Advanced computer programming

Exercise session 6: Data structures and dictionaries

Jean-Michel BEGON - http://www.montefiore.ulg.ac.be/~jmbegon

November 2014

Exercice 1

In a database, information is usually structure as a table:

		Ċ						Ċ	signup_date	·+
1	1	1	John	١	Pizza		Y	1	2012-04-11	١
	2	1	Sandy		Nem	l	N		2012-04-14	1
	3		Tom		BBQ	l	Y		2012-04-18	1
	4	1	Tina		Salad	l	Y		2012-04-10	1
+-		+-		+-		+-		+-		+

Most of the time, accessing a row is done through an *index variable* (id). Consequently access time can be greatly decreased with appropriate data structures. What would you recommend?

Exercice 2

Implement a buffer B for a text editor corresponding to the following ADT:

- insert(B, c): insert character c at the current position;
- delete(B): delete and return the current character;
- left(B): move the cursor of one position to the left;
- right(B): move the cursor of one position to the right;
- begin(B): move the cursor at the start of the buffer;
- end(B): move the cursor at the end of the buffer;
- size(B): return the size of the buffer;
- get(B, i): return the ith character in the buffer.

Exercise 3

We would like to code the following game:

- a background image is hidden by a grid of $H \times W$ black cells;
- every few seconds, one randomly chosen cells disappears, revealing the background image some more;
- the first player to recognize the background image wins.

For responsiveness reasons, the choosing mechanism is subject to being $\Theta(1)$. What data structure would be appropriate for this problem? (A RandomInt(k) function, returning an integer uniformly drawn from 0, ..., k-1 is available).

Exercise 4

Let S and T be two sets of integers.

- (a) What data structure would you use to represent a set.
- (b) Give an algorithm which tests whether S is a subset of T. What is the complexity of this algorithm ?

Exercise 5

Implement a none-recursive algorithm which computes writes an integer in base 2 (the original integer is given in base 10).

Exercise 6

During a variable definition in a programming language, the compiler needs to store several information in a so-called *Symbol table*. For instance, in a static type language, the compiler must remember the variable type (int, float, etc.). What data structure(s) is suitable for that purpose? What are the pros and cons of each solution?

Exercise 7

Implement a none-recursive algorithm which evaluates a basic mathematical expression in postfix notation. The postfix notation of " $3 \times (4+7)$ " is " $47+3 \times$ ".

Bonus

After watching Windtalkers (John Woo, 2002), one of your friend decides to play you a joke by sending "encrypted" email: he randomly permuted the letters of every word.

For instance, he may have written

[&]quot;etyaydres i atwhc jonh ow'os lkiwtaresnd"

for the sentence

"Yesterday I watch John Woo's Windtalkers"

Providing we have a word database at your disposal, what data structure might help you outsmart your friend ?