
Program Organisation & Sequential Containers

Laurent Mathy

Object-Oriented Programming Projects

March 3, 2020

Outline

1 Program Organisation

2 Sequential Containers

2

Functions

9 double grade(double midterm, double final, double homework)
10 {
11 return 0.2 * midterm + 0.4 * final + 0.4 * homework;
12 }

midterm, final, homework are parameters; behave like local
variables.
When we call the function, we supply arguments which are
used to initialise the parameters.
Semantics of the call is call by value: parameters take on a
copy of the value of the arguments.
Returns a double value.

Function name and parameter types define the function signature.

3

Functions (2)
8 double median(vector<double> vec) {
9 if (vec.empty())

10 throw domain_error("median of an empty vector");
11

12 sort(vec.begin(), vec.end());
13

14 auto mid = vec.size() / 2;
15

16 return (vec.size() % 2 == 0) ? (vec[mid] + vec[mid - 1]) / 2
17 : vec[mid];
18 }

Call copies the entire argument vector:
may be slow;
is safe: taking median should not change vector.

General way of complaining: throw exception
domain_error defined in <stdexcept> header.
Argument describes what went wrong.

4

Functions: const reference and overloading
14 double grade(double midterm, double final,
15 const vector<double>& homeworks)
16 {
17 if (homeworks.empty())
18 throw domain_error("student has done no homework");
19 return grade(midterm, final, median(homeworks));
20 }

Third parameter is a reference.
A reference is an alias: reference and original are the same
thing.
Reference to reference is same thing as reference to original.
Function gets direct access to argument: no copying.
const reference: the function promises not to change original
vector.

grade function is now overloaded.
We defined two different versions of grade.
No ambiguity: the two functions have different signatures.

5

Functions: returning several values
There is no direct way to return more than one value.

Indirect way: give function a parameter that is a reference to an
object where to place one result.

1 istream& read_hws(istream& in, vector<double>& hws) {
2 // ...
3 return in;
4 }

Non-const reference parameter:
usually signals intention to modify the object;
must be an lvalue: a non-temporary object.

Both parameters are refs as function changes state of both.
Return value is a reference: we are returning the stream we
were given as is without copying.

6

Reading values within function
How difficult can it be?

1 istream& read_hws(istream& in, vector<double>& hws) {
2 double grade;
3 while (in >> grade)
4 hws.push_back(grade);
5 return in;
6 }

We do not know what’s in hws ⇒ we should clear it.
Loop reads until failure: either end-of-file, or encountered a
non-number:

How will the user know the difference?
Difference between “we have just read last record” vs “sorry,
no more record”?
Must only fail when function can read nothing more ⇒ must
clear it.
On entry in function, if stream already in error, must leave it.
alone.

7

Reading values within function
How difficult can it be?

1 istream& read_hws(istream& in, vector<double>& hws) {
2 double grade;
3 while (in >> grade)
4 hws.push_back(grade);
5 return in;
6 }

We do not know what’s in hws ⇒ we should clear it.
Loop reads until failure: either end-of-file, or encountered a
non-number:

How will the user know the difference?
Difference between “we have just read last record” vs “sorry,
no more record”?
Must only fail when function can read nothing more ⇒ must
clear it.
On entry in function, if stream already in error, must leave it.
alone.

7

Reading values within function (2)

22 istream& read_hws(istream& in, vector<double>& hws) {
23 if (in) {
24 // Get rid of previous contents
25 hws.clear();
26

27 // Read homework grades
28 double grade;
29 while (in >> grade)
30 hws.push_back(grade);
31

32 // Clear the stream so that input will work
33 // for the next student
34 in.clear();
35 }
36 return in;
37 }

8

Calculating one student’s grade

9 int main() {
10 // Ask for and read student's name
11 cout << "Please enter your first name: ";
12 string name;
13 cin >> name;
14 cout << "Hello, " << name << "!" << endl;
15

16 // Ask for and read midterm and final grades
17 cout << "Please enter your midterm and final exam grades: ";
18 double midterm, final;
19 cin >> midterm >> final;
20

21 // Ask for and read homework grades
22 cout << "Enter all your homework grades, "
23 "followed by end-of-file: ";
24 vector<double> homeworks;
25 read_hws(cin, homeworks);

9

Calculating one student’s grade (2)
27 // Compute and generate final grade, if possible
28 try {
29 double final_grade = grade(midterm, final, homeworks);
30 streamsize prec = cout.precision();
31 cout << "Your final grade is " << setprecision(3)
32 << final_grade << setprecision(prec) << endl;
33 } catch (domain_error) {
34 cerr << endl << "You must enter your grades. "
35 "Please try again." << endl;
36 return 1;
37 }
38

39 return 0;
40 }

try statement:
tries to execute statements in { };
pass control to catch clause if domain_error occurs
anywhere in these statements.

cerr is the standard error stream.
10

Organising Data

Students data all in a file:

1 Zorglub 93 91 47 90 92 73 100 87
2 Aaron 75 90 87 92 93 60 0 98
3 ...

Want final results, alphabetically:

1 Aaron 86.8
2 ...
3 Zorglub 90.4

11

Keeping related things together

7 struct Student_info {
8 std::string name;
9 double midterm, final;

10 std::vector<double> homeworks;
11 }; // Semicolon in REQUIRED

We can then use a vector<Student_info> to hold information
about an arbitrary number of students.

12

Managing student records
9 istream& read(istream& in, Student_info& s) {

10 // Read and store student's name, midterm and final grades
11 in >> s.name >> s.midterm >> s.final;
12 // Read and store student's homework grades
13 read_hws(in, s.homeworks);
14 return in;
15 }

read is overloaded (if other read function(s) already exist).
Input stream can fail at anytime:

OK, as subsequent input attempts will do nothing.
Relies on read_hws leaving stream in error.

17 double grade(const Student_info& s) {
18 return grade(s.midterm, s.final, s.homeworks);
19 }

grade is not catching exceptions: they will be passed back to its
caller.

13

Sorting student records

sort function relies on < operator being defined for type being
sorted. But < is not defined for Student_info type.

But we can use version of sort that takes a predicate as third
argument.

21 bool compare(const Student_info& x, const Student_info& y)
22 {
23 return x.name < y.name;
24 }

20 sort(students.begin(), students.end(), compare);

14

Generating the report

10 // Read all the records, and find the length of the longest name
11 Student_info record;
12 vector<Student_info> students;
13 string::size_type maxlen = 0;
14 while (read(cin, record)) {
15 maxlen = max(maxlen, record.name.size());
16 students.push_back(record);
17 }
18

19 // Alphabetize the records
20 sort(students.begin(), students.end(), compare);
21

22 auto prec = cout.precision(3);

max in <algorithm>.
cout.precision(3) sets cout’s number of significant
floating-point digits to 3, and returns its previous precision.

15

Generating the report (2)

23 for (vector<Student_info>::size_type i = 0;
24 i != students.size(); ++i) {
25 // Write the name, padded on the right
26 cout << students[i].name
27 << string(maxlen + 1 - students[i].name.size(), ' ');
28 // Compute and write the grade
29 try {
30 double final_grade = grade(students[i]);
31 cout << final_grade << endl;
32 } catch (domain_error e) {
33 cerr << e.what() << endl;
34 }
35 }
36 cout.precision(prec); // Restore precision

string(n, ' ') creates a string of n blanks.
No name: string(...) is a valid expression.

16

Managing complex code

Like in C, group abstractions into separate header and source files.

Support for separate compilation, and information hiding.

Header file must include:
all headers strictly needed for its declarations;
declarations of implemented public functions;
declarations or definitions of required types.

Source file must include:
all headers needed for implementation of functions (including
corresponding header);
definitions of functions;
definitions of types that are only declared in the header.

17

Managing complex code (2)
Always protect your header files against double inclusion:

1 #ifndef MEDIAN_HH
2 #define MEDIAN_HH
3

4 #include <vector>
5

6 // Return the median of the given values.
7 double median(std::vector<double> values);
8

9 #endif

Avoid proprietary #pragma , use standard include guards.
Avoid polluting the namespace with using directives in
headers.
Parameter names are optional in declarations.

Use them to document your code.
18

Outline

1 Program Organisation

2 Sequential Containers

19

Sequential containers

14 bool fgrade(const Student_info& s) {
15 return grade(s) < 60;
16 }
17
18 vector<Student_info> extract_fails_1(vector<Student_info>& students) {
19 vector<Student_info> passes, fails;
20
21 for (vector<Student_info>::size_type i = 0;
22 i != students.size(); ++i)
23 if (fgrade(students[i]))
24 fails.push_back(students[i]);
25 else
26 passes.push_back(students[i]);
27
28 students = passes;
29 return fails;
30 }

students = passes; results in original contents to be replaced
by the content in passes. This is so because of the way the =
operation is implemented in vector.

20

Erasing elements in place

32 vector<Student_info> extract_fails_2(vector<Student_info>& students) {
33 vector<Student_info> fails;
34 vector<Student_info>::size_type i = 0;
35
36 // Invariant: elements `[0,i)` of `students` are passing grades
37 while (i != students.size())
38 if (fgrade(students[i])) {
39 fails.push_back(students[i]);
40 students.erase(students.begin() + i);
41 } else
42 ++i;
43
44 return fails;
45 }

No version of erase operates on indices: specify element through
students.begin() and offset.

Remember that erase changes the vector’s size.

21

Iterators
1 for (vector<Student_info>::size_type i = 0;
2 i != students.size(); ++i)
3 cout << students[i].name << endl;

Another way to do the same thing:
1 for (vector<Student_info>::const_iterator iter = students.begin();
2 iter != students.end(); ++iter)
3 cout << (*iter).name << endl;

Iterator is a value that:
identifies elements in a container;
let us examine value of that element;
has operation for moving between elements;
only support efficient operations on container.

container-type::const_iterator gives read-only access.
container-type::iterator gives full read-write-erase access.

22

More on iterators

begin() function returns an iterator to the first element of
the collection.
end() function returns an iterator to the first element past
the end of the collection.
Dereferencing: *iter provides access to element referred to
by iter.
iter->name is the same as (*iter).name.
students.begin() + i is an iterator to the ith element
in students.
Note how we used iter != students.end() and not
iter < students.end(). Operator < is not defined for all
iterators.

23

Using iterators instead of indices

47 vector<Student_info>
48 extract_fails_3(vector<Student_info>& students) {
49 vector<Student_info> fails;
50 vector<Student_info>::iterator iter = students.begin();
51

52 while (iter != students.end())
53 if (fgrade(*iter)) {
54 fails.push_back(*iter);
55 iter = students.erase(iter);
56 } else
57 ++iter;
58

59 return fails;
60 }

Need iter = students.erase(iter); because erase
invalidates iterators for all elements from the one erased.

24

A note on vectors

vector is a great container for adding “at the end” and for
random access;
but not that good when erasing in the middle, because of
required shifting of elements.

⇒ Our implementation may get very slow with large number of
students.

⇒ We need a better container for erasing in the middle.

25

A faster version, using the list type

62 list<Student_info>
63 extract_fails_4(list<Student_info>& students) {
64 list<Student_info> fails;
65 list<Student_info>::iterator iter = students.begin();
66

67 while (iter != students.end())
68 if (fgrade(*iter)) {
69 fails.push_back(*iter);
70 iter = students.erase(iter);
71 } else
72 ++iter;
73

74 return fails;
75 }

26

Shorter iterator declarations using auto

Iterator syntax can be quite heavy:
1 for (std::vector<double>::const_iterator it = xs.begin();
2 it != xs.end(); ++it)
3 // Do something with `it`

auto can help:
1 for (auto it = xs.begin(); it != xs.end(); ++it)
2 // Do something with `it`

. . . but beware!

begin() can return either an iterator, or a const_iterator.
auto it = xs.begin() defines a read-write-erase iterator.

cbegin()/cend() always return a const_iterator.

27

Shorter iterator declarations using auto

Iterator syntax can be quite heavy:
1 for (std::vector<double>::const_iterator it = xs.begin();
2 it != xs.end(); ++it)
3 // Do something with `it`

auto can help:
1 for (auto it = xs.begin(); it != xs.end(); ++it)
2 // Do something with `it`

. . . but beware!

begin() can return either an iterator, or a const_iterator.
auto it = xs.begin() defines a read-write-erase iterator.

cbegin()/cend() always return a const_iterator.

27

C++11 for-each loops
An even shorter and clearer syntax is provided by ranged-based
for loops. Once again, beware of access types!

1 for (auto x : xs) {
2 // x iterates over xs by COPYing values
3 ++x; // Only modifies local variable x, NOT xs!
4 }
5

6 for (auto& x : xs) {
7 // x iterates over xs by reference, no copy
8 ++x; // Modifies xs
9 }

10

11 for (const auto& x : xs) {
12 // x iterates over xs by reference, no copy
13 ++x; // COMPILE ERROR, cannot modify a const ref
14 }

28

More on strings

string is a special kind of container, that:
contains only characters;
supports some container operations:

indexing;
iterators.

29

Splitting a string
16 vector<string> split(const string& s) {
17 vector<string> ret;
18 string::size_type i = 0;
19
20 // Invariant: we have processed characters `[0,i)`
21 while (i != s.size()) {
22 // Find word first character
23 while (i != s.size() && isspace(s[i]))
24 ++i;
25 // Find end of next word
26 string::size_type j = i;
27 while (j != s.size() && !isspace(s[j]))
28 ++j;
29 // If we found some non-whitespace characters
30 if (i != j) {
31 // Copy word to vector
32 ret.push_back(s.substr(i, j - i));
33 i = j;
34 }
35 }
36 return ret;
37 }

30

Splitting a string (2)

isspace requires <cctype>

substr:
member function of string;
creates a new string;
first parameter: start index of new string;
second parameter: length of new string.

31

Framing string “boxes”
39 string::size_type width(const vector<string>& v) {
40 string::size_type maxlen = 0;
41 for (auto& s : v) // No need for const here
42 maxlen = max(maxlen, s.size());
43 return maxlen;
44 }
45
46 vector<string> frame(const vector<string>& v) {
47 vector<string> ret;
48 string::size_type maxlen = width(v);
49 string border(maxlen + 4, '*');
50
51 // Write the top border
52 ret.push_back(border);
53 // Write each interior row, bordered by an asterisk and a space
54 for (auto& s : v)
55 ret.push_back(
56 "* " + s + string(maxlen - s.size(), ' ') + " *");
57 // Write the bottom border
58 ret.push_back(border);
59
60 return ret;
61 }

32

Vertical concatenation of string “boxes”

No facility to concatenate vectors: do it yourself.
63 vector<string> vcat(const vector<string>& top,
64 const vector<string>& bottom) {
65 // Copy top picture
66 vector<string> ret = top;
67 // Copy bottom picture
68 for (auto& s : bottom)
69 ret.push_back(s);
70

71 return ret;

Code in lines 68 – 69 could be replaced by:
68 ret.insert(ret.end(), bottom.begin(), bottom.end());

33

Horizontal concatenation of string “boxes”
74 vector<string> hcat(const vector<string>& left,
75 const vector<string>& right) {
76 vector<string> ret;
77 // Add 1 to leave a space between pictures
78 string::size_type width1 = width(left) + 1;
79 // Indices to look at elements from `left` and `right` respectively
80 vector<string>::size_type i = 0, j = 0;
81 // Continue until we've seen all rows from both pictures
82 while (i != left.size() || j != right.size()) {
83 // Construct new string to hold characters from both pictures
84 string s;
85 // Copy a row from the left-hand side, if there is one
86 if (i != left.size())
87 s = left[i++];
88 // Pad to full width
89 s += string(width1 - s.size(), ' ');
90 // Copy a row from the right-hand side, if there is one
91 if (j != right.size())
92 s += right[j++];
93 // Add `s` to the picture we're creating
94 ret.push_back(s);
95 }
96 return ret;
97 }

34

Local variable defined in loop

The hcat function defines a local variable (s) inside a loop.

This variable is:
created;
initialised (if appropriate);
destroyed;

at each loop iteration.

35

	Program Organisation
	Sequential Containers

