
Objects Acting Like Values

Laurent Mathy

Object-Oriented Programming Projects

April 20, 2020



Doing more with our objects

So far we can create, destroy, copy and assign our objects.

Most built-in types support more operations:

Rich set of operators (+, *, -=, etc.)
Conversions between types (e.g. int to double)

2



Simple string class
7 class Str {
8 public:
9 typedef std::vector<char>::size_type size_type;

10

11 Str() { }
12

13 Str(size_type n, char c): data(n, c) { }
14

15 Str(const char* cp) {
16 std::copy(cp, cp + std::strlen(cp),
17 std::back_inserter(data));
18 }
19

20 template<class In> Str(In i, In j) {
21 std::copy(i, j, std::back_inserter(data));
22 }
23

24 private:
25 std::vector<char> data;
26 }; 3



Str constructors

Default constructor implicitly invokes default vector
constructor:

Must be explicitly defined. (Why?)
Does exactly what the synthesised default would do.

Constructor that takes a size and a character uses
corresponding vector constructor as initialiser.
Two other constructors do not have initialisers:

data is first implicitly initialised as empty vector.
Both then append to data.
Last constructor is a template so it defines a family of
constructors. E.g. it can construct a Str from an array of
char, from a vector<char>, from a substring, etc.

4



Copy, assignment and destructor

Our class does not define any copy constructor, assignment
operator or destructor.

Why?

Because the defaults work!

The Str class itself does no memory management.

The synthesised operations will call corresponding vector
operations: that’s exactly what we want!

Bottom line: Str does not need a destructor – it would have
nothing to do.

If you don’t need a destructor, you don’t need explicit copy
constructor or assignment operator (rule of three).

5



Copy, assignment and destructor

Our class does not define any copy constructor, assignment
operator or destructor.

Why?

Because the defaults work!

The Str class itself does no memory management.

The synthesised operations will call corresponding vector
operations: that’s exactly what we want!

Bottom line: Str does not need a destructor – it would have
nothing to do.

If you don’t need a destructor, you don’t need explicit copy
constructor or assignment operator (rule of three).

5



Automatic conversions

1 Str s = "hello"; // Initialise s

Requires the copy constructor that takes a const Str& as
argument.

1 s = "bye"; // Assign a new value to s

Requires the assignment operator that takes a const Str& as
argument.

But both statements specify a const char*, not the expected
const Str&!

6



Automatic conversions

1 Str s = "hello"; // Initialise s

Requires the copy constructor that takes a const Str& as
argument.

1 s = "bye"; // Assign a new value to s

Requires the assignment operator that takes a const Str& as
argument.

But both statements specify a const char*, not the expected
const Str&!

6



Automatic conversions (2)

We already have a constructor that takes a const char* to create
a Str.

Constructors that take a single argument acts as user-defined
conversion.

The compiler will use this constructor to convert a
const char* into a Str.
The compiler uses the Str(const char*) constructor to
create a temporary of type Str, than calls the appropriate
(synthesized) operation to copy/assign this temporary.

7



Str operations

We want to be able to write things like:

1 s[i]
2 cin >> s
3 cout << s
4 s1 + s2

Indexing is easy: just add two member functions overloading the
index operator:

27 char& operator[](size_type i) { return data[i]; }
28 const char& operator[](size_type i) const {
29 return data[i];
30 }

8



Input-output operators

Input operator will change the state of the object, so it appears it
should be a member function.

But . . .

cin >> s;

is equivalent to
cin.operator>>(s);

which calls the overloaded >> operator for the object cin.

But we do not own the definition of istream class, so we cannot
add this overloaded operator!

9



Input-output operators

Input operator will change the state of the object, so it appears it
should be a member function.

But . . .
cin >> s;

is equivalent to
cin.operator>>(s);

which calls the overloaded >> operator for the object cin.

But we do not own the definition of istream class, so we cannot
add this overloaded operator!

9



Input-output operators (2)

But if we make operator>> a member of Str, then our users can
only write

s >> cin;

which is equivalent to
s.operator>>(cin);

But that’s not what we want!

So the input-output operators must be non-members. Add the
following to Str.hpp.

46 std::istream& operator>>(std::istream&, Str&);
47 std::ostream& operator<<(std::ostream&, const Str&);

10



Output operator

7 ostream& operator<<(ostream& os, const Str& s) {
8 for (Str::size_type i = 0; i != s.size(); ++i)
9 os << s[i];

10 return os;
11 }

Each time through the loop:
Invoke Str::operator[] to fetch a character.
Invoke the STL-provided operator<< that takes an ostream
and a char.

11



Input operator
13 istream& operator>>(istream& is, Str& s) {
14 // Obliterate existing value(s)
15 s.data.clear();
16 // Read and discard leading blanks
17 char c;
18 while (is.get(c) && isspace(c))
19 ; // Nothing to do, except testing the condition
20

21 // If we read a non-blank char, continue to read
22 // until next whitespace character
23 if (is) {
24 do { s.data.push_back(c); }
25 while (is.get(c) && !isspace(c));
26 // If we read a blank, put it back on the stream
27 if (is)
28 is.unget();
29 }
30 return is;
31 }

12



Input operator

This is all well, but the code on previous slide will not compile!

Why?

13



Input operator (2)
Previous code will not compile, because operator>> is not a
member function, yet it tries to access private data member
directly!

But it needs to do so, and we do not want our users to have direct
access to our private members through the interface!

Solution: make ther operator>> a friend of the Str class:
1 class Str {
2 friend std::istream& operator>>(std::istream&, Str&);
3 // As before
4 };

Friends can access private members of the class.
friend declaration can appear anywhere in the class definition;
but usually put near the public interface.

14



Other binary operators
Concatenation: + does not change the state of the concatenated
object, so can be a non-member.
But compound concatenation += does change its left-hand side
operand, so should be a member function:

34 Str& operator+=(const Str& s) {
35 std::copy(s.data.begin(), s.data.end(),
36 std::back_inserter(data));
37 return *this;
38 }

And then implement + using +=:

33 Str operator+(const Str& lhs, const Str& rhs) {
34 Str res = lhs; // Copy constructor
35 res += rhs; // res.operator+=(rhs)
36 return res; // Copy constructor*
37 }

15



Mixed-type expressions
Str greeting = "Hello, " + name + "!";

is equivalent to:
Str greeting = ("Hello, " + name) + "!";

Compiler will invoke conversion constructor on const char* and
use Str operator+.

So the code is in fact equivalent to:

1 Str temp1("Hello, ");
2 Str temp2 = temp1 + name;
3 Str temp3("!");
4 Str greeting = temp2 + temp3;

In practice, to avoid cost of temps, one can define specific versions
of operators (here concatenation) for every combination of
operands (and not rely on automatic conversions).

16



Designing binary operators

Class membership is very important for conversions.
If an operator is member of class, then left-hand operands
cannot result from conversion – must be of class type.

Compiler only looks for non-member operators and for the
corresponding class one.

If operator is class member, then the operator is
asymmetrical:

as right operand can be converted, but left-hand operand
cannot;
Better to keep symmetry by making operator a non-member
function.

17



Conversion hazards

If a constructor defines the structure of the object
constructed, not its content, the constructor should be
explicit.
If the constructor defines the content of the object, then it
should not be explicit.
Example:

1 vector<string> p = frame(42);

We get a vector with 42 empty rows. It is likely the user
expected a framed number 42!

This single argument constructor is a structural constructor,
so turn off automatic conversion by using explicit (as we
did in lecture 6).

18



Conversion operators
We saw that some constructors allows conversion to the class type.
Conversion operators define conversion from the class type.
Conversion operators must be class members and their name is
operator followed by the target type name:

1 class Student_info {
2 public:
3 operator double() const;
4 // ...
5 };

would be used whenever a Student_info object is used where a
double is expected.

1 vector<Student_info> students;
2 // Fill in students
3 double d = 0;
4 for (auto& student : students)
5 d += student; // student implicitly converted to double
6 cout << "Average grade: " << d / students.size() << endl;

19



Conversion operators (2)
istream uses conversion operators to support expressions such as:

1 cin >> x;
2 if (cin) { /* ... */ }

There is a conversion operator from istream to void*:
Returns either nullptr or implementation-defined non-zero
void*.
void* is universal pointer, but can’t be dereferenced.
void* can be converted to a bool.

Why not support a direct conversion from istream to bool?

Suppose one writes the following erroneous code:

1 int x;
2 cin << x; // Should have written cin >> x;

cin would get converted to a bool, then an int, then shifted left
by x bits, then result discarded!
On the other hand, void* cannot be converted to arithmetic value.

20



Conversion operators (2)
istream uses conversion operators to support expressions such as:

1 cin >> x;
2 if (cin) { /* ... */ }

There is a conversion operator from istream to void*:
Returns either nullptr or implementation-defined non-zero
void*.
void* is universal pointer, but can’t be dereferenced.
void* can be converted to a bool.

Why not support a direct conversion from istream to bool?
Suppose one writes the following erroneous code:

1 int x;
2 cin << x; // Should have written cin >> x;

cin would get converted to a bool, then an int, then shifted left
by x bits, then result discarded!
On the other hand, void* cannot be converted to arithmetic value.

20



Conversion and memory management
Should Str support direct conversion to null-terminated array of
characters?

1 operator char*();
2 operator const char*() const;

It turns out this is not a good idea:
Can’t return pointer to internal data: would violate
encapsulation/protection.
Even returning a const pointer does not work: object could
be destroyed while pointer still alive.
If we make a copy and return a pointer: implicit conversion
creates copies, but never gives the user the corresponding
pointer, so we can never reclaim the space!

1 Str s;
2 ifstream is(s); // Implicit conversion -- how can we free?

21



Conversion and memory management (2)
Solutions: use explicit member functions!

Example from STL (string):
c_str() copies content of string into null-terminated char
array:

The string class owns the array.
User expected not to delete it.
Data in array is ephemeral:

Only valid until next call to member function that might
change the string.
Users expected to either use pointer immediately or copy
content to user managed storage.

data() same as c_str() but not null-terminated.
copy takes a char* and an int: copies as many characters as
indicated by int into space pointed to by char*.

Note that c_str() and data() can still point into destroyed
object, but reduced risk as calls are explicit.

Use smart pointers to explicitly give ownership back to caller.
22


