
ELEN0062 - Introduction to machine learning
Project 1 - Classification algorithms

October 11th, 2017

In this first project, you will glean a first experience with some machine
learning algorithms. More specifically, you will experiment with the decision
tree and nearest neighbor algorithms as well as implement a simple linear clas-
sification algorithm. In addition, the project will discuss the problem of unbal-
anced datasets.

For each algorithm, we ask you to deliver a separate Python script. Make
sure that your experiments are reproducible (e.g., by fixing manually random
seeds). Add a brief report (pdf format, 3 pages maximum not counting the
figures) giving your observations and conclusions.

Each project must be done by group of two students and submitted as a
tar.gz file on Montefiore’s submission platform (http://submit.montefiore.
ulg.ac.be) before October 31, 23:59 GMT+2. Concatenate your sXXXXXX
ids as group name.

Files
You are given several files, among which are data.py and plot.py. The first
one generates binary classification datasets with two real input variables. More
precisely, the examples are sampled from two circular gaussian distributions
with the same covariance matrices, centered at (+1.5,+1.5) for the negative
class and (−1.5,−1.5) for the positive class. In the following, you will work
with make_unbalanced_dataset (see Figure 1), where the negative class is three
times more present. You can generate datasets of 3000 samples. The first 1000
will be used as training set and the remaining ones as testing set.

The second file contains a function which depicts the decision boundary of
a trained classifier. Note that you should use a dataset independent of the
training set to visualize the boundary.

The other files must be completed and archived together with the report.

4 2 0 2 4 6
X_1

6

4

2

0

2

4

6

X
_2

Negative
Positive

Figure 1: Unbalanced dataset.

1

http://submit.montefiore.ulg.ac.be
http://submit.montefiore.ulg.ac.be


1 Decision tree (dt.py)
In this section, we will study decision tree models (the DecisionTreeClassifier
class from sklearn.tree). More specifically, we will observe how the model
complexity impacts the classification task. To do so, we will build several de-
cision tree models with max_depth values of 1, 2, 4, 6, 8 and None (which cor-
responds to an unconstrained depth). Answer the following questions in your
report.

1. Observe how the decision boundary is affected by tree depth:

(a) illustrate and explain the decision boundary for each depth;
(b) discuss when the model is clearly underfitting/overfitting and detail

your evidence for each claim;
(c) explain why the model seems more confident when the depth is un-

constrained.

2. Report the average test set accuracies (over five generations of the dataset)
along with the standard deviations for each depth. Briefly comment on
them.

2 K-nearest neighbors (knn.py)
In this section, we will study nearest neighbors models (the KNeighborsClassifier
class from sklearn.neighbors). More specifically, we will observe how the
model complexity impacts the classification task. To do so, we will build sev-
eral nearest neighbor models with n_neighbors values of 1, 5, 50, 100 and 500.
Answer the following questions in your report.

1. Observe how the decision boundary is affected by the number of neighbors:

(a) illustrate the decision boundary for each value of n_neighbors.
(b) comment on the evolution of the decision boundary with respect to

the number of neighbors. Give an explanation for what you observe.

2. Use a ten-fold cross validation strategy to optimize the value of the n_neighbors
parameter:

(a) explain your methodology;
(b) report the score you obtain and the optimal value of n_neighbors.

Do they corroborate your decision boundary-based intuition? Justify
your answer.

2



−10 −5 0 5 10

x

0.0

0.2

0.4

0.6

0.8

1.0

1
1+
e−

x

Sigmoid function

Figure 2: Sigmoid function

3 Logistic regression (logistic_regression.py)
The misleadingly named logistic regression is actually a classification technique,
and, more precisely, a linear method. That is, the prediction of the model
follows the form:

ŷ = w0 + wTx (1)
In order to derive probabilities from this model, the output is run through a
sigmoid function (Figure 2), which squishes its input to the unit range. The
final form of the model is thus:

P (Y = 1|xi, w0w) = 1
1 + exp(−w0 −wTxi)

(2)

Note that we assume that the positive class is labeled 1 and the negative class
is labeled 0.

Consequently, learning a logistic regression model means learning the vector
θ = (w0,w)T of parameters. To do so, one usually finds θ∗ that minimizes the
negative log-likelood loss function over the training set defined as:

L(θ) = − 1
N

N∑
i=1

logP (Y = yi|xi, θ) (3)

In this project, we will learn the θ parameter in the simplest possible way:
with a batch-mode vanilla gradient descent. The idea is to iteratively update
the parameter θ according to the following rule:

θ(t+1) ← θ(t) − η∇θL(θ) (4)

where η is an hyper-parameter called the learning rate, which is introduced to
prevent overfitting.

In the present case, the gradient of the loss function is given by

∇θL(θ) = 1
N

N∑
i=1

[P (Y = 1|xi, θ)− yi] x′i, (5)

3



where x′i = (1, x(1)
i , x

(2)
i )T is the ith feature vector to which a constant 1 has

been introduced as first component.
Implement your own logistic regression estimator according to the above

description and following the scikit-learn convention (http://scikit-learn.
org/dev/developers/). The estimator should have two hyper-parameters: the
learning rate η and the number of gradient descent iterations to perform.
Suggestion: Fill in the template given in logistic_regression.py.

Answer the following question in your report.

1. Show that Equation 5 is indeed the gradient of the negative log-likelihood
(Equation 3).

2. How do you propose to set the initial value of θ?

3. Illustrate the decision boundary on the dataset and briefly comment on
the results. Specify the values of the hyper-parameters.

4. Report the average accuracy (over five generations of the dataset) along
with the standard deviation. Specify the hyper-parameters you used.

5. Study the effect of the number of iterations (for a fixed but relevant learn-
ing rate) on both the decision boundary and the error.

bonus In real world applications, the data used to learn a model do not al-
ways follow the exact same distribution as the one used subsequently (i.e.
when the model is in production). Let us consider the following scenario.
You have been given a logistic regression model trained on an unbalanced
dataset but you discover that the unbalancedness is due to a bias during
the collection of the data. In fact, the phenomenon you are modeling is
balanced class-wise. How can you adapt your model without retraining
it so that it generalizes better in the balanced setting in terms of log-
likelihood?

4

http://scikit-learn.org/dev/developers/
http://scikit-learn.org/dev/developers/

	Decision tree (dt.py)
	K-nearest neighbors (knn.py)
	Logistic regression (logistic_regression.py)

