MODES

ECB

Les blocs sont chiffrés indépendamment blocs par blocs $C_i = DES_K(P_i)$

Usage : transmission sure de valeurs isolées

Sécurité :

- conservation des formats m=m' => c=c'
- + clé réutilisable
- + indépendance des blocs

Efficacité:

- + parallélisme possible
- + accès aléatoire possible
- + même vitesse de chiffrement
- pas de préprocessing
- nécessité de blocs complets de 8 bits

Propagation des erreurs:

- une erreur dans m_i (c_i) n'affecte que le m_i (c_i) correspondant
- la perte ou l'ajout d'un bit affecte tous les blocs suivants
- la perte d'un c_i n'affecte qu'un bloc

CBC

Les blocs sont liées entre-eux \rightarrow chaînage \rightarrow effet d'avalanche (un ci est dépendant de m_i et c_{i-1})

IV (vecteur d'initialisation) : un mot de passe, un timestamp, ...

Usage: chiffrage de bloc, authentification

Sécurité:

- + effacement des formats (si IV différents)
- + il n'y a plus de risque de répétition de bloc
- + clé réutilisable (si IV différents)

Efficacité:

- + même vitesse de chiffrement
- pas de préprocessing
- pas de parallélisme
- + padding
- IV connu des 2 cotés

Propagation des erreurs:

- + la perte d'un c_i n'affecte qu'un bloc de M
- + une erreur dans m_i affecte tous les c_i suivants mais ne se retrouve que dans le m_i correspondant
 - une erreur dans c_i affecte un bloc entier de mi et le bit correspondant dans m_{i+1}
 - la perte ou l'ajout d'un bit de c_i affecte tous les blocs m_i , m_{i+1} ,... suivants (perte des limites de bloc)

CFB

Flux : ajout à la sorte du bloc chiffré, le résultat sert de feedback pour l'étape suivante Nombre quelconque de bit pour le registre : 1, 8, 64 bits (le plus souvent 64) Usage : chiffrement de flux, authentification

Sécurité:

- + même fonction pour le chiffrement et le déchiffrement
- + pas de répétition de bloc si IV différents
- + effacement du format standard

Efficacité:

- + même vitesse de chiffrement
- pas de préprocessing
- pas de parallélisme

Propagation des erreurs:

- une erreur dans ci affecte le mi correspondant et les 64/k blocs suivants
- perte ou ajout d'un bit de ci affecte mi correspondant plus le suivant
- la perte d'un bloc de ci : le synchronisme est récupéré dès que le ci est sorti du registre
- une erreur dans mi affecte les 64/k ci suivant mais uniquement le mi correspondant lors du déchiffrement

OFB

Le feedback est indépendant du message → mécanisme indépendant de mi et ci Équivalent à un chiffrement de Vernam avec réutilisation de la clé et de l'IV Usage : chiffrement du flux sur un canal bruyant

Sécurité:

- + IV unique et aléatoire
- + effacement du format de M
- + clé réutilisable
- + pas de répétition de blocs

Efficacité:

- + même vitesse de chiffrement
- + préprocessing
- pas de parallélisme

Propagation des erreurs :

- + une erreur dans c_i affecte uniquement le bit correspondant de m_i
- la perte ou l'ajout d'un bit de c_i affecte tout le bloc de m_i et le suivant
- pas de mécanisme de récupération de synchronisation

CTR

Usage: Réseaux grande vitesse

Un compteur et une clé différents pour chaque texte clair

Efficacité:

Parallélisme

Accès aléatoire possible Sécurité démontrable