
Inheritance and Dynamic Binding

Laurent Mathy

Object-Oriented Programming Projects

April 20, 2020

Extending our student problem

This time, we will assume students can take the course for
both undergraduate and graduate credits.
The grad students must do extra work: they write a thesis
(report).
We’d like our previous solution to the grading problem to
continue to work.

2

Inheritance

The record for graduate credit is the same as for
undergraduate credit, except for additional properties related
to the thesis.
When you can think of a class as being like another class but
for some extensions, you have a natural place for inheritance.
In fact, inheritance can also be used for expressing exceptions
(see your OO design classes).
We will design 2 classes: one to represent undergrads (Core),
and one to represent grads (called Grad).
We’ll use Student_info to represent any kind of students.

3

Core class
Core is similar to Student_info from previous lecture.

We add a private utility function to read the portion of student
record that all students have in common.

1 class Core {
2 public:
3 Core();
4 Core(std::istream& is);
5 std::string name() const;
6 std::istream& read(std::istream&);
7 double grade() const;
8 private:
9 std::istream& read_common(std::istream&);

10 std::string n;
11 double midterm, final;
12 std::vector<double> homework;
13 };

4

Grad class
1 class Grad: public Core {
2 public:
3 Grad();
4 Grad(std::istream&);
5 double grade() const;
6 std::istream& read(std::istream&);
7 private:
8 double thesis;
9 };

Grad inherits from Core, or Core is a base class of Grad.
public in public Core means that the Core public interface
is part of the Grad public interface.

public members of Core are also public members of Grad.
e.g. can call name() member function on a Grad.

Grad objects will have 5 data members:
4 inherited from Core + thesis.

Grad will have 2 constructors and 4 member functions:
inherited name() and read_common();
overridden grade() and read(). 5

Protection revisited
Right now, all four data members and read_common in Core
are inaccessible to member functions of Grad:

private members of a class are only accessible to the class
itself, and its friends.

Use protected label to grant access to derived classes:
protected members are still accessible by the class itself and
its friends, but also by derived classes.

1 class Core {
2 public:
3 Core();
4 Core(std::istream& is);
5 std::string name() const;
6 std::istream& read(std::istream&);
7 double grade() const;
8 protected: // Accessible to derived classes
9 std::istream& read_common(std::istream&);

10 std::string _name;
11 double midterm, final;
12 std::vector<double> homeworks;
13 };

6

Operations: Core
12 string Core::name() const { return _name; }
13

14 double Core::grade() const {
15 return ::grade(midterm, final, homeworks);
16 }
17

18 istream& Core::read_common(istream& in) {
19 // Read and store student's name and exam grades
20 in >> _name >> midterm >> final;
21 return in;
22 }
23

24 istream& Core::read(istream& in) {
25 read_common(in);
26 read_hws(in, homeworks);
27 return in;
28 }

7

Operations: Grad

11 istream& Grad::read(istream& in) {
12 read_common(in);
13 in >> thesis;
14 read_hws(in, homeworks);
15 return in;
16 }
17

18 double Grad::grade() const {
19 return std::min(Core::grade(), thesis);
20 }

You must write Core::grade(), otherwise you get a
recursive call to Grad::grade().
You could write Core::read_common and Core::homework,
although these are members of Grad.

8

Inheritance and Constructors

Construction of derived objects:
1 Allocation of space for entire object.
2 Calling base-class constructor to initialise base-class part.
3 Initialisation of members of derived-class (via constructor

initialisers).
4 Execution of derived-class constructor body, if any.

Use the constructor initialiser to specify the base-class constructor
you want.

Initialiser names its base-class followed by a (possibly empty) list of
arguments.

If no base-class constructor specified, then the default base-class
constructor is run.

9

Constructors

1 class Core {
2 public:
3 // Default constructor for Core
4 Core(): midterm(0), final(0) { }
5 Core(std::istream& is) { read(is); }
6 // ...
7 };
8

9 class Grad: public Core {
10 public:
11 // Both constructors implicitly use Core::Core()
12 Grad(): thesis(0) { }
13 Grad(std::istream& is) { read(is); }
14 //...
15 };

Note that there is no requirement that the derived-class constructor
take the same arguments as the base-class constructors.

10

Polymorphism
We had a non-member compare function used by sort to sort
student records by name:

35 bool compare(const Core& c1, const Core& c2) {
36 return c1.name() < c2.name();
37 }

We can use this code to compare two Core objects, two Grad
objects, or even a Core and a Grad.

22 Grad g1(in);
23 Grad g2(in);
24

25 Core c1(in);
26 Core c2(in);
27

28 compare(g1, g2);
29 compare(c1, c2);
30 compare(c1, g1);

The reason why this works is because every Grad has a Core part.
11

Polymorphism (2)

Because Grad inherits from Core, you can use a Grad where a
Core is expected.

A reference parameter to a Core will refer to the Core portion
of a Grad.
A pointer parameter to a Core will point to the Core portion
of a Grad if a pointer to Grad passed instead (Grad*
converted to Core* by compiler).
Object of type Core corresponds to Core portion of Grad if a
Grad object is assigned/passed instead.

We say that Grad is a subtype of Core, noted Grad <: Core.

12

Polymorphism(3): a new compare function
Suppose that instead of sorting students by name, we want to sort
them by final grade:

10 bool compare_grades(const Core& c1, const Core& c2) {
11 return c1.grade() < c2.grade();
12 }

As Grad redefines the grade function, this compare_grades
functions sometimes gives the wrong answer, because it always
invokes the Core::grade function, as c1 and c2 are references to
Core objects.
We need a way for the compare_grades function to invoke the
right grade function, based on the actual type of the object that
we pass:

If c1 or c2 are Grads, we want Grad::grade.
If c1 or c2 are Cores, we want Core::grade.
This must be done at run-time, as the dynamic types of the
passed objects can only be determined at run-time.

13

Polymorphism(3): a new compare function
Suppose that instead of sorting students by name, we want to sort
them by final grade:

10 bool compare_grades(const Core& c1, const Core& c2) {
11 return c1.grade() < c2.grade();
12 }

As Grad redefines the grade function, this compare_grades
functions sometimes gives the wrong answer, because it always
invokes the Core::grade function, as c1 and c2 are references to
Core objects.
We need a way for the compare_grades function to invoke the
right grade function, based on the actual type of the object that
we pass:

If c1 or c2 are Grads, we want Grad::grade.
If c1 or c2 are Cores, we want Core::grade.
This must be done at run-time, as the dynamic types of the
passed objects can only be determined at run-time.

13

Polymorphism (4): virtual
To support this:

1 class Core {
2 public:
3 virtual double grade() const; // added `virtual`
4 // ...
5 };

grade is now a virtual function.
virtual keyword may be used only in class definitions: do
not repeat it in function definitions.
virtual is inherited, so no need to repeat it in Grad, though
doing it doesn’t hurt.

Note to Java programmers: in Java, all member functions are
virtual by default. In C++, you must turn this dynamic
binding on explicitly!

14

Dynamic Binding
The run-time selection of the virtual function is relevant only for
references and pointers.
If a function is called on behalf of an object, you get the version of
the function corresponding to the object type. In other words, the
type of an object is immutable!

1 // Incorrect implementation
2 bool compare_grades(Core c1, Core c2) {
3 return c1.grade() < c2.grade();
4 }

c1 and c2 are always Core.
If you pass a Grad to this function, only the Core part gets
copied.
Because we said the parameters are Core objects, the calls to
grade are statically bound at compile-time to
Core::grade.

Dynamic-binding only applies to references and pointers.
15

Dynamic Binding (2)

39 Core c;
40 Grad g;
41 Core* p = &c;
42 Core& r = g;
43

44 c.grade(); // Static binding to Core::grade()
45 g.grade(); // Static binding to Grad::grade()
46 p->grade(); // Dynamic binding to type object p points to
47 r.grade(); // Dynamic binding to type object r refers to

Polymorphic call:
The type of the reference or pointer is fixed, but the type of the
object referred or pointed to can be the corresponding type or any
type derived from it.

16

virtual and pure virtual

Non-virtual functions can be declared, without being defined,
if they are not called.
virtual functions must be defined, whether they are called
or not.

You’ll get weird compile errors if not.
If there is no meaningful implementation for a virtual
function, make it a pure virtual function.

1 class Abstract {
2 public:
3 virtual int pure() const = 0; // Pure virtual
4 // ...
5 };

Such (abstract) classes cannot be instantiated: they can only
serve as base for derived classes.

17

A program dealing with only undergrad records
10 vector<Core> students;
11 Core record;
12 string::size_type max_len = 0;
13 // Read and store the student records
14 while (record.read(cin)) { // Core::read()
15 max_len = max(max_len, record.name().size());
16 students.push_back(record);
17 }
18 // Alphabetize the student records
19 sort(students.begin(), students.end(), compare);
20 // Write the names and grades
21 for (auto& s : students) {
22 cout << s.name()
23 << string(max_len + 1 - s.name().size(), ' ');
24 try {
25 cout << s.grade() << endl; // Core::grade
26 } catch (domain_error e) {
27 cerr << e.what() << endl;
28 }
29 }

18

A program dealing with only grad records
10 vector<Grad> students; // Different type in vector
11 Grad record; // Different type into which to read
12 string::size_type max_len = 0;
13 // Read and store the student records
14 while (record.read(cin)) { // Grad::read()
15 max_len = max(max_len, record.name().size());
16 students.push_back(record);
17 }
18 // Alphabetize the student records
19 sort(students.begin(), students.end(), compare);
20 // Write the names and grades
21 for (auto& s : students) {
22 cout << s.name()
23 << string(max_len + 1 - s.name().size(), ' ');
24 try {
25 cout << s.grade() << endl; // Grad::grade
26 } catch (domain_error e) {
27 cerr << e.what() << endl;
28 }
29 }

19

Towards a program that deals with both types of records
We need to eliminate the following type dependencies:

Definition of the vector.
Definition of the local variable.
Calling the right read function.
Calling the right grade function.

As read and grade are virtual, last two points have been solved.
The only problem is that our code makes statically-bound calls to
these functions. We need to turn dynamic binding on.
We can use Core* where we used Core or Grad, and let our users
allocate memory.
We’ll also need a function to compare Cores identified by pointers:

10 bool compare_Core_ptrs(const Core* cp1, const Core* cp2) {
11 return compare(*cp1, *cp2);
12 }

20

Dealing with both types of records (2)
15 vector<Core*> students; // Store pointers, not objects
16 Core* record; // Temporary must be a pointer as well
17 char ch;
18 string::size_type max_len = 0;
19

20 // Read and store the student records
21 while (cin >> ch) {
22 if (ch == 'U')
23 record = new Core; // Allocate a Core object
24 else
25 record = new Grad; // Allocate a Grad object
26 record->read(cin); // Virtual call
27 max_len = max(max_len, record->name().size());
28 // ^ Dereference
29 students.push_back(record);
30 }
31

32 // Pass the version of compare() that works on pointers
33 sort(students.begin(), students.end(), compare_Core_ptrs);

21

Dealing with both types of records (3)

35 // Write the names and grades
36 for (auto s : students) {
37 // s is a pointer
38 cout << s->name() // Dereference to call function
39 << string(max_len + 1 - s->name().size(), ' ');
40 try {
41 cout << s->grade() << endl; // Dereference to call
42

43 } catch (domain_error e) {
44 cerr << e.what() << endl;
45 }
46 delete s; // Free the object allocated when reading
47 }

22

Virtual destructors
Our previous program almost works:

When we delete the records, it is always through a Core*.
But these Core* can point to either Core or Grad objects.
Which destructor to call and how much space to reclaim?

Sounds like exactly what the virtual mechanism handles.

virtual destructor:
1 class Core {
2 public:
3 virtual ~Core() { }
4 // ...
5 };

A virtual destructor is needed any time a derived type
object can be destroyed through a pointer to base.
If no other reason to have destructor, then that destructor has
no work to do and is empty
No need to add destructor to Grad: virtual property of
destructor is inherited and synthesised destructor is fine.

23

Another Solution

In previous solution, our users had to do memory management for
us: this is messy and error prone.

We’ll define a handle (a.k.a. proxy) class, based on a Core* that
does the memory bookkeeping itself.

24

Student_info handle class
10 class Student_info {
11 public:
12 // Constructors and copy control
13 Student_info() { }
14 Student_info(std::istream& is) { read(is); }
15 Student_info(const Student_info&);
16 Student_info& operator=(const Student_info&);
17 // Operations
18 std::istream& read(std::istream&);
19 std::string name() const {
20 if (cp) return cp->name();
21 else throw std::runtime_error("uninitialized Student");
22 }
23 double grade() const {
24 if (cp) return cp->grade();
25 else throw std::runtime_error("uninitialized Student");
26 }
27 static bool compare(const Student_info& s1, const Student_info& s2) {
28 return s1.name() < s2.name();
29 }
30 private:
31 std::unique_ptr<Core> cp;
32 };

25

Student_info handle class (2)

As Core has a virtual destructor, the Student_info
destructor will work properly, whether it represents a Core or
Grad
Student_info::read will allocate the appropriate space.
As grade is virtual, we will get correct version as called
through Core* pointer.
compare has been made a static function, it:

is associated with class, not with any particular object;
cannot access non-static members;
call Student_info::compare.

26

Reading the handle

7 istream& Student_info::read(istream& is) {
8 char ch;
9 is >> ch; // Get record type

10

11 // Assignment to `cp` will free if needed
12 if (ch == 'U')
13 cp = std::make_unique<Core>(is);
14 else
15 cp = std::make_unique<Grad>(is);
16

17 return is;
18 }

27

Copying handle objects
We need a copy constructor and assignment operators to manage
the Core*.

Question: when we copy, are we copying a Core or a Grad? There
is no easy way to know!

We solve this problem by giving Core and its derived classes a new
virtual function:

1 class Core {
2 friend class Student_info;
3 protected:
4 virtual std::unique_ptr<Clone> clone() const
5 { return std::make_unique<Core>(*this); }
6 // ...
7 };
8 class Grad {
9 protected:

10 virtual std::unique_ptr<Clone> clone() const
11 { return std::make_unique<Grad>(*this); }
12 // ...
13 };

These virtual clone functions call the synthesised copy
constructor for Core and Grad.

28

Copying Handle objects (2)

We do not want clone as member of public interface, so it
is made protected.
Because clone is protected, we make Student_info class
a friend of Core.

All member functions of Student_info are now friends with
Core.

When derived class redefines a function from base class, it
usually does it exactly: parameter list and return type are
identical.

However, if base-class function returns a pointer or reference
to the base class, then the derived class can return a pointer or
reference to the derived class.

friendship is not inherited, but no need to make
Student_info a friend of Grad.

Student_info never refers to Grad::clone directly,
only through virtual calls to Core::clone.

29

Copying and assignement

20 Student_info::Student_info(const Student_info& s) {
21 if (s.cp)
22 cp = s.cp->clone();
23 }
24

25 Student_info& Student_info::operator=(const Student_info& s) {
26 if (&s != this) {
27 if (s.cp)
28 cp = s.cp->clone();
29 else
30 cp = nullptr;
31 }
32

33 return *this;
34 }

30

Using the handle class
10 vector<Student_info> students;
11 Student_info record;
12 string::size_type max_len = 0;
13 // Read and store the student records
14 while (record.read(cin)) {
15 max_len = max(max_len, record.name().size());
16 students.push_back(record);
17 }
18 // Alphabetize the student records
19 sort(students.begin(), students.end(), Student_info::compare);
20 // Write the names and grades
21 for (auto& s : students) {
22 cout << s.name()
23 << string(max_len + 1 - s.name().size(), ' ');
24 try {
25 cout << s.grade() << endl;
26 } catch (domain_error e) {
27 cerr << e.what() << endl;
28 }
29 }

31

Subtleties: inheritance and containers

1 vector<Core> students;
2 Grad g(cin);
3 students.push_back(g);

What happens?

We are allowed to store a Grad in a vector<Core>.
But only the Core part of the Grad will be stored!

32

Subtleties: inheritance and containers

1 vector<Core> students;
2 Grad g(cin);
3 students.push_back(g);

What happens?

We are allowed to store a Grad in a vector<Core>.
But only the Core part of the Grad will be stored!

32

Subtleties: functions

If base-class and derived-class have a function with the same name
but different signatures, they behave as unrelated functions.

1 void Core::regrade(double d) { final = d; }
2 void Grad::regrade(double d1, double d2) {
3 final = d1;
4 thesis = d2;
5 }

If r is a reference to Core

1 r.regrade(100); // OK, call Core::regrade
2 r.regrade(100, 100);
3 // Compile error: Core::regrade takes 1 argument

This second call is an error even if r actually refers to a Grad!

33

Subtleties: functions (2)
If r is a reference to Grad

1 r.regrade(100); // Comp. error: Grad::regrade takes 2 arguments
2 r.regrade(100, 100); // OK, call Grad::regrade

Even though there is a base-class version that takes a single
argument, it is effectively hidden by the existence of regrade in
the derived class.

If you really want the base-class version, you need:
r.Core::regrade(100);

To use regrade as a virtual function, it must have the same
interface in both the base and derived class:

1 virtual void Core::regrade(double d, double = 0) { final = d; }
2 void Grad::regrade(double d1, double d2) {
3 final = d1;
4 thesis = d2;
5 }

34

