Managing Memory & Low-Level Data Structures

Laurent Mathy

Object-Oriented Programming Projects

April 20, 2020

Pointers

A pointer is a value that represents the address of an object in
memory.

If you can access an object, you can access its address, and
vice-versa.

P X

s e B

Address operator: &x is the address of x.
Do not confuse with & to define reference to types.

Dereference operator: *p is the value pointed to by p.
You can think of pointer as an iterator.

Pointers (2)

Pointers are built-in types:
m Default-initialisation: garbage.

m Value-initialisation: 0 (a.k.a. null pointer).
m O is only integer that can be converted to a pointer.
m Only pointer value guaranteed to be distinct from a pointer to
any object.
Type of address of object of type T is T* (pointer to T). E.g.
m int *p; // *p has type int
*p is a declarator: part of the definition of a single variable.

m int* p; // p has type int*
Identical to previous declaration.

m intx p, q; // What does this declare?

Pointers (2)

Pointers are built-in types:
m Default-initialisation: garbage.

m Value-initialisation: 0 (a.k.a. null pointer).
m O is only integer that can be converted to a pointer.
m Only pointer value guaranteed to be distinct from a pointer to
any object.
Type of address of object of type T is T* (pointer to T). E.g.
m int *p; // *p has type int
*p is a declarator: part of the definition of a single variable.
m int* p; // p has type int*
Identical to previous declaration.

m intx p, q; // What does this declare?
pis int *, but q is int = avoid multiple declarations.

C++11 nullptr
In C4++11, nullptr replaces O (and NULL) for null pointers.

Avoids confusion with int. E.g.

1 void f(int i) { cout << "i = " << i << endl };
3 void f(char *s) { cout << "s = " << s << endl };

5 void difficult_choice() {

6 // Should I call f(int), or f(char *)?
7 £(0); // Compiler error, ambiguous
8 f(NULL); // Idem

o }

10

11 void trivial_choice() {

12 // Calling f(char *) confidently

13 f (nullptr);

Pointers: simple example

int main() {

5
6 int x = 5;
7
8 // "p° is a pointer to ‘z°, holds the address of 'z’
9 int *p = &x;
10 cout << "x = " << x << endl;
11
12 // Change the wvalue of ‘x° through 'p°
13 *p = 6;
14 cout << "x = " << x << endl;
15
16 return 0;
17}
Output will be:
x =5

X =6

Pointers to functions

A program can only do two things with a function:
m call it;

m take its address.

But we passed functions as argument to other functions. . .

Pointers to functions

A program can only do two things with a function:
m call it;
m take its address.

But we passed functions as argument to other functions. . .
In this case, the compiler quietly passed a function pointer
instead of the function itself.

Once you have dereferenced a pointer to a function, all you can do
with the resulting function is:

m call it;

m take its address, again.

Pointers to functions (2)

int (*fp) (int);

When £fp is dereferenced, you get a function that takes an int as
argument and returns an int.

Because all you can do with a function is either call it or take its
address:

m any use that is not a call, is assumed to be taking the address,
even without an explicit &;

m you can call a function via a pointer without dereferencing the
pointer.

Pointers to functions: example

3 static int next(int n) {

4 return n + 1;

5}

6

7 int main() {

8 int i = 0;

9 int (*fp) (int);

10

11 // These two statements are equivalent
12 fp = &next;

13 fp = mnext;

14

15 // And these two are equivalent too
16 i = (xfp)(1);

17 i = fp(i);

18

19 assert(i == 2);

20

21 return 0O;

22 }

Simplified notation for functions as parameters

1 // C notation
2 vector<int> map_c(int (*f)(int),
3 const vector<int>& xs);

s // C++ notation
¢ vector<int> map_cpp(int f(int),
7 const vector<int>& xs);

In C++, the same notation used for declaring a function can be
used in a parameter type.

Built-in arrays

m Built-in arrays are a kind of container, but part of the core
language (not to be confused with similar std: :array
introduced by C++11).

m Contains objects all of the same type.

m Array size must be known at compile time (no growing or
shrinking).

m They have no member.

m size_t (in <cstddef>) is type to represent size of array.

m The name of an array represents a pointer to first element
of the array.

Example definition:

1 const size_t N_DIMS = 10;
2 double coords[N_DIMS];

Constant expressions for array size

10
11

13
14
15
16
17
18
19
20

Built-in array size must be known at compile time.

C++98: const + macros

#define IMAGE_SIZE(width, height, n_channels, depth) \
(width * height * n_channels \
* ((depth % 8 == 0) ? (depth / 8) : (depth / 8 + 1)))

static uint8_t a98[IMAGE_SIZE(1980, 720, 3, 8)];

C++11: constexpr

constexpr size_t image_size(size_t width, size_t height,
size_t n_channels, size_t depth) {
size_t bytes_per_pixel =
(depth % 8 == 0) ? (depth / 8) : (depth / 8 + 1);
return width * height * n_channels * bytes_per_pixel;

}

static uint8_t all[image_size(1980, 720, 3, 8)];

11

Pointer arithmetic and arrays

A pointer is a random-access iterator.

m If p points to the m'" element of an array then

E p + n points to the (m+n)'" element of the array.

®m p - n points to the (m-n)™ element of the array.
Pointers inside or one-past the end of an array are valid, but
one-past the end pointer can be used only for comparison.

All bets are off if you dereference a pointer not pointing into
the array.
If p and q are pointers to elements of same array, p - q is
integer distance between these elements:
= (p-q *q==p
m p - qis signed integer of type ptrdiff_t
(defined in <cstddef>).

Indexing, initialization and string literals

p[nl is equivalent to *(p + n).

1 const int month_lengths[] = {

2 31, 28, 31, 30, 31, 30,
3 31, 31, 30, 31, 30, 31
1}

String literals are anonymous, null-terminated ('\0')), arrays of
const chars.

See <cstring> for functions to manipulate null-terminated char
arrays.

Example: find if implementation

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

template<class In, class Pred>
In find_if(In begin, In end, Pred f) { // Note "f° type
while (begin !'= end && !f(*begin)) // Note "f° call
++begin;
return begin;

}
static bool is_two(int i) { return i == 2; }
int main() {

int all = {1, 2, 3 };
// "a° is pointer to first element, i.e. &a[0]

assert(find_if(a, &a[3], is_two) == &al[1]);
assert(find_if (begin(a), end(a), is_two) == &alll);
return O;

}

begin and end are defined in <iterator>. They return iterators
to the beginning and end of a container.

Arguments to main

Same as in C:

5 int main(int argc, char* argv[]) {

6 for (int i = 1; i < argc; ++i) {

7 cout << "Arg " << i << ": "

8 << argvlil // “argul[i] is a “char *°
9 << endl;

10 }

11 return O;

12}

m argv[0] is program name.

Files

Standard error:
m cerr unbuffered error stream.
m clog buffered error stream.
<fstream>
m ifstream class to represent input files.
m ofstream class to represent output file.
m Can use ifstream where istream would be used.
m Can use ofstream where ostream would be used.

m fstream constructors take pointer to null-terminated char
array as file name
—> use c_str() member of string to use it.
Since C++11, you can use a std: :string directly.

File example: cp

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

ifstream in("in"); // "in" has type const char *
if ('in) {
cerr << "Could not open file 'in' for reading!"
<< endl;
return 1;
}
ofstream out("out");
if (lout) {
cerr << "Could not open file 'out' for writing!"
<< endl;
return 1;
}
string s;

while (getline(in, s))
out << s << endl;

return O;

17

File example: cat

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

int main(int argc, char *argv[]) {
int fail_count = 0;
// For each file in the input list
for (int i = 1; i < argc; ++i) {
ifstream in(argv[il);
// If it exists, write its contents.
// Otherwise generate an error message.
if (in) {
string s;
while (getline(in, s))
cout << s << endl;
} else {
cerr << "Cannot open file " << argv[i] << endl;
++fail_count;

3

return fail_ count;

18

Memory management: automatic and static

Local variables are allocated when encountered.
Destroyed at end of block where defined.

1 int* invalid_pointer() {

2 int x;
3 return &x; // Don't do this at home!
4}

Static variables are created on first use (or before) and live until
the end of the program.

1 int* pointer_to_static() {
2 static int x;
3 return &x; // This is (somewhat) fine

Memory management: dynamic

N O A W N

If T is object type, new T allocates a default-initialized object and
returns pointer to it.

new T(val) initializes the object to value val.

Objects so created lives until:
m end of program;

m delete p where p is pointer to object created by new:

m p becomes invalid pointer;
m deleting 0 has no effect;
m deleting p twice is disastrous!

int* p = new int(42);
++%p; // *p is 43
delete p; // RIP p

int* pointer_to_dynamic() {
return new int(0); // Caller is now responsible for cleanup

}

20

Memory management: arrays
new T[n] array of n default-initialised elements.
delete[] p deallocates a dynamic array.

Arrays with zero elements are permitted — simplifies code

m in this case new returns valid off-the-end pointer.

1 // Works fine even if n is zero

2 T* p = new T[n];

3 vector<T> v(p, p + n);

4 delete[] p;

1 char* duplicate_chars(const charx p) {

2 size_t length = strlen(p) + 1; // “strlen” does not count '\0'
3 char* result = new char[length];

4 copy(p, p + length, result);

5 return result;

6

21

Avoid new and delete in modern C++

Ownership is not explicit which is very error-prone.

1 char* get_a_pointer();

3 char*x p = get_a_pointer();

Should | delete p? Should | copy its value?

What to do then?

22

Avoid new and delete in modern C++

Ownership is not explicit which is very error-prone.

1 char* get_a_pointer();

3 char*x p = get_a_pointer();

Should | delete p? Should | copy its value?

What to do then?
m Hide new and delete in proxy classes:

m A vector is only 24 bytes on my machine.

m Can be copied easily.

m Will keep track of backing buffer, and free it when vector goes
out of scope.

m Requires overriding assignment and copy constructors (TBD).

22

Avoid new and delete in modern C++

Ownership is not explicit which is very error-prone.

1 char* get_a_pointer();

3 char*x p = get_a_pointer();

Should | delete p? Should | copy its value?

What to do then?
m Hide new and delete in proxy classes:
m A vector is only 24 bytes on my machine.
m Can be copied easily.
m Will keep track of backing buffer, and free it when vector goes
out of scope.
m Requires overriding assignment and copy constructors (TBD).

m Or better: use C++11 smart pointers.

22

unique_ptr for exclusive ownership

© 0 N O e W N

T
= o

It represents exclusive ownership.
Very light-weight wrapper, no performance cost.
Used like a regular pointer.

Defined in <memory>.

Don't use auto_ptr, which has problems and is deprecated.

unique_ptr<int> pl(new int(42));

unique_ptr<int> p2 = pl; // Error: cannot copy unique pointer
unique_ptr<int> p3 = move(pl);

// pl is now nullptr, and should not be used anymore

// Memory will be released when p3 goes out of scope

// Safer and cleaner alternative with C++1
auto p = make_unique<int>(42);

unique_ptr<char> get_a_pointer();
// Caller becomes owner, and compiler will delete automatically

23

share_ptr allows shared ownership

m It uses reference counting to know when to delete the
pointed-to object.

m Always use make_shared to create shared pointers (also in
C++11).

® You can use weak_ptr to break cycles. A weak_ptr keeps a
reference to the object, but won’t prevent deletion.

m When using a weak_ptr, call lock() to transform it into a
share_ptr (avoid premature deletion).

Modern C++ avoids new/delete

The smart pointers can replace most, if not all use cases for
explicit new and delete.

24

