open branch lemma

Lemma. The union of the sets labelling an open branch is a Hintikka

set.

Proof. The construction algorithm ensures that each of the five

conditions is fulfilled . . . provided the construction strategy is

implemented.

Comment. Infinite branches are open branches ; the lemma also

applies to them.

Model construction for Hintikka sets

Hintikka’s theorem. All Hintikka sets are consistent.

Proof. Let U be a Hintikka set. Its canonical model IU = (D, Ic, Iv) is

easily defined :

1. D = {a, b, . . . , } is the set of constants occurring in U ;

2. • For each d ∈ D :Ic[d] = d.

• For each predicate symbol p (arity m) occurring in U :

Ic[p](Ic[a1], . . . , Ic[am])] = T if p(a1, . . . , am) ∈ U

Ic[p](Ic[a1], . . . , Ic[am])] = F if p(a1, . . . , am) 6∈ U

3. Iv is arbitrary (no free variable).

It is easy to check by structural induction that this interpretation is

indeed a model.

Corollary. If T(A) is open, it has an open branch ; the union of the

labels of this branch is a Hintikka set containing A so A is consistent.

As a result, the semantic tableaux method is complete.

Conclusion

A is inconsistent if and only if T(A) is closed.

A is valid if and only if T(¬A) is closed.

A is contingent if and only if both T(A) and T(¬A) are open.

Non-termination occurs only in the open case (as long as the

construction strategy is implemented) ; that is the reason why

soundness and completeness are preserved.

HILBERT SYSTEM

Formal system H contains five axioms and two inference rules.

1. ⊢ A ⇒ (B ⇒ A)

2. ⊢ (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))

3. ⊢ (¬B ⇒ ¬A) ⇒ (A ⇒ B)

4. ⊢ ∀xA(x) ⇒ A(t) (capture is not allowed)

5. ⊢ ∀x(A ⇒ B(x)) ⇒ (A ⇒ ∀xB(x)) where x is not free in A

MP
⊢ A ⊢ A ⇒ B

⊢ B
Modus Ponens

Gen
⊢ A(x)

⊢ ∀xA(x)
Generalisation rule

Deduction rule

Proof, derivation : just as in the propositional case.

Deduction rule.

U,A ⊢ B
U ⊢ A ⇒ B

Restriction : free variables in A cannot be generalised.

If C(x) is a theorem, then ∀xC(x) is a theorem,
but C(x) ⇒ ∀xC(x) is (in general) not a theorem.

Comment. There is no problem with closed hypotheses.

Soundness of the deduction rule

How to convert a derivation for U,A ⊢ B
into a derivation for U ⊢ (A ⇒ B) ?
As in the propositional case, except for

U,A ⊢ C(x) ,
U,A ⊢ ∀xC(x) .

The conversion is

U ⊢ A ⇒ C(x) ,
U ⊢ ∀x (A ⇒ C(x)) ,
U ⊢ ∀x (A ⇒ C(x)) ⇒ (A ⇒ ∀xC(x)) ,
U ⊢ A ⇒ ∀xC(x) .

The third line is correct only if x does not occur in A,
hence the aforementioned restriction.

Uniform substitution, replacement

Thee uniform substitution principle still applies in predicate logic. For
instance,

¬p ⇒ (p ⇒ q)

is a theorem, therefore

¬A ⇒ (A ⇒ B)

is a theorem scheme (a tautology scheme), and

¬∀xP(x) ⇒ (∀xP(x) ⇒ ∀y (R(y) ⇒ Q(z)))

is a theorem.

The replacement theorem also applies.
If A ≡ B is a theorem and if C is a theorem, then any formula obtained
by replacing some occurrences of A by B in C is also a theorem.

Exercise. Provide justification and determine whether the capture
phenomenon can be troublesome here.

PC-rule

A =def [p ⇒ ¬q] ≡ [q ⇒ ¬p] ,
B =def [P(x, y) ⇒ ¬∀zQ(z, a)] ≡ [∀zQ(z, a) ⇒ ¬P(x, y)] .
Since A is a theorem, B is also a theorem.

PC-rule.
If B is a (predicate) instance of a (propositional) tautology, then ⊢ B.

Justification.
It is easy to convert a proof of A into a proof of B.
Comments. When ∨, ∧ and ≡ are allowed, they stand for mere
abbreviations. For instance, A ∧B stands for ¬(A ⇒ ¬B).

Comment.
“∃” is also introduced as a mere abbreviation ; ∃xφ stands for ¬∀x¬φ.

Simulation of tableaux rules within Hilbert system

Every use of α, β, γ, δ-rules can be simulated within Hilbert system.

γ :
⊢ V ∧ ∀xA(x)

⊢ V ∧ ∀xA(x) ∧ A(c)
⊢ V ∨ ∃xA(x) ∨ A(c)

⊢ V ∨ ∃xA(x)

1. ⊢ ∀x¬A(x) ⇒ ¬A(c) (Axiom 4)
2. ⊢ ¬∀x¬A(x) ∨ ¬A(c) (PC 1)
3. ⊢ V ∨ ¬∀x¬A(x) ∨ ¬A(c) (PC 2)
4. ⊢ V ∨ ∃xA(x) ∨ ¬A(c) (∃)
5. ⊢ V ∨ ∃xA(x) ∨ A(c) (hypothesis)
6. ⊢ V ∨ ∃xA(x) (PC 4, 5)

δ :
⊢ V ∧ ∃xA(x)
⊢ V ∧ A(x)

⊢ V ∨ A(x)
⊢ V ∨ ∀xA(x)

1. ⊢ V ∨ A(x) (hypothesis)
2. ⊢ ¬V ⇒ A(x) (PC 1)
3. ⊢ ∀x(¬V ⇒ A(x)) (Generalisation 2)
4. ⊢ ¬V ⇒ ∀xA(x) (Axiom 5, PC 4)
5. ⊢ V ∨ ∀xA(x) (PC 4)

Some examples of (proved) theorems

Theorem. ⊢ p(a) ⇒ ∃x p(x)

1. ⊢ ∀x¬p(x) ⇒ ¬p(a) (Axiom 4)
2. ⊢ p(a) ⇒ ¬∀x¬p(x) (PC 1)
3. ⊢ p(a) ⇒ ∃xp(x) (Def. ∃)

Theorem. ⊢ (A ⇒ ∀xC(x)) ⇒ ∀x (A ⇒ ∀xC(x)) if no free x in A.

1. A, A ⇒ ∀xC(x) ⊢ ∀xC(x) (Hypoth., MP)
2. A, A ⇒ ∀xC(x) ⊢ C(x) (Ax. 4, 1)
3. A ⇒ ∀xC(x) ⊢ (A ⇒ C(x)) (Deduction, 2)
4. A ⇒ ∀xC(x) ⊢ ∀x (A ⇒ C(x)) (Gener., 3)
5. ⊢ (A ⇒ ∀xC(x)) ⇒ ∀x (A ⇒ C(x)) (Deduction, 4)

Theorem. ⊢ ∀x (p(x) ⇒ q) ≡ ∃x p(x) ⇒ q if no free x in q.

1. ∀x (p(x) ⇒ q) ⊢ ∀x (p(x) ⇒ q) (Hypothesis)
2. ∀x (p(x) ⇒ q) ⊢ ∀x (¬q ⇒ ¬p(x)) (PC, repl., 1)
3. ∀x (p(x) ⇒ q) ⊢ ¬q ⇒ ∀x¬p(x)) (Ax. 5, 2)
4. ∀x (p(x) ⇒ q) ⊢ ∃x p(x) ⇒ q (PC, ∃, 3)
5. ∃x p(x) ⇒ q ⊢ ∃x p(x) ⇒ q (Hypothesis)
6. ∃x p(x) ⇒ q ⊢ ¬q ⇒ ∀x¬p(x) (PC, ∃, 5)
7. ∃x p(x) ⇒ q ⊢ ∀x (¬q ⇒ ¬p(x)) (Theorem, 6)
8. ∃x p(x) ⇒ q ⊢ ∀x (p(x) ⇒ q) (PC, 7)
9. ⊢ ∀x (p(x) ⇒ q) ≡ ∃x p(x) ⇒ q (Deduction, 4, 8)

Constant rule I

In order to use an existential hypothesis ∃x p(x), it is customary to say “assume a

such that p(a)” (where a is a fresh constant). The C-rule formalizes this.

Theorem. (C-Rule). If U ⊢ ∃x p(x), if there is no free x in U nor in A

and if U, p(x) ⊢ A can be derived without generalisation on x, then

U ⊢ A.

Comment. Forbidding generalisation on x is essential, otherwise ∃x p(x) ⊢ ∀x p(x) could be derived :

1. ∃x p(x) ⊢ ∃x p(x) (hypothesis)
2. ∃x p(x) , p(x) ⊢ p(x) (hypothesis)
3. ∃x p(x) , p(x) ⊢ ∀x p(x) (Generalisation)
4. ∃x p(x) ⊢ ∀x p(x) (incorrect use of C-rule)

Proof.

1. U, p(x) ⊢ A (hypothesis)
2. U ⊢ p(x) ⇒ A (Deduction 1)
3. U ⊢ ∀x(p(x) ⇒ A) (Generalisation 2)
4. U ⊢ ∃x p(x) ⇒ A (Theorem)
5. U ⊢ ∃x p(x) (hypothesis)
6. U ⊢ A (PC 4,5)

Comment. Obviously the conversion of a derivation of U ⊢ ∃xp(x) into a derivation of U ⊢ p(x) or of
U ⊢ p(a) (a fresh constant) should and does remain impossible ; in particular, ∃x p(x) ⊢ p(a) is clearly
incorrect.

Constant rule II

A direct derivation of

∃x∀y p(x, y) ⇒ ∀y∃x p(x, y)

might be tricky, but C-rule makes things easier by reduction to

∀y p(a, y) ⇒ ∀y∃x p(x, y)

or to

p(a, y) ⇒ ∃x p(x, y)

which is obvious.

Comment. Some authors allow

U ⊢ ∃x p(x)
U ⊢ p(a)

where a is a fresh constant ; should this be accepted, other rules should be weakened
in order to block

U ⊢ p(a)
U ⊢ ∀x p(x)

Comment. A fresh constant has no specific meaning. For instance, in group theory,
the neuter constant e has a specific meaning, so the “derivation”

1. U ⊢ ∀x [x ∗ i(x) = e] (hypothese)
2. U ⊢ ∀y ∀x [x ∗ i(x) = y] (Generalisation 1)

is clearly incorrect.

Soundness and completeness

Soundness of predicate Hilbert system is easily proved, just as in the

propositional case.

Completeness also can be proved in a similar way, but since truthtables

do not extend to predicate logic, semantic tableaux are used instead.

Since tableaux rules can be simulated within Hilbert system, we need

only to chain applications of the simulating derived rules into a full

proof.

If some predicate formula A is valid, there is a r-rooted closed tableau

for ¬A. For each node n labelled with Sn, the associated formula Hn is

the disjunction of the negations of Sn-elements ; Hn is always a valid

formula. If node n has a single child n′, then Hn′ ⊢ Hn holds ; if node n

has two children n′ and n′′, then Hn′, Hn′′ ⊢ Hn holds. Besides, for each

leaf n, ⊢ Hn holds. It is now easy to chain all these derivations into a

proof of Hr, which is simply A.

FUNCTION SYMBOLS

Mathematical formulas like

x > y ⇒ (x+1) > (y +1)

or, in prefix notation,

> (x, y) ⇒ > (+(x,1),+(y,1)) ,

are instances of logical formulas like

p(x, y) ⇒ p(f(x, a), f(y, a)) ,

provided function symbols are allowed.

We therefore introduce :

— F = {f, g, h, . . .} : a set of function symbols (each with its arity).

This, with predicate symbols, constants (often seen as 0-ary

functions) and variables, makes our lexicon.

SYNTAX OF PREDICATE LOGIC

The syntax of terms is generalized ; the syntax for formulas does not

change.

The concept of term is recursively defined :

— A variable is a term.

— A constant is a term.

— If f is an m-ary function symbol and if t1, t2, . . . , tm are terms,

then f(t1, . . . , tm) is a term.

Comments. Constants are 0-ary function symbols. A term is closed if

no variable occurs in it.

Examples (terms) :

a x f(a, x) g(f(a)) f
(
g
(
x, h(y)

))

Examples (atoms) :

p(a, b) p
(
x, f(a, x)

)
p
(

f(a, b), f
(
g(x), g(x)

))

SEMANTICS OF PREDICATE LOGIC

An interpretation I is a triple (D, Ic, Iv) such that :

— D is a non empty set, the domain ;

— Ic is a function which maps

— to each constant a, some object Ic[a], an element of D,

— to each m-ary function symbol f , a function Ic[f] of type

Dm 7→ D ;

— to each n-art predicate symbol p, a n-ary relation on D, i.e.

a function Ic[p] of type Dn 7→ {T, F} ;

— Iv is a function that associates with each variable x an element

Iv[x] of D.

Interpretation rules

Let I = (D, Ic, Iv) be an interpretation.

— If x is a (free) variable, then I[x] = Iv[x].

— If a is a constant, then I[a] = Ic[a].

— If f is an m-ary function symbol and if t1, t2, . . . , tm are terms,

then I[f(t1, t2, . . . , tm)] = Ic[f](I[t1], I[t2], . . . , I[tm]).

Interpretation rules for formulas do not change.

Example : Formula

∀x∀y
(

p(x, y) ⇒ p
(
f(x, a), f(y, a)

))

is satisfied by interpretation

I1 = (Z, Ic, Iv) : Ic[a] = 1, Ic[f] = + , Ic[p] = ≤ ,

but not by interpretation

I2 = (Z, Ic, Iv) : Ic[a] = −1, Ic[f] = ∗, Ic[p] = > .

Prenex form

A formula is in prenex form if it has the form

Q1x1 · · ·Qnxn
︸ ︷︷ ︸

prefix

qMq

︸ ︷︷ ︸

matrix

where each Qi is either ∀ or ∃, for i = 1, . . . , n and where the matrix M

is a quantification-free formula.

Comments. We usually assume that all quantified variables have some

(free) occurrence in the matrix. The scope of the prefix must be the

whole matrix.

Theorem. For every predicate formula, some logically equivalent

prenex form always exists.

Reduction to prenex form

Example : ∀x
(

p(x) ∧ ¬∃y∀x¬
(
¬q(x, y) ⇒ ∀z r(a, x, y)

))

.

1. Eliminate all Boolean connectives except ¬, ∨, ∧.

Ex. : ∀x
(

p(x) ∧ ¬∃y∀x¬
(
¬¬q(x, y) ∨ ∀z r(a, x, y)

))

.

2. Rename bound variables (if necessary) in such a way no variable has both
free and bound occurrence in any subformula.

Ex. : ∀x
(

p(x) ∧ ¬∃y∀u¬
(
¬¬q(u, y) ∨ ∀z r(a, u, y)

))

.

3. Eliminate spurious quantifications.

Ex. : ∀x
(

p(x) ∧ ¬∃y∀u¬
(
¬¬q(u, y) ∨ r(a, u, y)

))

.

4. Propagate ¬ occurences downwards (the syntactic tree) and eliminate
double negations (so only atomic subformulas can be negated).

¬∀xA → ∃x¬A , ¬∃xA → ∀x¬A , ¬¬C → C

Ex. : ∀x
(

p(x) ∧ ∀y∃u
(
q(u, y) ∨ r(a, u, y)

))

.

5. Propagate quantifications upwards.

∀xA ∧ ∀xB → ∀x(A ∧B) ∃xA ∨ ∃xB → ∃x(A ∨B)
if x does not occur in B :
∀xA ∧B → ∀x(A ∧B) ∃xA ∨B → ∃x(A ∨B)
∀xA ∨B → ∀x(A ∨B) ∃xA ∧B → ∃x(A ∧B)

Rename if necessary : ∃x p(x) ∧ ∀x q(x) → ∃x p(x) ∧ ∀y q(y) →
∃x ∀y (p(x) ∧ q(y)) .

Ex. : ∀x∀y∃u
(

p(x) ∧
(
q(u, y) ∨ r(a, u, y)

))

.

Clauses, cubes, normal forms

— A literal is an atom or the negation of an atom.

— A clause (a cube) is a disjunction (a conjunction) of literals.

— A conjunctive (disjunctive) normal form is a conjunction

(disjunction) of clauses (of cubes).

— A prenex form is conjunctive (disjunctive) if its matrix is in

conjunctive (disjunctive) normal form.

Skolem form

A Skolem form is a prenex form with only universal quantifications. A

Skolem form can be associated with every prenex form, according to

the following algorithm.

For each existential quantification ∃x in the scope of k ≥ 0 universal quantifications

(∀x1 · · · ∀xk),

1. replace each occurrence of x in the matrix by f(x1, . . . , xk) where f is a

fresh k-ary function symbol

(k = 0 : x replaced by a fresh constant),

2. suppress the quantification ∃x.

Examples :

— ∀x∀y∃u
(
q(u, y) ⇒ r(a, u, y, z)

)

is associated with

∀x∀y
(
q(f(x, y), y) ⇒ r(a, f(x, y), y, z)

)
.

— ∀x∃u∀v∃w∀x∀y∃z M(u, v, w, x, y, z)

is simplified into

∃u∀v∃w∀x∀y∃z M(u, v, w, x, y, z)

and then associated with

∀v∀x∀yM(a, v, f(v), x, y, g(v, x, y)).

Why using Skolem forms ?

Formula A =def ∀x∀y∃u [q(u, y) ⇒ r(a, u, y, x)]

asserts the existence of some u, depending on x and y,

such that q(u, y) ⇒ r(a, u, y, x) is true.

Associating SA with A amounts to name this u ; the name f(x, y)

emphasises dependency. Symbol f denotes a choice function.

Formulas A and SA are usually not logically equivalent

although the former is a logical consequence of the latter.

But A and SA are either both consistent, or both inconsistent.

Skolem theorem

Theorem. Skolem form SA is consistent if and only if prenex form A is

consistent.

Proof. Every model of SA is also a model of A, and every model of A

can be extended into a model of SA (details are left to the reader).

Categorical syllogism theory

Predicate logic is undecidable, but some fragments are decidable.

The simplest one of these interesting fragments is the categorical

syllogism theory, which is based on a single formula :

∀x (P(x) ⇒ Q(x)) .

This theory was introduced by Aristotle (384 BC – 322 BC) and

perfected by his successors ; it was the central part of logic through

the Middle Ages and even until George Boole and Gottlob Frege (19th

century).

The basic formula and its variants I

∀x (P(x) ⇒ Q(x)) A ¬∃x (P(x) ∧ ¬Q(x))

∀x (P(x) ⇒ ¬Q(x)) E ¬∃x (P(x) ∧Q(x))

¬∀x (P(x) ⇒ ¬Q(x)) I ∃x (P(x) ∧Q(x))

¬∀x (P(x) ⇒ Q(x)) O ∃x (P(x) ∧ ¬Q(x))

“AffIrmo” “nEgO”

The basic formula and its variants II

If roles of P and Q can be switched, eight “{P,Q}-formulas” are

obtained.

A universal affirmative
E universal negative
I particular affirmative
O particular negative

“AffIrmo”
“nEgO”

The syllogistic game

Pick a {P,Q}-formula, a {Q,R}-formula and a {P,R}-formula and

determine whether the third one (the conclusion) is a logical

consequence of the first ones (the premises).

There are 83 = 512 possibilities.

As far as P and R have similar roles,

we restrict to the case where the conclusion is PR (and not RP) ;

256 possibilities are left.

Minor, Major, Midterm, Syllogism

The Minor is P(x) (and also the premise containing it).

The Major is R(x) (and also the premise containing it).

The Midterm is Q(x).

(The word “term” is traditional here, even if a predicate is not a term.)

The (categorical) syllogism is the inference rule

Major Minor

Conclusion

It can be valid, correct, sound (if the conclusion is a logical

consequence of the premises) or not.

Examples (French)

Tout sot est ennuyeux

Or certains bavards ne sont pas ennuyeux

Donc certains bavards ne sont pas sots

Les puissants ne sont pas miséricordieux

Or les enfants ne sont pas puissants

Donc les enfants ne sont pas miséricordieux

Certains poètes sont agréables

Or tous les poètes sont des génies

Donc certains génies sont agréables

Tout ce qui est vénéneux est nuisible

Or certains champignons sont nuisibles

Donc certains champignons sont vénéneux

Examples (bis)

Tout sot est ennuyeux

Or certains bavards ne sont pas ennuyeux

Donc certains bavards ne sont pas sots

baroco

Les puissants ne sont pas miséricordieux

Or les enfants ne sont pas puissants

Donc les enfants ne sont pas miséricordieux

invalid

Certains poètes sont agréables

Or tous les poètes sont des génies

Donc certains génies sont agréables

disamis

Tout ce qui est vénéneux est nuisible

Or certains champignons sont nuisibles

Donc certains champignons sont vénéneux

invalid

Figures and modes

Figure : First Second Third Fourth

Major QR RQ QR RQ

Minor PQ PQ QP QP

Conclusion PR PR PR PR

The mode records the nature of the premises and the conclusion.

Mode AEI means an A-major, an E-minor and a I-conclusion. There

are 43 = 64 possible modes, each of them present in the four figures.

Only 12 modes give rise to at least one valid syllogism ; they are

AAA AAI AEE AEO AII AOO EAE EAO EIO IAI IEO OAO

Mnemonic rules for potentially valid modes

1. If both premises are negative, the syllogism is not valid.

2. If both premises are particular, the syllogism is not valid.

3. If one premise is negative, the conclusion must be negative.

4. If one premise is particular, the conclusion must be particular.

5. If both premises are affirmative, the conclusion must be

affirmative.

Examples. First statement rules out modes like EEE and OEO ; last

statement rules out modes like AIO and IIE.

Between them, potentially valid modes give rise to no more than 15

valid syllogisms, although 9 more are said “pseudo-valid” or

“quasi-valid”.

Systematic naming technique

The order of the premises does not matter but it is convenient to list

Major first.

(M) All humans are mortal.

(m) All Greeks are humans.

(C) All Greeks are mortal.

First figure, mode AAA ; noted AAA-1 or barbara.

Venn diagrams I

0

1

54
7

2
6

3

P

Q

R

Venn diagrams II

0

1

54
7

2
6

3

P

Q

R
Syllogism AOO-2 baroco.

Major ∀x (R(x) ⇒ Q(x)) 3 and 6 are empty.

Minor ∃x (P(x) ∧ ¬Q(x)) 2 or 6 is non-empty.

Conclusion ∃x (P(x) ∧ ¬R(x)) 2 or 4 is non-empty.

Venn diagrams III

0

1

54
7

2
6

3

P

Q

R
Syllogism AIO-4 invalid.

Major ∀x (R(x) ⇒ Q(x)) 3 ∪ 6 = ∅.

Minor ∃x (Q(x) ∧ P(x)) 4 ∪ 7 6= ∅.

Conclusion ∃x (P(x) ∧ ¬R(x)) 2 ∪ 4 6= ∅ ? ? ?

First figure

barbara

∀x [B(x) ⇒ C(x)]
∀x [A(x) ⇒ B(x)]
∀x [A(x) ⇒ C(x)]

celarent

∀x [B(x) ⇒ ¬C(x)]
∀x [A(x) ⇒ B(x)]
∀x [A(x) ⇒ ¬C(x)]

darii

∀x [B(x) ⇒ C(x)]
∃x [A(x) ∧B(x)]
∃x [A(x) ∧ C(x)]

ferio

∀x [B(x) ⇒ ¬C(x)]
∃x [A(x) ∧B(x)]
∃x [A(x) ∧ ¬C(x)]

barbari
∃xA(x)

∀x [B(x) ⇒ C(x)]
∀x [A(x) ⇒ B(x)]
∃x [A(x) ∧ C(x)]

celaro
∃xA(x)

∀x [B(x) ⇒ ¬C(x)]
∀x [A(x) ⇒ B(x)]
∃x [A(x) ∧ ¬C(x)]

Second figure

camestres

∀x [C(x) ⇒ B(x)]
∀x [A(x) ⇒ ¬B(x)]
∀x [A(x) ⇒ ¬C(x)]

cesare

∀x [C(x) ⇒ ¬B(x)]
∀x [A(x) ⇒ B(x)]
∀x [A(x) ⇒ ¬C(x)]

baroco

∀x [C(x) ⇒ B(x)]
∃x [A(x) ∧ ¬B(x)]
∃x [A(x) ∧ ¬C(x)]

festino

∀x [C(x) ⇒ ¬B(x)]
∃x [A(x) ∧B(x)]
∃x [A(x) ∧ ¬C(x)]

camestro
∃xA(x)

∀x [C(x) ⇒ B(x)]
∀x [A(x) ⇒ ¬B(x)]
∃x [A(x) ∧ ¬C(x)]

cesaro
∃xA(x)

∀x [C(x) ⇒ ¬B(x)]
∀x [A(x) ⇒ B(x)]
∃x [A(x) ∧ ¬C(x)]

Third figure

datisi

∀x [B(x) ⇒ C(x)]
∃x [B(x) ∧A(x)]
∃x [A(x) ∧ C(x)]

disamis

∃x [B(x) ∧ C(x)]
∀x [B(x) ⇒ A(x)]
∃x [A(x) ∧ C(x)]

bocardo

∃x [B(x) ∧ ¬C(x)]
∀x [B(x) ⇒ A(x)]
∃x [A(x) ∧ ¬C(x)]

ferison

∀x [B(x) ⇒ ¬C(x)]
∃x [B(x) ∧ A(x)]
∃x [A(x) ∧ ¬C(x)]

darapti
∃xB(x)

∀x [B(x) ⇒ C(x)]
∀x [B(x) ⇒ A(x)]
∃x [A(x) ∧ C(x)]

felapton
∃xB(x)

∀x [B(x) ⇒ ¬C(x)]
∀x [B(x) ⇒ A(x)]
∃x [A(x) ∧ ¬C(x)]

Fourth figure

camenes

∀x [C(x) ⇒ B(x)]
∀x [B(x) ⇒ ¬A(x)]
∀x [A(x) ⇒ ¬C(x)]

dimaris

∃x [C(x) ∧B(x)]
∀x [B(x) ⇒ A(x)]
∃x [A(x) ∧ C(x)]

cameno
∃xA(x)

∀x [C(x) ⇒ B(x)]
∀x [B(x) ⇒ ¬A(x)]
∃x [A(x) ∧ ¬C(x)]

fresison

∀x [C(x) ⇒ ¬B(x)]
∃x [B(x) ∧A(x)]
∃x [A(x) ∧ ¬C(x)]

bramantip
∃xC(x)

∀x [C(x) ⇒ B(x)]
∀x [B(x) ⇒ A(x)]
∃x [A(x) ∧ C(x)]

fesapo
∃xB(x)

∀x [C(x) ⇒ ¬B(x)]
∀x [B(x) ⇒ A(x)]
∃x [A(x) ∧ ¬C(x)]

Pseudo-valid syllogisms

Pseudo-valid syllogisms are invalid syllogisms that become valid if

some existance assumption is done and used as an implicit third

premise. Aristotle and some of his successors accepted “existential

import” and that ∃xP(x) was a logical consequence of

∀x (P(x) ⇒ Q(x)). Modern formal logic denies this but, in natural

language, existential import often seems reasonable and

subalternation, i.e. the deduction of ∃x (P(x) ∧Q(x)) from

∀x (P(x) ⇒ Q(x)), might appear as a valid inference rule.

Some medieval authors accepted only some of the pseudo-valid

syllogisms, deemed “useful”. In Figures 1, 2 and 3, there are four valid

syllogisms and two pseudo-valid ones ; in Figure 4, there are three

valid syllogisms and three pseudo-valid ones.

Modern view of syllogism theory

Syllogism theory is only a tiny part of predicate logic but arguably the

most useful one in practice. The taxonomy of syllogisms is one of the

first attempt at systematic classification in science and, existential

import aside, it remains acceptable from the mathematical point of view.

Research in formal logic has tended to sieve, among the many

restrictions of the theory, those that were essential to retain decidability.

For instance, there is no need to limit the number of predicate and the

number of premises ; furthermore, a more liberal use of quantification

is possible. In fact, the only unmoveable restriction appears to be that

only monadic predicates are allowed. Indeed, monadic predicate logic

remains decidable, although the decision procedure in the general case

is more complicated than the Venn diagram method.

