
Generic functions & Custom types

Laurent Mathy

Object-Oriented Programming Projects

April 20, 2020



Outline

1 Generic functions

2 Data-structure independence

3 Defining new types

2



Generic functions

Functions whose argument/result types are unknown until use.
find can find value of any appropriate type in any container.
any appropriate type

language support: ways in which a function uses a parameter
constrains the possible parameter type. Operations used must
be supported by type.
organisational: set of operations assumed to be supported by
type (e.g. iterators).

3



Template functions
8 template<class T>
9 T median(std::vector<T> v) {

10 auto size = v.size();
11 if (size == 0)
12 throw std::domain_error("median of an empty vector");
13 sort(v.begin(), v.end());
14 auto mid = size / 2;
15 return size % 2 == 0 ? (v[mid] + v[mid - 1]) / 2 : v[mid];
16 }

Type parameter T is a name valid in the function’s scope.
Two equivalent definitions:

template<class T>
template<typename T>

T is bound to a real type based on argument type passed to
function call, at compile time.
Compiler instantiates a specific version of function for each
actual type used.

4



Template function instantiation

if vi is a variable defined to be of type vector<int>, then a
call to median(vi) binds T to int:

whenever T is used, then the compiler replaces it by int.
if you call median with a vector<double>, compiler
generates an instance of median with T bound to double.
Some compilers do template function instantiation at compile
time, others at link time.

Be ready to see compile errors at link time!
Most implementations require that template definition, not
just declaration, be available during instantiation.

Put template function body in the header file.

5



Beware of interactions between templates and type
conversions

find(s.homeworks.begin(), s.homeworks.end(), 0);
homeworks is a vector<double>, but asking to look for an
int.
This is OK as can compare int to double without issue.

accumulate(v.begin(), v.end(), 0.0);
accumulate uses type of third argument as return type.
Pass 0 instead of 0.0 and you’ll accumulate into an int.

max(4, 3.14)
1 template<class T> T max(const T& left, const T& right) {
2 return left > right ? left : right;
3 }

Can’t pass an int and a double: which one should the
compiler choose to bind to T?

6



typename

typename must be used to qualify declarations that use types that
are defined by the template type parameters. E.g.,

typename T::size_type len;
declares len to have type size_type, which must be defined
as a type inside T.
typedef typename vector<T>::size_type vec_sz;

7



Outline

1 Generic functions

2 Data-structure independence

3 Defining new types

8



Use type inference for generic code
Make template code more generic with auto and decltype.

1 template<class T> void f(T x) {
2 auto len = x.size();
3 // ...
4 }

We don’t care whether size() returns a T::size_type, a
size_t, an unsigned long, a short int, . . .

The compiler will replace decltype(expr) with the type of
expression expr. This replacement is done statically, i.e. at
compile time, and expr is not evaluated. E.g.,

1 template<class T> void f(T x) {
2 for (decltype(x.size()) i = 0; i < x.size(); ++i)
3 // ...
4 }

9



Use iterators to write generic code

Write functions independent of container where data is stored.
iterators refer to elements in a container, not to the
container itself!

Using iterators allows to specify ranges inside the container.
Algorithm implementation outside of container
implementation.
Iterators can extend container capabilities: e.g. reverse iterator.

Some containers support operations that others don’t: iterator
design will reflect this.
Not all algorithms require all iterator operations.

=⇒ iterator categories.

10



Iterator categories: input iterators

4 template<class In, class X>
5 In find(In begin, In end, const X& x) {
6 while (begin != end && *begin != x)
7 ++begin;
8 return begin;
9 }

Supports:
++ (prefix and postfix)
== and !=

unary *

->

11



Iterator categories: output iterators

4 template<class In, class Out>
5 Out copy(In begin, In end, Out dest) {
6 while (begin != end)
7 *dest++ = *begin++;
8 return dest;
9 }

Supports:
++ (prefix and postfix)
= (value assignment)
write-once

++ no more than once between assignments.
No more than one assignment without increment.
Developer’s responsibility!

back_inserter generates an output iterator.

12



Iterator categories: forward iterators

4 template<class For, class X>
5 void replace(For beg, For end, const X& x, const X& y)
6 {
7 while (beg != end) {
8 if (*beg == x)
9 *beg = y;

10 ++beg;
11 }
12 }

Supports:
++ (prefix and postfix)
== and !=

Unary * (both reading and writing)
->

13



Iterator categories: bidirectional iterators

6 template<class Bi>
7 void reverse(Bi begin, Bi end) {
8 while (begin != end) {
9 --end;

10 if (begin != end)
11 std::swap(*begin++, *end);
12 }
13 }

Supports:
Forward iterator operations.
-- (both prefix and postfix)

14



Iterator categories: random-access iterators
4 template<class Ran, class X>
5 bool binary_search(Ran begin, Ran end, const X& x) {
6 while (begin < end) {
7 // Find midpoint of range
8 Ran mid = begin + (end - begin) / 2;
9 // See which sub-range contains `x`, and adapt range

10 if (x < *mid) end = mid;
11 else if (*mid < x) begin = mid + 1;
12 else return true; // `*mid == x` so we're done
13 }
14 return false;
15 }

Supports:
Bidirectional iterator operations.
Let p, q be iterators, and n an integer:

p + n, p - n and n + p.
p - q distance between iterators as integral type.
p[n] equivalent to *(p+n).
p < q, p > q , p <= q and p >= q.

15



Input/Output stream iterators

In <iterator> header.

Input stream iterator: istream_iterator.
13 typedef typename Seq::value_type Elem;
14 copy(istream_iterator<Elem>(cin),
15 istream_iterator<Elem>(),
16 back_inserter(xs));

istream_iterator default value represents end-of-file.

Output stream iterator: ostream_iterator.
17 copy(xs.begin(), xs.end(),
18 ostream_iterator<Elem>(cout, " "));
19 cout << endl;

Second argument to ostream_operator() is separator.

16



Using iterators for flexibility

8 template<class Out> // Changed
9 void split(const std::string& str, Out os) { // Changed

10 typedef std::string::const_iterator Iter;
11

12 Iter i = str.begin();
13 while (i != str.end()) {
14 // Ignore leading blanks
15 i = std::find_if_not(i, str.end(), isspace);
16 // find end of next word
17 Iter j = std::find_if(i, str.end(), isspace);
18 // Copy characters in `[i, j)`
19 if (i != str.end())
20 *os++ = std::string(i, j); // Changed
21 i = j;
22 }
23 }

Can pass a list iterator, vector iterator, output stream iterator, etc.

17



Outline

1 Generic functions

2 Data-structure independence

3 Defining new types

18



Object-based programming

C++ has two kinds of types: built-in types and class types.

Pervasive idea in C++: let users create types that are as easy to
use as built-in types.

Starting our study of Object-based programming with C++.

19



Why Object-based programming?

Separation of interface and implementation.
Can control initialisation of objects (i.e. make sure they are
created in a consistent state).
Can enforce object properties through language features (e.g.
immutability).

20



Member functions

8 struct Student_info {
9 std::string name;

10 double midterm, final;
11 std::vector<double> homeworks;
12

13 std::istream& read(std::istream&); // New
14 double grade() const; // New
15 };

Student_info has four data members (a.k.a. fields) and
two member functions (a.k.a. methods).
const after the declaration of grade is a promise that grade
will not change any of the data members of the object.
Use of member function, given Student_info s:

s.read(cin);
s.grade();

21



Member function definition

7 istream& Student_info::read(istream& in) {
8 in >> name >> midterm >> final;
9 read_hws(in, homeworks);

10 return in;
11 }

Type declarations in header file (e.g. Student_info.hpp)
and function definitions in common source file (e.g.
Student_info.cpp).
Function name is Student_info::read instead of read.

scope operator :: defines the function read to be a member
of Student_info type.

No need to pass a Student_info object as argument: object
is implicit in call.
Function can access data member of object directly.

22



Member function definition (2)

13 double Student_info::grade() const {
14 return ::grade(midterm, final, homeworks);
15 }

grade is a const member function:
can call const function on any objects;
cannot call non-const functions on const objects.

:: in front of a name insists on using version that is not a
member of anything.

Without it, compiler would look for Student_info::grade
and complain about argument mismatch.

23



Protection
User of our Student_info type no longer have to manipulate
object internals, but they still can.

C++ supports access control through public and private
access specifiers.

1 class Student_info {
2 public:
3 // Interface
4 double grade() const;
5 std::istream& read(std::istream&);
6

7 private:
8 // Implementation
9 std::string name;

10 double midterm, final;
11 std::vector<double> homework;
12 };

24



Access specifiers

Access specifier defines accessibility for all members that
follow it (until next access specifier).
Access specifiers can occur in any order and multiple times.
Compiler enforces protection.
Difference between struct and class:

Only difference is default protection of members until first
protection label
struct: default protection is public.
class: default protection is private.

25



Student_info class

8 class Student_info {
9 public:

10 std::string name() const { return _name; }
11 bool valid() const { return !homeworks.empty(); }
12 std::istream& read(std::istream&);
13 double grade() const;
14 private:
15 std::string _name; // Changed to avoid confusion with name()
16 double midterm, final;
17 std::vector<double> homeworks;
18 };

Note that name and valid functions are defined in the header file:
this is a hint for compiler to avoid function calls by making it
inline.

26



Constructors

What is the state of a new object?

Constructors are special member functions that define how
objects are initialised.
No way to call constructors explicitly: they are called as
side-effect of object creation.
If we do not define any constructor, the compiler synthesizes
one for us.
All data members are initialized:

Objects with local scope are default-initialized.
Objects used to initialize container elements are
value-initialized.

27



Default vs value initialisation

If class has one or more constructors, the appropriate one is
called (full initialisation control);
If object is built-in type: value-initialisation sets it to zero,
default-initialisation sets it to any value (garbage);
If class has no constructor: synthetic constructor that
recursively value/default-initialise the data members.

Student_info has no constructor:
Members _name and homeworks automatically initialised as
empty string and vector (because that’s what the
corresponding default constructors for the corresponding
classes do).
midterm and final get garbage in case of
default-initialisation; 0.0 in case of value-initialisation.

28



Constructor definitions
The default constructor takes no argument.
Its job is to make sure data members are always initialised properly.

1 class Student_info {
2 public:
3 Student_info(); // Default constructor
4 Student_info(std::istream&); // Constructs object by reading stream
5 // As before ...
6 };
7
8 Student_info::Student_info(): midterm(0), final(0) {}

This default constructor uses a constructor initialisation list.
When an object is constructed:

Memory is allocated for object.
All members are initialized in the order of declaration in class
(even members not in initializer list – but if in constructor
initialisation list, then get corresponding value).
Constructor body is run (so body can change initial values).
_name and homeworks initialised by their default constructor.

29



Constructor definitions (2)

1 Student_info::Student_info(istream&is) {
2 read(is);
3 }

No explicit initializers, so _name and homeworks get
initialized to empty values by their default constructor.
midterm and final only get initialised to meaningful values if
object being value-initialised.
read then explicitly changes the values.

30



Using the Student_info class
10 // Read all the records, and find the length of the longest name
11 Student_info record;
12 vector<Student_info> students;
13 string::size_type maxlen = 0;
14 while (record.read(cin)) { // Changed
15 maxlen = max(maxlen, record.name().size()); // Changed
16 students.push_back(record);
17 }
18
19 // Alphabetize the records
20 sort(students.begin(), students.end(), compare);
21
22 auto prec = cout.precision(3);
23 for (vector<Student_info>::size_type i = 0;
24 i != students.size(); ++i) {
25 // Write the name, padded on the right
26 cout << students[i].name() // This and next line changed
27 << string(maxlen + 1 - students[i].name().size(), ' ');
28 // Compute and write the grade
29 try {
30 double final_grade = students[i].grade(); // Changed
31 cout << final_grade << endl;
32 } catch (domain_error e) {
33 cerr << e.what() << endl;
34 }
35 }
36 cout.precision(prec); // Restore precision

31


	Generic functions
	Data-structure independence
	Defining new types

