
Library Algorithms and Associative Containers

Laurent Mathy

Object-Oriented Programming Projects

March 3, 2020

Outline

1 Library Algorithms

2 Associative Containers

2

Rationale for Library algorithms

Many container operations apply to more than one type of
container (e.g. insert, erase).
Every container has iterators.
STL exploits these common interfaces to provide collection of
standard algorithms.
Like containers, algorithms use a consistent interface.
Most are algorithms defined in <algorithm> header.

3

string box concatenation revisited

We said that for:

1 for (const auto& x : v2)
2 v1.push_back(x);

vector provided a direct method:

1 v1.insert(v1.end(), v2.begin(), v2.end());

But there is an even more generic solution:

1 copy(v2.begin(), v2.end(), back_inserter(v1));

copy is a generic algorithm.
back_inserter is an iterator generator.

4

Generic algorithm: copy

Not part of any kind of container.
STL generic algorithms usually take iterators as arguments,
and access elements through *, ++, etc.
copy(begin, end, out) copies elements in [begin, end)
to sequence starting at out.

5

Iterator adaptors
Functions that yield iterators.
Defined in <iterator>.
back_inserter takes a container as argument, and returns
an iterator that appends values to that container, when used
as destination.

Note the wrong calls to copy:

1 // Won't compile, v1 is not an iterator
2 copy(v2.begin(), v2.end(), v1);

1 // Compiles, but undefined behaviour
2 copy(v2.begin(), v2.end(), v1.end());

Remember that any operation that modifies the container
invalidates its iterators, hence the need for iterator adaptors.

6

String splitting revisited

9 static bool is_space(char c) { return isspace(c); }
10

11 vector<string> split(const string& s) {
12 typedef string::const_iterator iter;
13 vector<string> ret;
14

15 iter i = s.begin();
16 while (i != s.end()) {
17 // Find start of next word
18 i = find_if_not(i, s.end(), is_space);
19 // Find end of next word
20 iter j = find_if(i, s.end(), is_space);
21 // Copy the characters in [i, j)
22 if (i != s.end())
23 ret.push_back(string(i, j));
24 i = j;
25 }
26 return ret;
27 }

7

String splitting revisited (2)

find_if first two arguments are iterators that delimit
sequence [begin, end), third argument is predicate.

Calls predicate on each elements in the sequence, stopping as
soon as predicate is true.
Returns corresponding iterator, or second argument if no
matching element is found.
find_if_not returns as soon as predicate is false instead.

Note that isspace is overloaded in STL.
Never easy to pass overloaded function directly as argument,
as compiler has no idea which one to use.
Write a wrapper that does an explicit call to overloaded
function.

Note that STL algorithms are writen to handle empty ranges
gracefully.

Returns the end iterator if the range is empty.

8

Palindromes

8 bool is_palindrome(const string& s) {
9 return equal(s.begin(), s.end(), s.rbegin());

10 }

rbegin() returns an iterator that start at last element of
container, and marches backward.
equal compares two sequences for equality.

First two arguments are iterators that delimit first sequence
[begin, end).
Third argument is iterator indicating starting point of second
sequence; assumes enough elements in this sequence.

9

Finding URLs

Simplified solution: looking for sequences of characters of the
form: protocol-name://resource-name

protocol-name contains only letters; resource-name may consist of
letters, digits and permitted punctuation.

Valid URL: at least one valid character before and after the ://
delimiter.

10

Finding URLs (2): find_urls
42 vector<string> find_urls(const string& s) {
43 vector<string> ret;
44 typedef string::const_iterator iter;
45 // Look through the entire input
46 iter b = s.begin(), e = s.end();
47 while (b != e) {
48 // Look for one or more letters followed by `://`
49 b = url_begin(b, e);
50 // If we found it
51 if (b != e) {
52 // Get the rest of the URL
53 iter after = url_end(b, e);
54 // Remember the URL
55 ret.push_back(string(b, after));
56 // Advance `b` and check for more URLs
57 b = after;
58 }
59 }
60 return ret;
61 } 11

Finding URLs (3): url_end

8 static bool not_url_char(char c) {
9 // Special characters that can appear in URLs

10 static const string url_ch = "~;/?:@=&$-_.+!*'(),";
11 // Return false if `c` can appear in URLs
12 return !(isalnum(c)
13 || find(url_ch.begin(), url_ch.end(), c) != url_ch.end());
14 }
15

16 static string::const_iterator
17 url_end(string::const_iterator b, string::const_iterator e) {
18 return find_if(b, e, not_url_char);
19 }

static local variables are created on first call and preserved
across calls.
find works like find_if but uses a specific value instead of a
predicate.

12

Finding URLs (3): url_begin
21 static string::const_iterator
22 url_begin(string::const_iterator b, string::const_iterator e) {
23 static const string sep = "://";
24 typedef string::const_iterator iter;
25 iter i = b; // `i` marks where separator was found
26 while ((i = search(i, e, sep.begin(), sep.end())) != e) {
27 // Make sure the separator isn't at the end of string
28 if (i + sep.size() != e) {
29 iter beg = i; // `beg` marks start of protocol-name
30 while (beg != b && isalpha(beg[-1]))
31 --beg;
32 // At least one good char before and after ://?
33 if (beg != i && !not_url_char(i[sep.size()]))
34 return beg;
35 }
36 // Found separator wasn't part of a URL, move past it
37 i += sep.size();
38 }
39 return e;
40 }

13

Finding URLs (4): url_begin con’t

search takes two pairs of iterators:
First pair denotes a sequence we are looking into.
Second pair denotes sequence we are looking for.
Returns iterator to start of search sequence in searched
sequence.
Returns second argument on failure.

If container supports indexing, so do its iterators:
beg[i] is *(beg + i)
beg[-1] is *(beg - 1)

Decrement operation on iterator.

14

Comparing grading schemes
Remember the student grading using medians. . .

Students could exploit this scheme to only do half of their
homeworks without impact on their final mark!

Question: do students who do all the homework have better marks
than those who don’t?

What if:
we use average instead of median, giving 0 to homework not
done?
we use median of homework actually done?

We need a program that:
reads student records and separates students into those who
did all the homework from those who didn’t;
applies each of the 3 grading schemes (median, average,
median of work done), and reports median grade of each
group.

15

Comparing grading schemes (2): classifying students
9 static bool did_all_hws(const Student_info& s) {

10 return find(s.homeworks.begin(), s.homeworks.end(), 0)
11 == s.homeworks.end();
12 }

71 // Read the student records and partition them
72 vector<Student_info> did, didnt;
73 Student_info student;
74 while (read(cin, student)) {
75 if (did_all_hws(student)) did.push_back(student);
76 else didnt.push_back(student);
77 }
78 // Verify that the analyses will show us something
79 if (did.empty()) {
80 cerr << "No student did all the homeworks!" << endl;
81 return 1;
82 }
83 if (didnt.empty()) {
84 cerr << "Every student did all the homeworks!" << endl;
85 return 1;
86 }

16

Comparing grading schemes (3): comparing student groups

14 static void write_analysis(
15 ostream& out, const string& name,
16 double analysis(const vector<Student_info>&),
17 const vector<Student_info>& did,
18 const vector<Student_info>& didnt)
19 {
20 out << name << ": median(did) = " << analysis(did)
21 << ", median(didnt) = " << analysis(didnt) << endl;
22 }

Third parameter represents a function.

17

Comparing grading schemes (4):
analysis function – median

1 // This version does not work
2 double median_analysis(const vector<Student_info>& students)
3 {
4 vector<double> grades;
5 transform(students.begin(), students.end(),
6 back_inserter(grades), grade);
7 return median(grades);
8 }

transform takes 3 iterators and a function.
First 2 iterators delimit a range.
Third iterator is destination where to put elements after
applying the function to them.
It is programmer’s responsibility to ensure destination has
enough capacity.

18

Comparing grading schemes (5):
analysis function – median issues

Major issue with previous version of median_analysis is that
grade is overloaded:

so compiler does not know which version we mean!
Second issue, the grade function we want can throw an
exception if a student did no homework. So better handle this
exception to stop it from spreading and killing the program.

Write auxiliary function that solves both issues.

19

Comparing grading schemes (6):
analysis function – median (fixed)

24 static double grade_aux(const Student_info& s) {
25 try { return grade(s); }
26 catch (domain_error) {
27 return grade(s.midterm, s.final, 0);
28 }
29 }
30

31 static double median_analysis(
32 const vector<Student_info>& students)
33 {
34 vector<double> grades;
35 transform(students.begin(), students.end(),
36 back_inserter(grades), grade_aux);
37 return median(grades);
38 }

20

Comparing grading schemes (7):
analysis function – average

7 double average(const vector<double>& xs) {
8 if (xs.empty())
9 return 0.0;

10 double sum = accumulate(xs.begin(), xs.end(), 0.0);
11 return sum / xs.size();
12 }

accumulate defined in <numeric>
First two parameters define a range.
Adds all values in the range to the third parameter.
Type of the sum is the type of the third argument
=⇒ must use 0.0.

21

Comparing grading schemes (8):
analysis function – average

40 static double average_grade(const Student_info& s) {
41 return grade(s.midterm, s.final, average(s.homeworks));
42 }
43

44 static double average_analysis(
45 const vector<Student_info>& students)
46 {
47 vector<double> grades;
48 transform(students.begin(), students.end(),
49 back_inserter(grades), average_grade);
50 return median(grades);
51 }

22

Comparing grading schemes (9):
analysis function – optimistic median
53 // Median of the nonzero elements of `s.homeworks`, or 0 if none
54 static double optimistic_median(const Student_info& s) {
55 vector<double> nonzero;
56 remove_copy(s.homeworks.begin(), s.homeworks.end(),
57 back_inserter(nonzero), 0);
58 double homework_grade = nonzero.empty() ? 0 : median(nonzero);
59 return grade(s.midterm, s.final, homework_grade);
60 }
61

62 static double optimistic_median_analysis(
63 const vector<Student_info>& students) {
64 vector<double> grades;
65 transform(students.begin(), students.end(),
66 back_inserter(grades), optimistic_median);
67 return median(grades);
68 }

There are “copy” versions of many algorithms.
remove_copy takes range, destination and value: destination
gets copies of all elements in the range that differ from value. 23

Comparing grading schemes (10): putting it all together
70 int main() {
71 // Read the student records and partition them
72 vector<Student_info> did, didnt;
73 Student_info student;
74 while (read(cin, student)) {
75 if (did_all_hws(student)) did.push_back(student);
76 else didnt.push_back(student);
77 }
78 // Verify that the analyses will show us something
79 if (did.empty()) {
80 cerr << "No student did all the homeworks!" << endl;
81 return 1;
82 }
83 if (didnt.empty()) {
84 cerr << "Every student did all the homeworks!" << endl;
85 return 1;
86 }
87 // Do the analyses
88 write_analysis(cout, "median", median_analysis, did, didnt);
89 write_analysis(cout, "average", average_analysis, did, didnt);
90 write_analysis(cout, "median of homework turned in",
91 optimistic_median_analysis, did, didnt);
92
93 return 0;
94 }

24

Don’t Repeat Yourself (DRY)

median_analysis(), average_analysis() and
optimistic_median_analysis() are awfully similar, differing
only in the grading function passed to transform().

Factorize their functionality into a single analysis() function,
that takes the grading function as a parameter, and modify
write_analysis() so that it calls analysis() directly.

25

Don’t Repeat Yourself (DRY): refactored version
14 static double analysis(const vector<Student_info>& students,
15 double grade(const Student_info&)) {
16 vector<double> grades;
17 transform(students.begin(), students.end(),
18 back_inserter(grades), grade);
19 return median(grades);
20 }
21
22 static void write_analysis(ostream& out, const string& name,
23 double grade(const Student_info&),
24 const vector<Student_info>& did,
25 const vector<Student_info>& didnt) {
26 out << name << ": median(did) = " << analysis(did, grade)
27 << ", median(didnt) = " << analysis(didnt, grade)
28 << endl;
29 }

68 // Do the analyses
69 write_analysis(cout, "median", grade_aux, did, didnt);
70 write_analysis(cout, "average", average_grade, did, didnt);
71 write_analysis(cout, "median of homework turned in",
72 optimistic_median, did, didnt);

26

Classifying students, revisited

There are efficient algorithmic solutions to the classification
problem:

19 vector<Student_info> extract_fails_1(vector<Student_info>& students)
20 {
21 vector<Student_info> fails;
22 copy_if(students.begin(), students.end(),
23 back_inserter(fails), fgrade);
24 students.erase(remove_if(students.begin(), students.end(),
25 fgrade),
26 students.end());
27 return fails;
28 }

27

remove
remove and its associated functions (e.g. remove_if) do not
remove anything.
Instead, it moves elements to be kept towards the beginning of the
container, overwriting those that should be removed. The result of
the function is an iterator to one past the last kept element.

P P F F P F P

students.begin() students.end()

P P F F P F P

students.begin() students.end()

P P P P ? F ?

students.begin() students.end()
remove_if result

28

Classifying students: one pass solution
30 vector<Student_info> extract_fails_2(
31 vector<Student_info>& students)
32 {
33 vector<Student_info>::iterator iter =
34 stable_partition(students.begin(), students.end(), pgrade);
35 vector<Student_info> fails(iter, students.end());
36 students.erase(iter, students.end());
37 return fails;
38 }

stable_partition (and partition): elements that satisfy the
predicate are moved before those that don’t.

P P P P F F F

students.begin() students.end()
iter

Order is not preserved!
29

Outline

1 Library Algorithms

2 Associative Containers

30

map

map provides an associative array and stores key-value pairs.

Each map element is a pair (first and second data members).

For map, the keys are always const.

31

Counting words

7 string s;
8 map<string, int> counters; // (word, counter) pairs
9

10 // Read the input, keeping track of word counts
11 while (cin >> s)
12 ++counters[s];
13

14 // Write the words and associated counts
15 for (const auto& c : counters)
16 cout << c.first << "\t" << c.second << endl;

counters[s] is the integer associated with the string s.
When indexing a map with a new key, the map automatically
creates a new element with that key, and the value is
value-initialized (for int initialised to 0).

32

Cross-referencing table
10 static map<string, vector<int> >
11 xref(istream& in, vector<string> find_words(const string&) = split)
12 {
13 string line;
14 int line_number = 0;
15 map<string, vector<int> > ret;
16

17 // Read the next line
18 while (getline(in, line)) {
19 ++line_number;
20 // Break the input line into words
21 vector<string> words = find_words(line);
22 // Remember that each word occurs on the current line
23 for (const auto& w : words)
24 ret[w].push_back(line_number);
25 }
26

27 return ret;
28 }

33

Cross-referencing table (2)

map<string,␣vector<int>␣>: note the space in >␣>. A
C++98 compiler would get confused with >>, which it would
interpret as an input operator. No space needed since C++11.
find_words defines a function parameter with a default
value:

1 xref(cin); // split to find words
2 xref(cin, find_urls); // find_urls to find words

The default value must be visible by the caller
=⇒ should go in the header file for public functions.

34

Print the cross-reference table
31 // Call `xref` using `split` (default)
32 map<string, vector<int>> ret = xref(cin);
33

34 // Write the results
35 for (const auto& p : ret) {
36 // Write the word
37 cout << p.first << " occurs on line(s): ";
38 // Followed by one or more line numbers
39 auto line_it = p.second.cbegin();
40 cout << *line_it; // Write the first line number
41 // Write the rest of the line numbers, if any
42 ++line_it;
43 while (line_it != p.second.end()) {
44 cout << ", " << *line_it;
45 ++line_it;
46 }
47 // Write a new line to separate each word from the next
48 cout << endl;
49 }

35

	Library Algorithms
	Associative Containers

