
Managing Memory & Low-Level Data Structures

Laurent Mathy

Object-Oriented Programming Projects

April 20, 2020

Pointers

A pointer is a value that represents the address of an object in
memory.

If you can access an object, you can access its address, and
vice-versa.

Address operator: &x is the address of x.
Do not confuse with & to define reference to types.

Dereference operator: *p is the value pointed to by p.
You can think of pointer as an iterator.

2

Pointers (2)

Pointers are built-in types:
Default-initialisation: garbage.
Value-initialisation: 0 (a.k.a. null pointer).

0 is only integer that can be converted to a pointer.
Only pointer value guaranteed to be distinct from a pointer to
any object.

Type of address of object of type T is T* (pointer to T). E.g.
int *p; // *p has type int
*p is a declarator: part of the definition of a single variable.
int* p; // p has type int*
Identical to previous declaration.
int* p, q; // What does this declare?

p is int *, but q is int =⇒ avoid multiple declarations.

3

Pointers (2)

Pointers are built-in types:
Default-initialisation: garbage.
Value-initialisation: 0 (a.k.a. null pointer).

0 is only integer that can be converted to a pointer.
Only pointer value guaranteed to be distinct from a pointer to
any object.

Type of address of object of type T is T* (pointer to T). E.g.
int *p; // *p has type int
*p is a declarator: part of the definition of a single variable.
int* p; // p has type int*
Identical to previous declaration.
int* p, q; // What does this declare?
p is int *, but q is int =⇒ avoid multiple declarations.

3

C++11 nullptr
In C++11, nullptr replaces 0 (and NULL) for null pointers.
Avoids confusion with int. E.g.

1 void f(int i) { cout << "i = " << i << endl };
2

3 void f(char *s) { cout << "s = " << s << endl };
4

5 void difficult_choice() {
6 // Should I call f(int), or f(char *)?
7 f(0); // Compiler error, ambiguous
8 f(NULL); // Idem
9 }

10

11 void trivial_choice() {
12 // Calling f(char *) confidently
13 f(nullptr);
14 }

4

Pointers: simple example

5 int main() {
6 int x = 5;
7

8 // `p` is a pointer to `x`, holds the address of `x`
9 int *p = &x;

10 cout << "x = " << x << endl;
11

12 // Change the value of `x` through `p`
13 *p = 6;
14 cout << "x = " << x << endl;
15

16 return 0;
17 }

Output will be:
x = 5
x = 6

5

Pointers to functions

A program can only do two things with a function:
call it;
take its address.

But we passed functions as argument to other functions. . .

In this case, the compiler quietly passed a function pointer
instead of the function itself.

Once you have dereferenced a pointer to a function, all you can do
with the resulting function is:

call it;
take its address, again.

6

Pointers to functions

A program can only do two things with a function:
call it;
take its address.

But we passed functions as argument to other functions. . .
In this case, the compiler quietly passed a function pointer
instead of the function itself.

Once you have dereferenced a pointer to a function, all you can do
with the resulting function is:

call it;
take its address, again.

6

Pointers to functions (2)

int (*fp)(int);

When fp is dereferenced, you get a function that takes an int as
argument and returns an int.

Because all you can do with a function is either call it or take its
address:

any use that is not a call, is assumed to be taking the address,
even without an explicit &;
you can call a function via a pointer without dereferencing the
pointer.

7

Pointers to functions: example
3 static int next(int n) {
4 return n + 1;
5 }
6

7 int main() {
8 int i = 0;
9 int (*fp)(int);

10

11 // These two statements are equivalent
12 fp = &next;
13 fp = next;
14

15 // And these two are equivalent too
16 i = (*fp)(i);
17 i = fp(i);
18

19 assert(i == 2);
20

21 return 0;
22 }

8

Simplified notation for functions as parameters

1 // C notation
2 vector<int> map_c(int (*f)(int),
3 const vector<int>& xs);
4

5 // C++ notation
6 vector<int> map_cpp(int f(int),
7 const vector<int>& xs);

In C++, the same notation used for declaring a function can be
used in a parameter type.

9

Built-in arrays

Built-in arrays are a kind of container, but part of the core
language (not to be confused with similar std::array
introduced by C++11).
Contains objects all of the same type.
Array size must be known at compile time (no growing or
shrinking).
They have no member.
size_t (in <cstddef>) is type to represent size of array.
The name of an array represents a pointer to first element
of the array.

Example definition:

1 const size_t N_DIMS = 10;
2 double coords[N_DIMS];

10

Constant expressions for array size
Built-in array size must be known at compile time.

C++98: const + macros
7 #define IMAGE_SIZE(width, height, n_channels, depth) \
8 (width * height * n_channels \
9 * ((depth % 8 == 0) ? (depth / 8) : (depth / 8 + 1)))

10

11 static uint8_t a98[IMAGE_SIZE(1980, 720, 3, 8)];

C++11: constexpr
13 constexpr size_t image_size(size_t width, size_t height,
14 size_t n_channels, size_t depth) {
15 size_t bytes_per_pixel =
16 (depth % 8 == 0) ? (depth / 8) : (depth / 8 + 1);
17 return width * height * n_channels * bytes_per_pixel;
18 }
19

20 static uint8_t a11[image_size(1980, 720, 3, 8)];

11

Pointer arithmetic and arrays

A pointer is a random-access iterator.
If p points to the mth element of an array then

p + n points to the (m+n)th element of the array.
p - n points to the (m-n)th element of the array.

Pointers inside or one-past the end of an array are valid, but
one-past the end pointer can be used only for comparison.
All bets are off if you dereference a pointer not pointing into
the array.
If p and q are pointers to elements of same array, p - q is
integer distance between these elements:

(p - q) + q == p.
p - q is signed integer of type ptrdiff_t
(defined in <cstddef>).

12

Indexing, initialization and string literals

p[n] is equivalent to *(p + n).

1 const int month_lengths[] = {
2 31, 28, 31, 30, 31, 30,
3 31, 31, 30, 31, 30, 31
4 };

String literals are anonymous, null-terminated ('\0')), arrays of
const chars.

See <cstring> for functions to manipulate null-terminated char
arrays.

13

Example: find_if implementation
7 template<class In, class Pred>
8 In find_if(In begin, In end, Pred f) { // Note `f` type
9 while (begin != end && !f(*begin)) // Note `f` call

10 ++begin;
11 return begin;
12 }
13

14 static bool is_two(int i) { return i == 2; }
15

16 int main() {
17 int a[] = { 1, 2, 3 };
18 // `a` is pointer to first element, i.e. &a[0]
19 assert(find_if(a, &a[3], is_two) == &a[1]);
20 assert(find_if(begin(a), end(a), is_two) == &a[1]);
21 return 0;
22 }

begin and end are defined in <iterator>. They return iterators
to the beginning and end of a container.

14

Arguments to main

Same as in C:

5 int main(int argc, char* argv[]) {
6 for (int i = 1; i < argc; ++i) {
7 cout << "Arg " << i << ": "
8 << argv[i] // `argv[i]` is a `char *`
9 << endl;

10 }
11 return 0;
12 }

argv[0] is program name.

15

Files

Standard error:
cerr unbuffered error stream.
clog buffered error stream.

<fstream>
ifstream class to represent input files.
ofstream class to represent output file.
Can use ifstream where istream would be used.
Can use ofstream where ostream would be used.
fstream constructors take pointer to null-terminated char
array as file name
=⇒ use c_str() member of string to use it.
Since C++11, you can use a std::string directly.

16

File example: cp
8 ifstream in("in"); // "in" has type const char *
9 if (!in) {

10 cerr << "Could not open file 'in' for reading!"
11 << endl;
12 return 1;
13 }
14

15 ofstream out("out");
16 if (!out) {
17 cerr << "Could not open file 'out' for writing!"
18 << endl;
19 return 1;
20 }
21

22 string s;
23 while (getline(in, s))
24 out << s << endl;
25

26 return 0;

17

File example: cat
12 int main(int argc, char *argv[]) {
13 int fail_count = 0;
14 // For each file in the input list
15 for (int i = 1; i < argc; ++i) {
16 ifstream in(argv[i]);
17 // If it exists, write its contents.
18 // Otherwise generate an error message.
19 if (in) {
20 string s;
21 while (getline(in, s))
22 cout << s << endl;
23 } else {
24 cerr << "Cannot open file " << argv[i] << endl;
25 ++fail_count;
26 }
27 }
28 return fail_count;
29 }

18

Memory management: automatic and static

Local variables are allocated when encountered.
Destroyed at end of block where defined.

1 int* invalid_pointer() {
2 int x;
3 return &x; // Don't do this at home!
4 }

Static variables are created on first use (or before) and live until
the end of the program.

1 int* pointer_to_static() {
2 static int x;
3 return &x; // This is (somewhat) fine
4 }

19

Memory management: dynamic
If T is object type, new T allocates a default-initialized object and
returns pointer to it.

new T(val) initializes the object to value val.

Objects so created lives until:
end of program;
delete p where p is pointer to object created by new:

p becomes invalid pointer;
deleting 0 has no effect;
deleting p twice is disastrous!

1 int* p = new int(42);
2 ++*p; // *p is 43
3 delete p; // RIP p
4

5 int* pointer_to_dynamic() {
6 return new int(0); // Caller is now responsible for cleanup
7 }

20

Memory management: arrays
new T[n] array of n default-initialised elements.

delete[] p deallocates a dynamic array.

Arrays with zero elements are permitted – simplifies code
in this case new returns valid off-the-end pointer.

1 // Works fine even if n is zero
2 T* p = new T[n];
3 vector<T> v(p, p + n);
4 delete[] p;

1 char* duplicate_chars(const char* p) {
2 size_t length = strlen(p) + 1; // `strlen` does not count '\0'
3 char* result = new char[length];
4 copy(p, p + length, result);
5 return result;
6 }

21

Avoid new and delete in modern C++

Ownership is not explicit which is very error-prone.

1 char* get_a_pointer();
2

3 char* p = get_a_pointer();

Should I delete p? Should I copy its value?

What to do then?

Hide new and delete in proxy classes:
A vector is only 24 bytes on my machine.
Can be copied easily.
Will keep track of backing buffer, and free it when vector goes
out of scope.
Requires overriding assignment and copy constructors (TBD).

Or better: use C++11 smart pointers.

22

Avoid new and delete in modern C++

Ownership is not explicit which is very error-prone.

1 char* get_a_pointer();
2

3 char* p = get_a_pointer();

Should I delete p? Should I copy its value?

What to do then?
Hide new and delete in proxy classes:

A vector is only 24 bytes on my machine.
Can be copied easily.
Will keep track of backing buffer, and free it when vector goes
out of scope.
Requires overriding assignment and copy constructors (TBD).

Or better: use C++11 smart pointers.

22

Avoid new and delete in modern C++

Ownership is not explicit which is very error-prone.

1 char* get_a_pointer();
2

3 char* p = get_a_pointer();

Should I delete p? Should I copy its value?

What to do then?
Hide new and delete in proxy classes:

A vector is only 24 bytes on my machine.
Can be copied easily.
Will keep track of backing buffer, and free it when vector goes
out of scope.
Requires overriding assignment and copy constructors (TBD).

Or better: use C++11 smart pointers.

22

unique_ptr for exclusive ownership
It represents exclusive ownership.
Very light-weight wrapper, no performance cost.
Used like a regular pointer.
Defined in <memory>.
Don’t use auto_ptr, which has problems and is deprecated.

1 unique_ptr<int> p1(new int(42));
2 unique_ptr<int> p2 = p1; // Error: cannot copy unique pointer
3 unique_ptr<int> p3 = move(p1);
4 // p1 is now nullptr, and should not be used anymore
5 // Memory will be released when p3 goes out of scope
6

7 // Safer and cleaner alternative with C++14
8 auto p = make_unique<int>(42);
9

10 unique_ptr<char> get_a_pointer();
11 // Caller becomes owner, and compiler will delete automatically

23

share_ptr allows shared ownership

It uses reference counting to know when to delete the
pointed-to object.
Always use make_shared to create shared pointers (also in
C++11).
You can use weak_ptr to break cycles. A weak_ptr keeps a
reference to the object, but won’t prevent deletion.
When using a weak_ptr, call lock() to transform it into a
share_ptr (avoid premature deletion).

Modern C++ avoids new/delete
The smart pointers can replace most, if not all use cases for
explicit new and delete.

24

