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Mass spectrometry data analysis
Microarray image analysis
Protein-protein interaction prediction
Coding region identification
Biomarker discovery
Gene function prediction
Gene annotation
Microarray data pre-processing
Splice site detection
SNP analysis
Promoter binding sites identification
Protein function prediction
Gene network inference
Protein annotation
Protein structure prediction
Microarray data analysis
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Central dogma of molecular biology

Coding strand = sense

DNA

‘ Transcription

RNA /M NIAAD
‘ Translation
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Microarrays measure gene expression levels in a condition

Coding strand = sense
DNA  PRPVIVIPVIR
Template strand = antisense

‘ Transcription
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Genes regulate each other
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Expression data is used to identify biomarkers

sl 4
L L2 @4@

Healthy Sick
X1 X2 Xm Class
-0.61 | 0.41 0.51 Healthy
-2.30 0.10 -0.21 Healthy
0.33 -0.45 0.09 Sick
-0.69 | -0.61 0.30 Sick

BIOMARKERS
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Expression data is used to infer networks

Apply diverse Measure RNA Model of
Il . Learn GRN from o
treatments to cells expression from N transcription
expression data 5
regulation

each treatment
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Inference
algorithm * z .
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(Gardner & Faith, Phys Life Rev., 2005)
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Supervised learning consists in extracting knowledge
from input-output pairs

X Xo | - | Xm Y
-0.61 | 041 | --- | 051 || 056
23 01 | --- | -021 || 043
033 | 045 | --- | 03 20.16
023 | 087 | --- | 0.09 || 0.71
069 | 061 | --- | 0.02 || -0.75
Model Feature selection/ranking

Y = (X0, Xa, ..., Xm)




Biomarker discovery and network inference can be treated
as feature selection problems

Biomarker discovery: identification of the variables that provide
information about a phenotype

Gene network inference: identification of the regulators of each
target gene
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PART |: BIOMARKER DISCOVERY



Statistical tests are widely used for biomarker discovery

Statistical >
test
t-test
Ctrl Ctrl Mann-Whitney U test
Ctrl il
Drawback:

gene |p-value
X1 0.002
X 0.015
X3 ]0.027
X, | 0.043
Xs 0.078
Xm 1.000

Potentially miss biomarkers that are only relevant in interaction

with others.
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Machine learning methods can deal
with interacting features

N

Machine
learning

Random Forests
SVM

ot

Ctrl
—>

Ctrl il

gene

—>

X1
Xz

score

0.248
0.122
0.082
0.052
0.041

0.011
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Decision tree is a supervised learning method

yes no

yes no
L Disease }{ Healthy J

Each interior node tests an input variable.

Each leaf node contains a prediction for the output.
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The tree-based relevance score
is based on entropy reduction

At each tree node: @

| = #SHy(S) - #St.Hy(St) - #Sf.Hy(Sf) yes no

Hy (-): entropy of the class frequencies
in a subset

Relevance score of X;:

s; = sum of | at each node where variable X; appears
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Machine learning-based relevance scores
are not statistically interpretable

variable | score
Xy 0.248
X5 0.122
X3 0.082
X4 0.052
Xs 0.041
Xm 0.011

Difficult to select a relevance threshold

Prevents the wide adoption
of machine learning methods
by biologists
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We seek procedures for extracting features from a ranking

variable | score
Xl Sl
X5 Sz
X3 S3
X1 Sk-1
X Sk
Xit1 Sk+1
Xm Sm
S1 > S2 > > Sm

Select the k top-ranked variables such that:

They contain the highest possible
number of relevant variables.

The rate of false positives is
as small as possible.
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The original score is replaced by
a statistically interpretable measure

variable | score FDR
X1 S1 0.001
X, 2 0.014
X3 S3 0.035
Xa Sa 0.063
Xs Ss 0.068
Xm Sm 0.997
S1 >8> >S5Sy

New measure: FDR, FWER, p-value...

The new measure can be interpreted
in a statistical way.

It allows the user to determine a
relevance threshold in a more informed
way.
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Feature selection: contributions

Procedure that estimates the probability to have at least one
irrelevant feature in a subset of top-ranked variables.

Large-scale evaluation of several procedures for extracting
relevant features from a ranking.
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Conditional error rate
Large-scale evaluation: Methods
Artificial datasets

Microarray datasets
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Conditional error rate
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Conditional Error Rate

Feat. Score

X1 S1

X %2 1—i—1 pyi—m
X3 S3 CER(SI) — P(j_n?aXm Sj Z Si|HR 7HI )
Xi—1 Si—1

Xi si HE 7= X1 — Xj_1 relevant

X, Sm Hf"’" : Xi — Xy, irrelevant.

If s; are univariate statistics:
— CER = Westfall & Young's maxT adjusted p-value
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The CER is estimated by random permutations

var. score
X1 S1 CERl
XQ S CERQ

Xi—-1 si—1 CERi_1
X,' Si CER,

Xm Sm CERm,
Fori=1,...,m:
Q@ Forp=1,...,P (typically P = 1000):
e Keep values of the output and of X; — X;_; fixed.

o Randomly (jointly) permute values of X; — X,.

o Compute variable relevance scores {sf, sy, ..., sP}
from permuted data.

1
CER, = rh #{p  max s/ > si}

e
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The CER provides a robust estimation of the FWER

Non-linear problem (20 variables, 200 instances)

3 relevant variables

Machine learning algorithm = Extra-Trees

1r

0.8F
i
8061
o
UDC_LOA—
0.2 —pFDR
- L L L L L L L --\-CER ]
03 4 6 8 10 12 14 16 18 20

Rank

CER < 0.05 — 3 variables
pFDR < 0.05 — 2 variables
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Large-scale evaluation: Methods
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Evaluated methods

Estimation of the generalization error of a model (err-A, err-TRT)
Multiple testing with random permutations (pFDR, eFDR, CER)
Estimation of the null rank distribution (mr-test)

Introduction of random probes (1Probe, mProbes)
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err-A

New measure: generalization error ¢; of a predictive model A
that uses only the i top-ranked variables
(estimated using cross-validation).

Select k top-ranked variables such that:

=arg min ¢;
i=1,....m

0.5

0.4 4
0.3 —

Error
2T W\\/W
0.1 N
o . . . . . . . . . . .
10 20 30 40 50 60 70 80 90 100 110 120
Rank

(see e.g. Geurts et al., Bioinformatics, 2005)
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1Probe

New measure: probability p; for a random probe to be ranked

above X;.

variable | score | p-value
X1 S1 P1
Xz S2 P2
X3 S3 P3
Xiq Si1 Pia
Xi Si pi
S1 > S2 > - > Sm

Q Forp=1,...,P (typically P =1000):

o Create a random feature X.,ng
(e.s. ~N(0,1)).
o Add X, to the original dataset.

e Compute variable relevance scores

P p P
{sf,...,sB,s" .} from new dataset.

@ Proportion of runs where X,;,4 is ranked
above X;:

1
pi=p #{Pish =5}

(inspired from Stoppiglia et al., JMLR, 2003)
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Artificial datasets
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Most methods improve the interpretability of the original
relevance score

Machine learning algorithm = Random Forests

Linear (20 relevant feat., 100 irrelevant feat., 500 instances) / RF

— — —score
——obs. FDR
——CER
—— 1Probe

FWER/p-value

Error rate

Rank
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Precision and recall are used as performance metrics

variable| score | CER
X1 S1 0.00 | relevant
X3 Sz 0.01 | relevant
X3 S3 0.02 | irrelevant
Xs Ss 0.04 | relevant
Xs+1 Ss+1 | 0.07 | relevant
X Sm 1.00 | irrelevant

TP: number of selected variables
that are relevant

precision = —
S

TP

l=—
reca F#relevant
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The methods differ in terms of false positives/negatives

Precision

CER

Linear dataset, 20 relevant feat., 500 instances / RF

1Probe

10 irr. feat.
[ 100 irr. feat.

[_11000 irr. feat.

CER

1Probe

err-RF

(average over 50 datasets in each

case)
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Comparison of ranking methods

I RF

Il svm
[t-test
[ 1Random

AUPR

M | | =

Linear datasets Non linear datasets

(average over 50 datasets in each case)
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Microarray datasets
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lllustration on a microarray dataset

patients with
prostate cancer

'. g
@a

l l

34 samples 19 samples

l l

~ 4000 genes

healthy patients

(Dhanasekaran et al., Nature, 2001)
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The number of selected genes depends on the ranking
method and the values of its parameters

RF (1000 trees) RF (10000 trees) SVM  t-test
CER 58 136 0 391
1Probe 54 444 2 1608
err-A 5 4 8 -
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Part I: Summary
We proposed a procedure (CER) for extracting relevant variables
from a ranking derived from a multivariate approach.

The CER procedure takes into account the dependencies between
the relevance scores.

We performed a large-scale evaluation of the CER procedure and
of other methods that replace the relevance score with a
statistically interpretable measure.

The choice of a method depends on the FP/FN tradeoff one wants
to achieve.

Selecting the k top-ranked features minimizing some
cross-validated error is counter-productive.
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Future research directions

Use the number of selected variables as a criterion to tune the
parameters of a ranking algorithm (instead of prediction
performance).

Adapt the procedures for the identification of a minimal subset of
relevant variables.

Assess the real interest of multivariate approaches for feature
ranking.
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PART II: NETWORK INFERENCE
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Inferring regulatory networks is a challenging problem

unknown network inferred network

‘:0_> ‘z/o
o' @ C
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A weight is learned for each edge

Target gene

gene 1 | gene 2 gene p
gene 1 - 0.05 0.56
Regulating | gene 2 | 0.19 - 0.03
gene
gene p 0.11 0.42 -
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Network inference: contributions

Algorithm for the inference of gene regulatory networks from
steady-state expression data (GENIE3).

Extensions of GENIE3 to time series and to genetical genomics
data.
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Network inference with GENIE3
The DREAM challenges
GENIE3 and time series

GENIE3 and genetical genomics
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Inference

Expy
Exp,
Exps

Expy

Ls?

. Output gene D Inp

is decomposed into p sub-problems

Expression data

Gene ) Gene S

Gene3

Gene
P

ut gene

Sub-problem /

Find the regulators of gene i
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Tree-based ensemble methods are good candidates

Can deal with interacting features

Work well with high-dimensional
datasets

Scalable

45 /68



GENIE3: GEne Network Inference with Ensemble of trees

Expression data

ey —
Expy j—
s j—
By ]
Gene, Gene, G Gene
LU 3 Learning f; Gene ranking
E Tree ensemble.
1 1
Ls | — Q\ /x(k\ R ——
— Interaction ranking
p— — —] Tree ensemble,
2 |— f— f—
LS* | — = — — ,X<2\ /((/i)\ —_—
. . 1 B —
Treeensemblep
B —E5

. Output gene D Input gene
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Network inference with GENIE3
The DREAM challenges
GENIE3 and time series

GENIE3 and genetical genomics
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DREAM is an annual reverse engineering competition

B Synthetic gene expression data P C Network inference
Steady state and time series s method

=
E .
—— .
| \ Uy
o do:
g /o)
\\\9’6@9;?0’86
O,\.g S N e, 7 )
’/7@ /'e,)/?@ Bt s (]
,}fe/“e rsel'
e € by
Simulation 0@'77@27/”7
00,
E pouble-blind
performance assessment
A In silico gene networks D Predicted networks

(Marbach et al., PNAS, 2010)
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Evaluation protocol (all challenges)

1.0

True positive rate
Precision
00 02 04 06 08 10

00 02 04 06 08

AUROC=0.9I AUPR=0.79
00 02 04 06 08 10 00 02 04 06 08 10
False positive rate Recall

Output of algorithms: a ranked list of (directed) interactions

Evaluation through ROC and Precision-Recall curves
— Area under ROC (AUROC) and Precision-Recall (AUPR) curves
— p-values under random model

Overall score = —0.5logo(ProcPpr)

49 /68



The DREAM challenges

DREAMA4 In Silico Multifactorial:
5 synthetic networks of 100 genes

Data: steady-state expression profiles obtained from slight
perturbations of all genes

DREAMS Network Inference:
1 synthetic and 2 real networks (E. coli and S. cerevisiae)

Data: microarray compendia
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GENIE3 was the overall best performer in both challenges

DREAM4 DREAMS
Rank Team Overall score Rank Team Overall score
1 GENIE3 37.428 1 GENIE3 40.279
2 Team 549 28.165 2 Team 543 34.023
3 Team 498 27.053 3 Team 776 31.099
4 Team 395 26.139 4 Team 862 28.747
5 5

Team 425

25.905

Team 548

22,711
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Methods yield more accurate predictions
for the artificial network than for the real networks

In silico
1
c
o
Los
Qo
o
G0 0.5 1
Recall
E. coli S. Cerevisiae
1 1
c c
o 9o
Los 205
o o
o o
G0 0.5 1 00 0.5 1
Recall Recall
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Network inference with GENIE3
The DREAM challenges
GENIE3 and time series

GENIE3 and genetical genomics
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Time series of gene expressions

20

15

10

uoissaidx]

Time point
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GENIE3 with time series data

GENIE3-time:
Weight of g; — gj is the importance of expression of g; at time t
for the prediction of expression of g; at time t + h.

Learning sample:

Inputs Output
gi(t1) | &(t1) | -+ | gp(t1) || gi(tr +h)
gi(t2) | g2(t2) | -+ | gp(t2) || gi(t2+ h)
g1(t3) | &(ts) | -+ | gp(t3) || gi(tz + h)
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GENIE3 with time series 4 steady-state data

GENIE3-comb:

Learn a single model from both datasets by merely concatenating

them.

Learning sample:

Inputs Output
gi(exp1) | g2(exp1) gp(exp1) || gj(exp1)
gi(exp2) | g2(exp) go(exp2) || gj(exp2)
gi(exps) | g2(exps) go(exps) || gj(exps)

gi(t1) | &(t) gp(t1) | gi(tr+h)
gi(t2) | g(t2) gp(t2) || gi(t2+ h)
gi(ts) | &(ts) gp(ts) || g(ts+ h)

56
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Weights of edges are averaged over different values of h

If T time points:
h=1 h=2 h=3 h=4 h=5

1 1 1 1 1
1 2 3 4 5

Wi Wi Wi i i

Weight for edge g;i — gj:
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DREAM3 and DREAM4 In Silico Size 100 challenges

Inference of synthetic regulatory
networks

5 networks of 100 genes

Steady-state data:

201 profiles (wild-type, systematic
knockout and knockdown of each
gene)

Time series:
21 time points in each
perturbation experiment
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Integrating both types of data improves the predictions

0.5

0.4

0.3r

AUPR

0.2

0.

o

Il GENIES on steady-state data
[ IGENIE3-time
r [ JGENIE3-comb

1 1

DREAMS Size 100 DREAM4 Size 100

GENIE3-comb would have been ranked:
- 2nd on DREAM3
- 3rd on DREAM4
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Network inference with GENIE3
The DREAM challenges
GENIE3 and time series

GENIE3 and genetical genomics
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Genetical genomics

(a) Parents

AN x
v
3
S 26~
e l 'i‘ (d) Markers per offspring
e i
T

(c) Microarray per offspring (b) Segregating population =2

- . —_— 3 s
{ =" MarkerBb

PN S % = = .

v P [~ s o

e w3 o o -~ Marker A/a &

B I Re - ——— T

TRENDS in Ganetics

(Jansen & Nap, Trends in Genetics, 2001)
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GENIE3 with genetical genomics data

M1 M3
E{f ——>» E2 E3 Eq
Marker M1 in promoter region Marker M3 in coding region

GENIE3-gen-2:

Train two separate models from expression and genetic markers
_|_

Product of markers and expression importance scores

gi — gj if both marker and expression of g; are predictive of
expression of g;

62 /68



DREAMSb5 Systems Genetics challenge

Inference of synthetic regulatory
networks

1000 genes in each network
1 marker per gene

Populations of 100, 300, and
999 individuals

5 networks per population size
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Genetic markers bring more information
than expression data

0.5

T
I GENIE3 on expression
[ 1GENIE3 on markers —
0.4 [_JGENIE3-gen-2 + prod 7

0.3

AUPR

0.2

| il IH

100 individuals 300 individuals 999 individuals

64 /68



GENIE3 outperforms the methods of the best performer

o
o

T
I Dantzig
I Lasso

+ I Bayesian networks B
[ IMeta
[ 1GENIE3-gen-2 + prod

mean AUPR
o o
w S
L

o
)
T

o
T

o

100 individuals 300 individuals 999 individuals
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Part II: Summary

GENIES3 yields state-of-the-art performances.

GENIE3 can be extended to different kinds of data
and interactions.

Performances of inference methods on real datasets
are typically worse than on artificial data.
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Future research directions

Application to real datasets
Exploitation of other types of data (e.g. miRNAs)
Extension to the differential networking problem

Supervised inference of regulatory networks
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