
INFO0004-2
Object-Oriented Programming Projects

in C++

Laurent Mathy

March 3, 2020

Outline

1 Practical information

2 First C++ steps

3 Working with batches of data

2

Organisation

Lectures (< 2hr) on Mondays at 1:45 p.m.

Assistant: Cyril Soldani (cyril.soldani@uliege.be)
Sami Ben Mariem(sami.benmariem@uliege.be)

Assessment through projects:

Project Weight Out In
1 part of 40% end Feb. mid Mar.
2 other part of 40% mid Mar. end Apr.
3 60% beg Apr. mid May.

3

Reference book

C++ is a complex language, so we only see the most useful subset.

Accelerated C++
by Andrew Koenig and Barbara Moo
ISBN 0-201-70353-X

Beware! C++11/14 is not covered in the book.

4

Prerequisites

We assume you have knowledge of:
programming in C;
object-oriented programming.

5

Outline

1 Practical information

2 First C++ steps

3 Working with batches of data

6

First C++ program

1 // A small C++ program
2 #include <iostream>
3

4 int main()
5 {
6 std::cout << "Hello, world!" << std::endl;
7 return 0;
8 }

Java programmers beware:
Not everything in C++ is a class/object!

7

Comments

// begins a comment which extends to the end of the line.

1 // A small C++ program

Other (multi-line) comment style:

1 /* I am a comment. */
2 /* I am a comment
3 which spans
4 multiple lines. */

/* ... */ comments don’t nest in C++.

1 /* Comment start /* inner comment */
2 not a comment anymore, but a syntax error */

8

Includes

Programs ask for external facilities with include directives, e.g.

1 #include <iostream>

#include <...> indicates a standard header (from the C++
standard library, or another system library).

To include your own headers, use quotes:

1 #include "my_header.hpp"

9

main function

Like in C, every C++ program must contain a main function.

1 int main()
2 { // Left brace
3 // Statements
4 } // Right brace

main is required to yield an integer as a result:
0 means success.
Any other value indicates there was a problem.

10

Standard output
We use the standard library’s output stream operator, <<, to
print to standard output.

1 std::cout << "Hello, world!" << std::endl;

Preceding a name by std:: indicates that the name is part of a
namespace called std:

A namespace is a collection of related names.
The standard library uses std to contain all the names it
defines.

:: is the scope operator.
scp::name is a qualified name, where the name name is defined
in the scope scp.

std::cout refers to the standard output stream.
std::endl ends current line of output and flushes output buffer.

11

Wait . . . there is something funny going on
An expression is made out of operators and operands (each
operand has a type).
The effect of an operator depends on the type of its operands.
<< is a binary operator: it takes 2 operands.
But we have written an expression with 2 << and 3 operands!
How can this work?

1 std::cout << "Hello, world!" << std::endl;

Answer: operator <<:
is left-associative, i.e. takes as much as it can from the
expression to its left, and as little as it can from its right;
returns as result its left operand (in our case std::cout of
type std::ostream).

⇒ the expression is equivalent to:
1 (std::cout << "Hello, world!") << std::endl;

12

Wait . . . there is something funny going on
An expression is made out of operators and operands (each
operand has a type).
The effect of an operator depends on the type of its operands.
<< is a binary operator: it takes 2 operands.
But we have written an expression with 2 << and 3 operands!
How can this work?

1 std::cout << "Hello, world!" << std::endl;

Answer: operator <<:
is left-associative, i.e. takes as much as it can from the
expression to its left, and as little as it can from its right;
returns as result its left operand (in our case std::cout of
type std::ostream).

⇒ the expression is equivalent to:
1 (std::cout << "Hello, world!") << std::endl;

12

Standard input
1 // Ask for a person's name, and greet the person
2

3 #include <iostream>
4 #include <string>
5

6 int main() {
7 // Ask for the person's name
8 std::cout << "Please enter your first name: ";
9

10 // Read the name
11 std::string name; // Define `name`
12 std::cin >> name; // Read into `name`
13

14 // Write a greeting
15 std::cout << "Hello, " << name << "!" << std::endl;
16

17 return 0; // 0 means success
18 }

13

Standard input (2)
We are using the standard input and standard string facilities:

3 #include <iostream>
4 #include <string>

The statement
11 std::string name; // Define `name`

defines a variable name of type std::string.
The STL says that a std::string variable always contains a
value, which defaults to the empty string if not provided.

name is a local variable, which:
only exists while execution is within the pair of braces {}
where variable was defined;
is created and destroyed automatically.

Java programmers beware: this is the only automatic memory
management in C++.

14

Standard input (3)

12 std::cin >> name; // Read into `name`

flushes standard output buffer;
discards white spaces from standard input stream;
reads characters from standard input stream into name;
stops when encounters either white-space character or
end-of-line.

15

Framing the greeting

1 Please enter your first name: Me
2 **************
3 * *
4 * Hello, Me! *
5 * *
6 **************

16

Framing the greeting: code

5 std::cout << "Please enter your first name: ";
6 std::string name;
7 std::cin >> name;
8

9 // Build the message that we intend to write
10 const std::string greeting = "Hello, " + name + "!";
11 // Build the second and fourth lines of the output
12 const std::string spaces(greeting.size(), ' ');
13 const std::string second = "* " + spaces + " *";
14 // Build the first and fifth lines of the output
15 const std::string first(second.size(), '*');
16

17 // Write it all
18 std::cout << first << std::endl;
19 std::cout << second << std::endl;
20 std::cout << "* " << greeting << " *" << std::endl;
21 std::cout << second << std::endl;
22 std::cout << first << std::endl;

17

Initialising a string

Saying explicitly what value we want for a string:

10 const std::string greeting = "Hello, " + name + "!";

Variable greeting is initialised when defined.
String literals are automatically converted to std::string.
+ concatenates two std::strings.
Keyword const promises that value of variable will not change
after initialisation (which must happen at definition time).

18

Constructing a string

Computing the value of a string:

12 const std::string spaces(greeting.size(), ' ');

This actually calls one of the std::string constructors.
Constructors depend on arguments types.
string(size_t n, char c) builds a std::string that
contains n copies of character c.
size() is a member function (a.k.a. method) of
std::string, that returns the size of the string.
' ' is a character literal. Do not confuse them with string
literals (" ").

19

C++ expressions and statements

C++ inherits a rich set of operators from C.

C++ also inherits statement syntax from C (loops, conditionals,
etc.).

Question: What’s the difference between these two loops?

1 int c;
2 for (c = 0; c < 10; c++) {
3 // Do something
4 }

for (int c = 0; c < 10; c++) {
// Do something

}

20

C++ expressions and statements

C++ inherits a rich set of operators from C.

C++ also inherits statement syntax from C (loops, conditionals,
etc.).

Question: What’s the difference between these two loops?

1 int c;
2 for (c = 0; c < 10; c++) {
3 // Do something
4 }
5 // c still in scope here

for (int c = 0; c < 10; c++) {
// Do something

}
// c undefined here

Answer: the scope of c!

20

Outline

1 Practical information

2 First C++ steps

3 Working with batches of data

21

Computing student grades
Student’s final grade is 40% of final exam, 20% of midterm exam,
and 40% of average homework grade.

1 #include <iomanip>
2 #include <iostream>
3 #include <string>
4
5 using std::cin; using std::cout; using std::endl;
6 using std::setprecision; using std::streamsize;
7 using std::string;
8
9 int main() {

10 // Ask for and read the student's name
11 cout << "Please enter your first name: ";
12 string name;
13 cin >> name;
14 cout << "Hello, " << name << "!" << endl;
15
16 // Ask for and read the midterm and final grades
17 cout << "Please enter your midterm and final exam grades: ";
18 double midterm, final;
19 cin >> midterm >> final;

22

Computing student grades (2)
21 // Ask for the homework grades
22 cout << "Enter all your homework grades, "
23 "followed by end-of-file: ";
24
25 int count = 0; // Number of grades read so far
26 double sum = 0; // Sum of grades read so far
27 double x; // A variable into which to read
28
29 // Invariant: we have read `count` grades so far,
30 // and `sum` is the sum of the first `count` grades
31 while (cin >> x) {
32 ++count;
33 sum += x;
34 }
35
36 // Compute and write the final grade
37 double final_grade = 0.2 * midterm + 0.4 * final + 0.4 * sum / count;
38 streamsize prec = cout.precision(); // Save initial precision
39 cout << "Your final grade is "
40 << setprecision(3) << final_grade << endl;
41 cout.precision(prec); // Restore initial precision
42
43 return 0;
44 }

23

using and more STL facilities

A using-declaration binds a name to its qualified version:

7 using std::string;

allows to use string when meaning std::string.

streamsize is the type used to represent sizes in I/O library.

39 cout << "Your final grade is "
40 << setprecision(3) << final_grade << endl;

sets floating-point precision to 3 significant digits (e.g. 3.14) before
printing final_grade.

setprecision modifies the output stream, so it is a good idea to
save and restore original precision.

24

Wait... there is something funny going on

Look carefully at the following statement:

22 cout << "Enter all your homework grades, "
23 "followed by end-of-file: ";

How can we write two string literals with a single << operator?

Answer:
Two (or more) string literals separated only by white-space, are
automatically concatenated.

25

Wait... there is something funny going on

Look carefully at the following statement:

22 cout << "Enter all your homework grades, "
23 "followed by end-of-file: ";

How can we write two string literals with a single << operator?

Answer:
Two (or more) string literals separated only by white-space, are
automatically concatenated.

25

Wait... there is something funny going on

Look carefully at the following statement:

22 cout << "Enter all your homework grades, "
23 "followed by end-of-file: ";

How can we write two string literals with a single << operator?

Answer:
Two (or more) string literals separated only by white-space, are
automatically concatenated.

25

Default initialisation

Recall that when we defined a std::string but did not provide
and initial value, it was implicitly initialised by default (to the
empty string).

Default-initialisation depends on the type.
Implicit initialisation does not exist for built-in types, and thus
un-initialised variables of built-in type will contain garbage.

25 int count = 0; // Number of grades read so far
26 double sum = 0; // Sum of grades read so far

Note that the initial value for sum is of type int, which gets
implicitly converted into a double. To avoid this conversion, use
double sum = 0.0;

26

Reading multiple input

31 while (cin >> x) {
32 ++count;
33 sum += x;
34 }

Recall that the operator >> returns its left operand (of type
std::istream) as a result.

However, this type is used in a condition!
⇒ it must be converted into a bool.

27

Conversion to bool

Arithmetic value:
Zero converts to false.
Non-zero values convert to true.

Similarly, std::istream provides a conversion from cin to bool.
std::cin is true if last attempt to read was successful.

Ways for reading to be unsuccessful:
reached end-of-file;
encountered input incompatible with type read;
system detected hardware failure on input device.

28

Using medians instead of averages

What if we want to take the median of homeworks, instead of their
average?

Now, we must read and store values:
read a number of values, not knowing this number;
into a container;
sort values;
get median.

29

Using medians: read and store multiple values

26 vector<double> homeworks;
27 double x;
28 // Invariant: `homeworks` contains all the
29 // homework grades read so far
30 while (cin >> x)
31 homeworks.push_back(x);

vector is a template class defined in <vector> header.
C++ templates are similar to Java generics.
All values in a vector have the same type.
Different vectors can hold different types.

push_back appends a new element at the end of the vector.

30

Using medians: container size

33 // Check the student entered some homework grades
34 typedef vector<double>::size_type vec_sz;
35 vec_sz size = homeworks.size();
36 if (size == 0) {
37 cout << endl << "You must enter your grades. "
38 "Please try again." << endl;
39 return 1;
40 }

vector defines type vector<double>::size_type as unsigned
type guaranteed to hold size of largest possible vector.

size() is a method of vector class; returns the number of
elements.

31

C++11 auto

Using types such as std::vector<double>::size_type can be
cumbersome and hinder legibility.

C++ 2011 supports a limited form of type-inference.

When a variable is defined with an initializer, one can use auto to
have the compiler automatically deduce the correct type from the
right-hand side.

34 auto size = homeworks.size();

would automatically give variable size the type
std::vector<double>::size_type, since it is the type of
homeworks.size().

Only use auto where it improves legibility!

32

Using medians: sorting

41 // Sort the grades
42 sort(homeworks.begin(), homeworks.end());

sort is defined in <algorithm> header.

begin() is a vector method denoting first element.
end() is a vector method denoting one past last element.

All ranges in the STL are given as [begin, end).

33

Using medians: compute and print final grade

44 // Compute the median homework grade
45 auto mid = size / 2;
46 double median = (size % 2 == 0)
47 ? (homeworks[mid] + homeworks[mid - 1]) / 2
48 : homeworks[mid];
49

50 // Compute and write the final grade
51 double final_grade =
52 0.2 * midterm + 0.4 * final + 0.4 * median;
53 streamsize prec = cout.precision(3); // Set precision
54 cout << "Your final grade is " << final_grade << endl;
55 cout.precision(prec); // Restore original precision

34

Complete median program
1 #include <algorithm>
2 #include <iostream>
3 #include <string>
4 #include <vector>
5

6 using std::cin; using std::cout; using std::endl;
7 using std::sort; using std::streamsize;
8 using std::string; using std::vector;
9

10 int main() {
11 // Ask for and read the student's name
12 cout << "Please enter your first name: ";
13 string name;
14 cin >> name;
15 cout << "Hello, " << name << "!" << endl;
16

17 // Ask for and read the midterm and final grades
18 cout << "Please enter your midterm and final exam grades: ";
19 double midterm, final;
20 cin >> midterm >> final;

35

Complete median program (2)

22 // Ask for and read the homework grades
23 cout << "Enter all your homework grades, "
24 "followed by end-of-file: ";
25

26 vector<double> homeworks;
27 double x;
28 // Invariant: `homeworks` contains all the
29 // homework grades read so far
30 while (cin >> x)
31 homeworks.push_back(x);
32

33 // Check the student entered some homework grades
34 auto size = homeworks.size();
35 if (size == 0) {
36 cout << endl << "You must enter your grades. "
37 "Please try again." << endl;
38 return 1;
39 }

36

Complete median program (3)

41 // Sort the grades
42 sort(homeworks.begin(), homeworks.end());
43

44 // Compute the median homework grade
45 auto mid = size / 2;
46 double median = (size % 2 == 0)
47 ? (homeworks[mid] + homeworks[mid - 1]) / 2
48 : homeworks[mid];
49

50 // Compute and write the final grade
51 double final_grade =
52 0.2 * midterm + 0.4 * final + 0.4 * median;
53 streamsize prec = cout.precision(3); // Set precision
54 cout << "Your final grade is " << final_grade << endl;
55 cout.precision(prec); // Restore original precision
56

57 return 0;
58 }

37

	Practical information
	First C++ steps
	Working with batches of data

