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Chapter 1

Introduction to Digital Signal
Processors

1.1 Introduction

Digital Signal Processors (DSP) are specific processors used for signal processing. Digital
signal processing is used in many areas such as sound, video, computer vision, speech anal-
ysis and synthesis, etc. Each of these areas need digital signal processing and can therefore
use these specific processors. DSPs are found in cellular phones, disk drives, radios, print-
ers, MP3 players, HDTV, digital cameras and so on. DSPs take real world signal like
voice, audio, video, temperature, pressure, position, etc. that have been digitized using
an analog-to-digital converter and then manipulate them using mathematical operations.
DSPs are usually optimized to process the signal very quickly and many instructions are
built such that they require a minimum amount of CPU clock cycles.

Typical optimization of the processors include hardware multiply accumulate (MAC) ca-
pability, hardware circular and bit-reversed capabilities, for efficient implementation of
data buffers and fast Fourier transforms (FFT), and Harvard architecture (explained in
Section 1.1.1). One specificity of DSPs are their MAC operation (Multiply ACcumulate).
Once a signal has been digitized, it is available to the processor as a serie of numerical val-
ues. Digital signal processing often involves the convolution operation, which correspond
to a serie of sums and products. On a general CPU, each of these instruction takes more
than one clock cycle. However, DSP’s MAC operation performs a product and a sum in
one clock cycle, allowing thus faster signal processing. Another specificity of DSPs is their
ability to access more than one memory address in one cycle. This allows the processor to
read an instruction and the corresponding data simultaneously. This is an improvement
over general processors.

DSPs are typically very similar to microcontrollers. They usually provide single chip com-
puter solutions integrating on-board volatile and non-volatile memory as well as a range
of peripheral interfaces. They moreover have a small footprint, making them ideal for em-
bedded applications. In addition, they tend to have low power consumption requirements,
which makes them suitable for portable applications, for example in cell phones, or in a
car.

In general, digital signal processors are used primarily in real-time applications. Real-time
processing means that the processing must be done within a fixed time period, usually
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Figure 1.1: Von Neumann architecture

synchronized with an external peripheral, for example an analog-to-digital converter. This
course focuses on real-time digital signal processing and each examples used in the course
deal with that real-time constraint.

This document is organized as follows. This first chapter introduces DSPs architectures,
and in particular the Texas Instrument C6748 DSP architecture, which is used in this
course. Chapter2 describes the Texas Instrument integrated development environment
(IDE) and the setup of Code Composer Studio to start programming the DSP. In Chapter 3,
several input / output schemes are described to access the audio samples. Chapter 4
introduces notions of filtering and presents the two most used filters, which are the Finite
Impulse Response (FIR) filters and the Infinite Impulse Response (IIR) filters. The chapter
also describes some useful implementations of those filters. Direct Memory Access (DMA)
is explained in Chapter 5. DMA is used to transfer blocks of samples between the codec and
the memory without any CPU intervention, which is useful for many frame-based signal
processing algorithm. Finally, Chapter 6 details the use of the Discrete Fourier Transform
(DFT) in the DSP, as well as the Fast Fourier Transform (FFT) algorithm.

Two reference books are used for this course. The first one is Digital Signal Processing and
Applications with the OMAP-L138 eXperimenter [8], by Donald Reay, and the second one is
Real-Time Digital Signal Processing from MATLAB to C with the TMS320C6x DSPs [10],
by Thad B. Welch, Cameron H.G. Wright and Michal G. Morrow.

1.1.1 Processors architecture

There are two types of architectures used in processors: Von Neuman architecture, and
Harvard architecture. In the first one, programs and data are stored in the same memory
zone, as showed in Figure 1.1. In that kind of architecture, an instruction contains the
operating code (opcode) and the addresses of the operands.

In the second type of architecture, there are two memories: one for the program, and one
for the data. Both memories are separated and are accessed via separated buses, as shown
in Figure 1.2. That organization allows to read an instruction and the data simultaneously,
which improves the overall performance of the processor.

General microprocessors usually make use of the Von Neuman architecture. However,
DSPs tend to use the Harvard architecture which is more suited for real-time applications.
Some DSPs use a modified Harvard architecture, in which there is one external bus for the
data, and one external bus for the addresses, like the Von Neuman architecture. However,
the DSP contains two internal distinct data buses and two distinct addresses buses. The
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Figure 1.2: Harvard architecture

transfer between the external and internal buses are performed using time multiplexing.
This is the case in some Texas Instrument processors (C6000 serie), in particular, this is
the case of the C6748 processor used in this course.

1.2 C6748 Processor

This course uses a Texas Instrument OMAP-L138 processor, containing a C6748 DSP pro-
cessor and an ARM9 processor in the same chip. We only make use of the DSP part of
the chip. The C6748 is based on Texas Instruments very long instruction word (VLIW)
architecture. This processor is well suited for numerically intensive algorithms. The in-
ternal program memory is structured so that a total of eight instructions can be fetched
every cycle. The C6748 has a clock rate of 375 MHz and is capable of fetching eight 32-bit
instructions every 1/375MHz or 2.67 ns. The processor includes both floating-point and
fixed-point architectures in one core.

The C6748 includes 326 kB of internal memory (32 kB of L1P program RAM/cache, 32 kB
of L1D data RAM/cache and 256 kB of L2 RAM/cache), eight functional units composed
of six ALUs and two multiplier units, an external memory interface addressing 256 MB of
16-bit mDDR SDRAM, and 64 32-bit general purpose registers. In addition, the OMAP-
L138 features 128 kB of on-chip RAM shared by its C6748 and ARM9 processor cores.

1.2.1 Architecture

In this section we give an brief overview of the architecture of the C6748 processor. This
section is an excerpt of the C6748 Datasheet [3]. Detailed documentation can be found
in [3]. The architecture of the CPU can be seen in Figure 1.3.

The C674x CPU consists of eight functional units, two register files, and two data paths,
as shown in Figure 1.4. The two general-purpose register files (A and B) each contain 32
32- bit registers for a total of 64 registers. The general-purpose registers can be used for
data or can be data address pointers. The data types supported include packed 8-bit data,
packed 16-bit data, 32-bit data, 40- bit data, and 64-bit data. Values larger than 32 bits,
such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of
data placed in an even register and the remaining 8 or 32 MSBs in the next upper register
(which is always an odd-numbered register). The eight functional units (.M1, .L1, .D1, .S1,
.M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The
.M functional units perform all multiply operations. The .S and .L units perform a general
set of arithmetic, logical, and branch functions. The .D units primarily load data from
memory to the register file and store results from the register file into memory. The C674x
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Figure 1.3: C674x Megamodule Block Diagram. Source: [3]

CPU combines the performance of the C64x+ core with the floating-point capabilities of
the C67x+ core.

Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit
multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two
16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit
multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities
(including a complex multiply). There is also support for Galois field multiplication for
8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require
complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs
and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies
with rounding capability that produces one 32-bit packed output that contain 16-bit real
and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended
precision necessary for high-precision algorithms on a variety of signed and unsigned 32-bit
data types. The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel
add/subtract operations on a pair of common inputs. Versions of this instruction exist to
work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in
parallel. There are also saturated forms of these instructions. The C674x core enhances the
.S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2 comparisons
were only available on the .L units. On the C674x core they are also available on the .S
unit which increases the performance of algorithms that do searching and sorting. Finally,
to increase data packing and unpacking throughput, the .S unit allows sustained high
performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions
prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results
to output precision including saturation support.
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Figure 1.4: C674x CPU Data Paths. Source: [3]
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Figure 1.5: Interrupts on the C674x processor. Source: [4]

1.2.2 Interrupts

This section introduces the interrupt mechanism of the C6478 processor. This is just an
introduction. Complete documentation about the interrupt mechanism can be found in
the TMS320C674x CPU ant Instruction Set Reference Guide [4] and the TMS320C674x
DSP Megamodule Reference Guide [5].

There are four types of interrupts on the CPU (Figure 1.5): reset, maskable, nonmaskable
and exception. The reset interrupt has the highest priority and is used to halt the processor
and return it to a known state. The nonmaskable interrupts (NMI) have the second
highest priority and are in general used to indicate hardware problems. The lowest priority
interrupts are interrupts 4-15 corresponding to the INT4-INT15 signals. These interrupts
can be associated with external devices, on-chip peripherals or software control.

Interrupt selector

The C674x system provides a large set of system events. The interrupt selector (IS)
provides a way to select the necessary events and route them to the appropriate CPU
interrupt. The interrupt controller supports up to 128 system events. Most of the examples
used in this course make explicit use of the following two events for interrupt and DMA-
based I/O respectively.

• Event #61: MCASP0_INT, MCASP0 combined RX/TX interrupt ;

• Event #8: EDMA3_0_CC0_INT1, EDMA3 channel controller 0 shadow region 1
transfer completion interrupt.

The interrupt selector in the C674x routes any of the 128 events to one of the 12 maskable
CPU interrupts, as shown in Figure 1.6. The routing implemented by the selector is
determined by the content of three Interrupt Mux Registers (INTMUX1 to INTMUX3).

The IS contains interrupt multiplexing registers, INTMUX[3:1] that allow the user to
program the source of each of the 12 available CPU interrupts. Each of the events that
are presented to the IS has an event number that is used to program these registers. The



CHAPTER 1. INTRODUCTION TO DIGITAL SIGNAL PROCESSORS 9

Figure 1.6: Interrupt selector block diagram. Source: [5]

order of the CPU interrupts (CPUINT4 to CPUINT15) determines the priority for pending
interrupts.

In this course, the MCASP0_INT event is routed to CPUINT4. This is achieved by writing
the event number into the seven LSBs of register INMUX1 using the statement

INTC_INTMUX1 = 0x3D.

In addition, interrupts must of course be generated and enabled. This means that we need
to setup the McASP controller to generate an interrupt on transmit and receive, that is,
when a sample is ready to be read or sent to the ADC or the DAC. For the event #61, this is
achieved by setting bit 5 in the McASP0 transmitter interrupt control register XINTCTL.
More details about the configuration of the McASP can be found in the TMS320C6000
DSP Multichannel Audio Serial Port (McASP) Reference Guide [2]. This is achieved by
the statement

MCASP->XINTCTL = 0x00000020; // interrupt on transmit.

Finally, INT4 has to be enabled in the CPU by setting bit 4 in the Interrupt Enable Register
(IER). In order to interrupt the CPU when INT4 happens, the Global Interrupt Enable
(GIE) bit in the Control Status Register (CSR) must also be set. These two configurations
are done using the following statements.

IER |= 0x12; // enable INT4 and NMI
CSR |= 0x01; // enable interrupt globally

Interrupt Service Table (IST)

The interrupt service routines executed when interrupts occur are determined by the con-
tent of the IST. When the CPU begins to process an interrupt, it references the IST which
is a table of fetch packets that contain code for servicing the interrupts. The IST consists
of 16 consecutive fetch packets (shown in Figure 1.7) . Each interrupt service fetch packet
(ISFP) contains up to 14 instructions. Thus, a simple interrupt service routine may fit in
an individual fetch packet. In general, however, an ISFP contains a branch instruction to
a interrupt function in the code of the program. In the examples of this course, the ISFP
for INT4 causes a branch to function interrupt4(). The content of the IST are set up in
assembly language in the file vectors_intr.asm.
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Figure 1.7: Interrupt Service Table (IST). Source: [4]

1.3 OMAP L-138 Experimenter Board

This course is built around an experimenter board using a Texas Instrument OMAP-L138
processor. The Logic PD Zoom OMAP-L138 eXperimenter kit (Figure 1.8) is a low-cost
development platform for the OMAP-L138 processor. This device is a dual-core system
on chip comprising a TMS320C6748 digital signal processor and an ARM926EJ-S general
purpose processor (GPP). In addition, a number of peripherals and interfaces are built into
the OMAP-L138, as shown in Figure 1.9.

As this course is concerned with the development of real-time digital signal processing appli-
cations, we only make use of the DSP (C6748) side of the device and of the TLC320AIC3106
(AIC3106) analog circuit (codec) connected to the OMAP-L138’s multichannel audio serial
port (McASP). The ARM side of the device is not used in this course.

The onboard codec (AIC3106) uses sigma-delta technology that provides analog-to-digital
conversion (ADC) and digital-to-analog conversion (DAC). It uses a 24.576 MHz system
clock and its sampling rate can be selected from a range of settings from 8 kHz to 96
kHz. The board also includes 128 MB of synchronous dynamic RAM and 8 MB of NOR
flash memory. Two 3.5 mm jack connectors provide analog input and output. There are
also eight user DIP switches that can be read within a program running on the processor,
providing thus a simple mean of user interaction. Two LEDs can also be controlled within
a program, providing basic output interaction.

The board is connected to the host PC running the Code Composer Studio IDE via an
XDS100v1 JTAG emulation built into the experimenter. The software can be written in
C or assembly language to be compiled / assembled, linked and downloaded to the C6748.
Usage of Code Composer Studio is described in Chapter 2.
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Figure 1.8: OMAP-L138 Experimenter Board. Source: Texas Instrument website.

Figure 1.9: OMAP-L138 Experimenter board architecture. Source: [7]



Chapter 2

Development environment:
Code Composer Studio

Code Composer Studio (CCS) is the integrated development environment (IDE) provided
by Texas Instrument. It is based on the Eclipse framework and therefore requires a Java
Runtime Environment (JRE). This chapter details the setup of CCS in order to be able to
program the EVM board OMAP-L138 and to run programs on the DSP. Some specific files
are needed to communicate with the DSP and to program it. These files are stored in the
folder C:\DSP in your workstation. This folder contains configuration files and libraries
useful to program the EVM board.

• The bsl folder contains the board support library which proposes functions specific to
the evaluation board.

• The gel contains configuration files which allow you to connect to the board.

• The omap folder contains C libraries and assembly code to program audio applica-
tions on the EVM.

• The dsplib folder contains a DSP library offering numerous useful functions for DSP
applications.

• The doc folder contains documentation files and datasheets related to the DSP and
its peripherals.

2.1 First connection to the EVM

The following procedure allows you to connect to the OMAP-L138 experimenter using
Code Composer Studio.

1. Connect the board to the computer using the provided USB connector. The USB
programming port is placed near the RS232 port on the board.

2. Each DIP switch must be set to off, except switches #5 and #8 on the second dip
switch (Closer to the on/off button).

12
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Figure 2.1: Connection to the OMAP-L138 EVM.

Figure 2.2: Start a program on the DSP.

3. Connect the analog audio input and output to a source and a receiver and turn on
the DSP.

4. Start CCS and chose a workspace corresponding to your student group.

5. Select the panel Target Configurations in the menu View → Target Configurations.

6. In that panel, if it is not already the case, import the file L138_eXperimenter.ccxml
stored in the folder C:\DSP\omap and set it to default by right-clicking on it.

7. Right click on the imported target configuration in the User Defined folder and start
the connection (Launch Selected Configuration). The debugger window should show
up.

8. Right click on Texas Instruments XDS100v1 USB Emulator_0/C674X_0 (Discon-
nected : Unknown) connect a target (Connect Target). A console should appear (see
Figure 2.1).

9. Select the menu Run→ Load→ Load Program and load the file C:\DSP\pass\Debug\AllPass.out.

10. Start the program by clicking on the green arrow (see Figure 2.2).

11. Start the audio source. The signal should pass through the DSP without any pro-
cessing and should be heard on the receiver.

12. Stop the program by clicking on the red square.
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Figure 2.3: Create a new CCS project.

2.2 Create a project

Now that the connection to the DSP is effective, it is possible to create projects to program
the DSP in C language. To configure a project, we need to include some specific files in
order to read the audio samples and to manage CPU interrupts. It is also necessary to set
the parameters of the project to include the headers and libraries. This section explains
all the necessary steps.

1. Activate the C/C++ perspective using the button at the top right of the screen (CCS
Edit).

2. Create a new project in File → New → CCS Project. The figure 2.3 should appear.

3. Configure the parameters as showed in the Figure 2.3.

4. Open the project properties in the menu Project → Properties.

5. In the include options (Include Options), add the folder C:\DSP\omap and the folder
C:\DSP\bsl\inc, as showed in the Figure 2.4.

6. In the linker options, add the library file bsl\lib\evmomapl138_bsl.lib in File Search
Path.

7. Add the following files to the project by right clicking on the project (Add Files) :
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Figure 2.4: Properties of a CCS project.

(a) C:\DSP\omap\L138_aic3106_init.c

(b) C:\DSP\omap\L138_aic3106_init.h

(c) C:\DSP\omap\linker_dsp.cmd

(d) C:\DSP\omap\vectors_intr.asm

8. Replace the content of main.c by the example code of AllPass.c (Figure 2.5). This
code will be explained later.

9. Compile the code by clicking on the appropriate button (hammer button) and run
it by starting the debugger as showed in the Figure 2.6.

1 #include "L138_aic3106_init . h"
2
3 i n t e r r up t void i n t e r rup t4 (void ) {
4 uint32_t sample ;
5 sample = input_sample ( ) ;
6 output_sample ( sample ) ;
7 return ;
8 }
9

10 void main (void ) {
11 L138_ in i t i a l i s e_ in t r (FS_48000_HZ , ADC_GAIN_0DB, DAC_ATTEN_0DB) ;
12 while (1 ) ;
13 }

Figure 2.5: Example code : AllPass.c
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Figure 2.6: Compile and run the program.

10. In the debugger view, start the program by clicking on the green arrow, as showed
in the Figure 2.2.



Chapter 3

Input / Output

In general, a DSP is composed of a processor and analog interfaces, as showed in the Fig-
ure 3.1. The OMAP-L138 eXperimenter proposes such a system with a Texas Instrument
C6748 floating point processor and a TLV320AIC3106 (AIC3106) codec. The codec allows
to convert the analog signal to a digital signal (ADC: Analog to Digital Converter) and to
convert a digital signal back to an analog one (DAC: Digital to Analog Converter). The
codec communicates with the DSP via a multichannel serial port (McASP) and I2C inter-
faces. The latter are available to a user on the board, thus allowing the user to connect a
different codec rather than the default one.

Figure 3.1: General DSP system.

The AIC3106 codec is a low-power device designed for embedded applications. It contains
a number of configurable microphone and line inputs, as well as a number of outputs. The
codec can sample the analog signal at frequencies between 8 and 96 kHz. The analog-to-
digital converter converts an analog signal to a sequence of 16, 24 or 32-bit signed samples
(integers), which can next be processed by the CPU. The digital-to-analog converter does
the invert operation. In practice, on the evaluation board used in this course, there is one
stereo input line and one stereo output line.

There are three possible input / output schemes to access the audio samples into the
OMAP-L138 experimenter. Each of these allows to transfer samples from the AIC3106
codec to the DSP C6748. Two techniques, using polling, or interrupts bring the data
sample by sample. In the former case, it is the responsibility of the program to test
whether a new sample is available at the input. In the latter case, an interrupt is triggered
each time a new sample is available, that is, at each sampling period. Of course, the
processing of the sample has to occur within a sampling period, otherwise, there will be
an overrun and the output will be set to zero. A third method, based on DMA, transfers
blocks of samples directly from the codec to the memory without CPU intervention. This

17
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allows to transfer a large amount of samples while the CPU processes another block of
samples. That method will be discussed in details in Chapter 5. That last method is
particularly useful for frame-based signal processing, for example the FFT algorithm.

3.1 Data format

The AIC3106 codec is configured to convert samples of both left and right channels to
16-bit signed integers. Both channels are then combined together to form 32-bit samples
which are next sent to the processor via the McASP interface. Access to the ADC and the
DAC is made through the following functions.

• int32_t input_sample()

• int16_t input_left_sample(), int16_t input_right_sample()

• void output_sample(int32_t out_data)

• void output_left_sample(int16_t out_data)

• void output_right_sample(int16_t out_data)

Fonctions input_sample() and output_sample() read and write both left and right chan-
nels. The other functions allows to manipulate each channel separately. The samples are
received in a union structure. This allows to access either one 32-bit integer containing
both left and right channels, or to access one channel at a time.

1 typedef union {
2 uint32_t u int ;
3 short channel [ 2 ] ;
4 } AIC31_data_type ;

This union defines a type AIC31_data_type which can be used to store 32-bits values read
from the codec. That union is defined in the file L138_aic3106_init.h. A variable of
that type can access each channel using the constants LEFT and RIGHT defined in the
same file. The following code excerpt reads the samples corresponding to the left and right
channels.

1 AIC31_data_type codec_data ;
2 codec_data . u int = input_sample ( ) ;
3 short l e f t_sample = codec_data . channel [LEFT ] ;
4 short right_sample = codec_data . channel [RIGHT ] ;

Note that the samples can be converted to floating point values using a cast operator:
float sample = (float)left_sample;
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1 #include "L138_aic3106_init . h"
2
3 void main (void ) {
4 uint32_t sample ;
5
6 L138_ in i t i a l i s e_po l l (FS_48000_HZ , ADC_GAIN_0DB, DAC_ATTEN_0DB) ;
7 while (1 ) {
8 sample = input_sample ( ) ;
9 output_sample ( sample ) ;

10 }
11 }

Figure 3.2: Main loop of a polling DSP program.

3.2 Polling

In that communication scheme, the processor has to query the codec at regular time
intervals to check whether a new sample is available or not. Thus, at each sampling
period, the DSP queries the codec and if a sample is available, it transfers it to its internal
registers via the McASP serial port. Figure 3.2 shows the main loop of a program using
polling to read the samples.

Functions L138_initialise_poll(), input_sample() et output_sample() are defined
in the file L138_aic3106_init.c. The initialization function sets the DSP registers
and configures the multichannel serial port McASP. This function calls some other low-
level functions which will not be described in this course. Some of these functions are
defined in the board support library of the EVM board (evmomapl138_bsl.lib).The ini-
tialization function L138_initialise_poll() takes three parameters: the sampling fre-
quency, the ADC gain, and the DAC attenuation. The functions input_sample() and
output_sample() allow to transfer pairs of samples (left and right channels) between the
C6748 and the AIC3106. In the polling mode, the input_sample() function tests the
ready bit (RRDY) of the McASP control register 12 (SRCTL12) until the latter notifies
that new samples are ready to be read and to be received in the register XRBUF12. The
output_sample() tests the transmission bit (XRDY) of the McASP control register 11
(SRCTL11) until it notifies that the codec is ready to receive a new output sample. The
output sample will next be sent to the XRBUF11 register. Note that in this mode, the
processing has to be done within a sampling period, otherwise some samples are missed
and the output becomes unpredictable.

To use the polling mode, you need to include the following files to your project :

• L138_aic3106_init.h

• L138_aic3106_init.c

• linker_dsp.cmd

• vectors_poll.asm
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1 #include "L138_aic3106_init . h"
2
3 i n t e r r up t void i n t e r rup t4 (void ) { // i n t e r r u p t s e r v i c e rou t ine
4 uint32_t sample ;
5
6 sample = input_sample ( ) ;
7 output_sample ( sample ) ;
8 return ;
9 }

10
11 void main (void ) {
12
13 L138_ in i t i a l i s e_ in t r (FS_48000_HZ , ADC_GAIN_0DB, DAC_ATTEN_0DB) ;
14 while (1 ) ;
15 }

Figure 3.3: Main loop of a interrupt-based DSP program.

3.3 Interrupts

In that scheme, an CPU interrupt is triggered when a new sample is ready to be read.
Most of the examples used in this course use that interrupt-based technique for real-time
I/O. Figure 3.3 shows an example of interrupt-driven program.

As explained in Section 1.2.2, when a new sample arrives to the McASP serial port,
event #61 MCASP0_INT is triggered. The DSP is configured to route this event to
CPUINT4, which is one of the 12 non-maskable interrupts. The Interrupt Service Fetch
Packet (ISFP) corresponding to INT4 contains one single branch instruction to the func-
tion interrupt4(). Therefore, each time a new sample is available, the CPU is interrupted
and the function interrupt4() is executed. This function is shown in Figure 3.3. The
function has to retrieve the samples and can process them. In this example, it only reads
the input samples and writes them back to the output. If you execute this code, the signal
will simply pass through the DSP without any modification.

Since the CPU is interrupted at each sampling period, the main function is very simple.
Indeed, it contains a single call to the initialization function, and then it starts an infinite
loop. The loop will next be interrupted at each sampling period. Note that if the processing
algorithm is too much time consuming, it will be interrupted at the next sampling period,
leading again to unpredictable behavior.

To use the polling mode, you need to include the following files to your project :

• L138_aic3106_init.h

• L138_aic3106_init.c

• linker_dsp.cmd

• vectors_intr.asm

3.4 Direct Memory Access (DMA)

The C6748 processors has a Direct Memory Access module (EDMA3, for Enhanced Direct
Memory Access) that transfers blocks of samples between memory zones. The main ad-
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vantage of using DMA against polling or interrupt driven processing, is that it can transfer
data without any intervention of the CPU. Therefore, the DMA module can be configured
to be synchronized with the codec and transfer the samples directly in a buffer in the
memory. While the DMA module transfers the data, the CPU can process another buffer.
When the DMA finishes its transfer of N samples, it triggers an interrupt so that the CPU
knows that new data is available. Thus, instead of triggering an interrupt at each new
sample, the CPU is interrupted only when a block of N samples has been transferred.

DMA-based processing will be covered in detail in Chapter 5.

3.5 Volatile variables

When programming embedded hardware such as a DSP, it is common to have global
variables that can be modified by an interrupt service routine. At any time, the value of
such a variable may change without any action being taken by the code the compiler finds
nearly. For example, the interrupt4 routine used in the above examples could modify a
global variable that is later used by the main program. Such specific global variables must
be declared with the keyword volatile.

3.5.1 Syntax

To declare a variable volatile, just include the keyword volatile before or after the data
type of the variable definition. For example, the following declarations will declare the
variable foo to be a volatile integer. Note that it is also possible to declare a pointer to a
volatile variable.

1 volat i le int f oo ; // v a r i a b l e
2 int volat i le f oo ;
3
4 volat i le int∗ f oo ; // po in t e r
5 int volat i le ∗ f oo ;

3.5.2 Use

A variable should be declared volatile whenever its value could change unexpectedly. In
practice, only three types of variables could change.

• Memory-mapped peripheral registers;

• Global variables modified by an interrupt service routine;

• Global variables within a multi-threaded application.

Only the two first cases are relevant to this course. In practice, you will only have to deal
with the second type of variables. The first case is handled by the library used in the
course. Both cases are described below.
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3.5.2.1 Peripheral registers

Embedded systems such as a DSP board contain hardware, usually with sophisticated
peripherals. These peripherals contain registers whose values can change asynchronously
to the program flow. Consider for example a 8-bit status register at address 0x1234. An
typical example would be to poll the status register until it becomes non-zero. An incorrect
implementation is given below.

1 int∗ ptr = ( int ∗) 0x1234 ;
2
3 // wai t f o r r e g i s t e r to become non−zero .
4 while (∗ ptr == 0) ;
5 // do something e l s e .

This code will fail as soon as you turn the optimizer on. The compiler will generate as-
sembly language that looks like this:

1 mov ptr , #0x1234 mov a , @ptr loop bz loop

Having already read the variable’s value into the accumulator, there is no need to read it
again since the value will always be the same, according to the written code. Therefore,
the loop will end up infinite because the compiler does not know that the variable can be
modified by an external peripheral. To make that code work properly, we need to modify
it as follows.

1 volat i le int∗ ptr = ( volat i le int ∗) 0x1234 ;
2
3 // wai t f o r r e g i s t e r to become non−zero .
4 while (∗ ptr == 0) ;
5 // do something e l s e .

And the assembly language will look like this.

1 mov ptr , #0x1234
2 loop mov a , @ptr
3 bz loop

3.5.2.2 Interrupt service routines

Interrupt service routines often set variables that are tested in the main code. For ex-
ample, the McASP serial port generates an interruption when a new sample is ready to
be read. The interrupt service routine might set a global flag to be tested by the main code.
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1 int sample_ready = FALSE;
2
3 i n t e r r up t void i n t e r rup t4 (void ) {
4 . . .
5 i f ( new_sample_arrived ) {
6 sample_ready = TRUE;
7 }
8 . . .
9 }

10
11 void main ( ) {
12 . . .
13 while ( ! sample_ready ) {
14 // wai t
15 }
16 . . .
17 }

With the optimization turned off, this code might work correctly. However, with the
optimization set, the compiler has no idea that sample_ready can be changed within an
ISR. As far as the compiler is concerned, the expression !sample_ready is always true
and therefore, the loop can never be exited. Consequently, the code after the while loop
may be removed by the optimizer. The solution to that problem is to declare the variable
sample_ready to be volatile. Then, the optimizer will take that into account and will
not discard the loop code.



Chapter 4

Filtering

Filtering is one of the most common DSP operations. Filtering can be used for noise
suppression, signal enhancement, removal or attenuation of a specific frequency, or to
perform special operations such as differentiation, integration, etc. Filters can be thought
of, designed and implemented in either the time domain or the frequency domain. There
are two main types of filtering techniques. The first kind of filters are the Finite Impulse
Response (FIR) filters. Their non-recursive version directly implements the convolution
operation with a finite impulse response. The second kind of filters are the Infinite Impulse
Response Filters (IIR). These filters are always recursive as they use feedback information
to compute their output.

This chapter is a small introduction to filtering. This is not an exhaustive course on filter
design. It gives some information on how to implement digital filters in an efficient way
on a DSP.

4.1 Finite Impulse Response (FIR) Filters

FIR filters are filters whose impulse response is of finite duration. These filters are very
stable, in contrast to IIR filters (See Section 4.2). Most FIR filters are non-recursive and
are carried-out by convolution. Thus, the output y of a linear time invariant (LTI) system
is determined by convolving its input signal x with its impulse response h. For a discrete-
time filter, the output is therefore a weighted sum of the current sample and a finite number
of previous input samples. Equation 4.1 describes this operation. The impulse response of
a Nth-order FIR filter has a length of N + 1 samples.

y[n] =
N∑
i=0

h[i]x[n− i] = h[0]x[n] + h[1]x[n− 1] + · · ·+ h[N ]x[n−N ] (4.1)

Figure 4.1 shows the block diagram of a non-recursive FIR filter. The diagram is a graphical
representation of Equation 4.1.

4.1.1 Windowed-sinc filters

A common category of FIR filters are windowed-sinc filters. These filters are used to
separate one band of frequencies from another. They are very stable and can be pushed
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Figure 4.1: Block diagram of a non-recursive FIR filter.
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Figure 4.2: Windowed sinc filter kernel.

to great performance levels. The ideal filter kernel (impulse response) of a windowed-sinc
filter is shown in Figure 4.2. The curve is of the general form sin(x)/x, called the sinc
function, More precisely, Equation 4.2 is interesting. This function is obtained by applying
the inverse Discrete Fourier Transform (DFT) to an ideal low-pass or high-pass filter. For
a low-pass filter, use the + sign and for a high pass filter, use the - sign. fc corresponds to
the cutoff frequency, expressed as a fraction of the sampling rate.

h[i] = ±sin(2πfci)
iπ

(4.2)

However, the impulse response described by Equation 4.2 has 3 problems.

• It involves a division by 0 for i = 0. Therefore, the following values must be adopted:{
h[0] = 2fc for a low-pass filter
h[0] = 1− 2fc for a high-pass filter

• It continues to both +∞ and −∞ without dropping to zero (infinite length).

• It has non-zero values h[i] for i < 0 (non-causal filter).

Therefore, to be able to use the sinc filter on a computer, we first need to truncate the
filter to M + 1 points, symmetrically chosen around the main lobe, where M is an even
number. All samples outside these M + 1 points are set to zero, or simply ignored. Next,
the entire sequence of samples is shifted to the right so that it runs from 0 to M . This
allows the filter kernel to be represented using only positive indexes. This modified kernel
however does not have an ideal frequency response. Indeed, there is excessive ripple in the
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(a) Truncated sinc frequency response (b) Windowed-sinc frequency response

Figure 4.3: Windowed sinc frequency responses. Source: [9]

Figure 4.4: Blackman and Hamming windows. Source: [9]

passband and poor attenuation in the stopband, as shown in Figure 4.3a. These problems
result from the abrupt discontinuity at the ends of the truncated sinc function.

To improve the filter’s frequency response, the kernel can be multiplied by a window in
the time domain, for example, the Blackman window. This actually results in the
windowed-sinc filter kernel. The windowing allows to reduce the abruptness of the trun-
cated ends and therefore improve the frequency response. Figure 4.3b shows the resulting
frequency response. The passband is flat ant the stopband attenuation is good. Other
windows exist. Another common window is the Hamming window. Both Blackman and
Hamming windows are shown in Figure 4.4. The equations of the Hamming and Blackman
windows are respectively given by equation 4.3 and equation 4.4.

w[i] = 0.54− 0.46cos(2πi/M) (4.3)

w[i] = 0.42− 0.5cos(2πi/M) + 0.08cos(4πi/M) (4.4)

4.1.2 Windowed-sinc filters design

To design a windowed-sinc filter, two parameters must be selected: the cutoff frequency,
fc, and the length of the filter kernel, M . The cutoff frequency is expressed as a fraction of
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the sampling rate, and must therefore be between 0 and 0.5. The value M sets the roll-off
according to the approximation

M ≈ 4

BW
(4.5)

where BW is the width of the transition band, which is also expressed as a fraction of
the sampling frequency. Note that the time required for a convolution is proportional to
the length of the impulse response. Therefore, Equation 4.5 expresses a trade-off between
computation time and filter sharpness.

Once the value of M and BW are computed, the final equation of a low-pass filter, multi-
plied by the Blackman window is given by the following equation.

h[i] =
sin(2πfc(i−M/2))

π(i−M/2)

[
0.42− 0.5cos

(
2πi

M

)
+ 0.08cos

(
4πi

M

)]
(4.6)

To design a band-pass filter, we need to convolve a low-pass filter with a high-pass filter,
which corresponds to the multiplication of both frequency transfer functions. To design a
band-reject filter, we need to add a low-pass filter to a high-pass filter, which corresponds
to the addition of both frequency transfer functions.

4.2 Recursive Filters

Recursive filters are an efficient way of achieving a long impulse response, without hav-
ing to perform a long convolution. They execute very rapidly, but have less performance
and flexibility than other digital filters. Recursive filters are also called Infinite Impulse
Response (IIR) filters, since their impulse responses are composed of decaying exponen-
tials. This distinguishes them from digital filters carried out by convolution, described in
Section 4.1.

Recursive filters have an equation of the following general form.

y[n] = a0x[n] + a1x[n− 1] + a2x[n− 2] + · · ·+ b1y[n− 1] + b2y[n− 2] + · · · (4.7)

or

y[n] =

M∑
k=0

akx[n− k]−
N∑
l=1

bly[n− l] (4.8)

Each sample in the output signal is found by multiplying the values from the input signal
by the “a” coefficients, multiplying the previously calculated values from the output signal
by the “b” coefficients, and and adding the products together. Note that there isn’t a value
for b0 because it corresponds to the sample being calculated. Equation 4.7 is called the
recursion equation. The “a” and “b” values that define the filter are called the recursion
coefficients. Recursive filters are useful because they bypass a longer convolution.

4.2.1 Narrow-band filters

A common need in electronics and DSP is to isolate a narrow band of frequencies from
a wider bandwidth signal. For example, we may want to eliminate 50 hertz interference
in an instrumentation system, or isolate signaling tones in a telephone network. Two
types of frequency responses are available: the band-pass and the band-reject (also called
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a0 = 1−K
a1 = 2(K −R)cos(2πf)
a2 = R2 −K
b1 = 2Rcos(2πf)

b2 = −R2

Figure 4.5: Band-pass 2nd order filter coefficients. Source: [9]

a0 = K

a1 = −2Kcos(2πf)
a2 = K

b1 = 2Rcos(2πf)

b2 = −R2

Figure 4.6: Band-reject 2nd order filter coefficients. Source: [9]

notch) filters. Figure 4.7 shows the frequency response of these filters, with the recursion
coefficients provided by the following equations. Figure 4.5 gives the equations of a second
order band-pass filter, and Figure 4.6 gives the equations of a second order notch filter. In
each case, we have

K =
1− 2Rcos(2πf) +R2

2− 2cos(2πf)
(4.9)

and
R = 1− 3BW (4.10)

Two parameters must be selected before using these equations: f , the center frequency,
and BW , the bandwidth. Both of these must be expressed as a fraction of the sampling
frequency, and therefore must be between 0 and 0.5. From these values, we can calculate

Figure 4.7: Band-pass and band-reject filters frequency responses. Source: [9]
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the intermediate variables K and R and then the recursion coefficients. Figure 4.7 shows
the performances of filters designed using these coefficients. The band-pass has relatively
large tails extending from the main peaks. This can be improved by cascading several
stages.

4.2.2 IIR filters structures

Several different filter structures can be used to represent an IIR filter in a DSP.

4.2.2.1 Direct Form I Structure

Direct Form I structure is shown in Figure 4.8. With this structure, the filter described
by equation 4.7 can be realized. For an Nth-order filter, this structure contains 2N delay
elements, each represented by Z−1. For example, a second-order filter with N = 2 will
contain four delay elements. Direct Form I is the most straightforward implementation of
the recursive equation of an IIR filter.

z
−1

z
−1

z
−1

z
−1

y[n]x[n]
a0

a1

a2

b1

b2

Figure 4.8: IIR Filter Direct Form I

4.2.2.2 Direct Form II Structure

The Direct Form II structure is shown in Figure 4.9. It is one of the most commonly used
structures. It requires half as many delay elements as in the direct form I. For example,
a second-order filter requires two delay elements Z−1, as opposed to four with the direct
form I.
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Figure 4.9: IIR Filter Direct Form II

From the block-diagram, it can be seen that

v[n] = x[n] + b1v[n− 1] + b2v[n− 2] + · · ·+ bNv[n−N ] (4.11)

and that
y[n] = a0v[n] + a1v[n− 1] + a2v[n− 2] + · · ·+ aNv[n−N ] (4.12)

4.2.2.3 Cascade structure

A transfer function H(z) can be factorized as

H(z) = CH1(z)H2(z) . . . Hr(z) (4.13)

An overall transfer function can be represented with cascaded transfer functions. For each
section, the direct form II structure or its transpose version can be used. Typically, an Nth
order filter is decomposed in cascaded second-order sections. The transfer function H(z)
in terms of cascaded second-order transfer functions can be written as

H(z) =

N/2∏
i=1

b0i + b1iz
−1 + b2iz

−2

1 + a1iz−1 + a2iz−2
(4.14)

For example for a 4th order filter, we have

H(z) =
(b01 + b11z

−1 + b21z
−2)(b02 + b12z

−1 + b22z
−2)

(1 + a11z−1 + a21z−2)(1 + a12z−1 + a22z−2)
(4.15)

The quantization error associated with the coefficients of an IIR filter depends on the
amount of shift in the position of its poles and zeros in the complex plane. This implies
that the shift in the position of a particular pole depends on the positions of all the other
poles. To minimize this dependency of the poles, an Nth order IIR filter is typically
implemented as cascaded second-order sections.
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In practice Matlab’s fdatool function is capable of designing an IIR filter and outputs
its coefficients in second-order sections formats (SOS). Matlab outputs the coefficients in
two matrices. The first one contains one row per second-order section and the second
matrix contains gains for each stage. To output the coefficients in a suitable format,
the function L138_iirsos_coeffs.m provided with this course creates a file that you can
include in your C programs. The function automatically multiplies the coefficients by the
provided gains.

When programming the DSP, keep in mind that the output of each section is the input
of the next section. To compute the output of one section, simply use the direct form II
structure, as explained in Section 4.2.2.2.
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Frame-based signal processing

5.1 Frame-based vs Sample-based processing

Until now, the real-time processing of the signal was made on a sample-by-sample basis.
Thus, an input sample x(t) was converted to its digital form x[n] by the ADC and trans-
ferred to the CPU for processing. Then the output sample y[n] was computed and then
converted by the DAC to its analog form y(t). Although this processing scheme has its
advantages, as it minimizes the system latency by acting on each sample as soon as it is
available, it also has serious drawbacks.

One implication of real-time sample-based DSP is that all the processing must be completed
in the time between two samples. For some DSP algorithms, it becomes difficult, especially
for fast sampling rates. For example, for a sampling frequency FS = 48 kHz, we only have
Ts = 1/(48 × 103) = 20.83µs to process both the left and the right channel samples, or
10.42µs per sample. In the OMAP-L138 experimenter, the processor has a frequency of
300 MHz, which gives about 3126 clock cycles per sample. Note that there is also an
overhead time associated with codec transfers, memory access, instruction and data cache
latency and other factors. Thus, complex algorithms with many memory transfers could
easily exceed this maximum number of clock cycles.

Another implication is that only one sample is available for processing. Some class of DSP
algorithms, such as the Fast Fourier Transform (FFT) for example, require more than
one sample for processing. Indeed, a number of contiguous samples has to be available
at any given time, which is impossible when using a sample-by-sample scheme. Moreover,
processing each sample individually interrupts the CPU at each sampling period. Thus, for
each sample, the state of the processor must be saved in order to be restored, control state
must also be preserved and then execution must be restarted at the interrupted point. This
interrupt process greatly reduces the performance of the DSP. To remove this limitation,
hardware components, referred to as direct memory access (DMA) controllers are usually
included as peripherals of DSP systems. Once the DMA controller is programmed to
respond to a device that is sourcing or sinking the data, it will automatically perform the
required transfers to or from a memory buffer without any processor intervention. When a
buffer has been filled or emptied, the DMA controllers interrupts the DSP. Thus, the DSP
is freed from the task of data transfers and it can use all its resources to be focused on the
computationally-intense processing once a buffer of data is available.

The buffer typically contain hundreds or thousands of samples. Such a block of samples
is called a frame. Note that in order to keep a real-time constraint, the size of the frames
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Figure 5.1: Architecture of EDMA3 controller. Source: [6]

should be carefully selected. Indeed, as the frame length increase, the latency of the
system will also increase. This depends of course on the sampling frequency. By default,
in the examples of this course, the frame size is set to 2048 at a sampling frequency
FS = 48 kHz. The latency using these settings is minimal, while allowing the DSP to
process a great number of samples. Therefore, the latency should be computed according
to the application.

5.2 Direct Memory Access

Frame-based signal processing can be easily enhanced by using Direct Memory Access on
the OMAP-L138 processor. Direct Memory Access (DMA) allows to transfer data from
one area of memory to another without CPU intervention, and therefore without any CPU
instruction, nor interruption. Therefore, during a DMA transfer, the CPU can perform
other processing tasks while data is being moved between memory areas. This improves
the computational efficiency of a DSP application.

In the OMAP-L138 processor, DMA is implemented using the enhanced direct memory
access controller (EDMA3). Detailed information about the EDMA3 controller can be
found in the TMS320C6000 Peripheral Guide [1]. This section explains how the DMA
transfers are being handled for signal processing.

5.2.1 Architecture

The EDMA3 controller of the OMAP-L138 processor is made of a channel controller and a
transfer controller. The channel controller is just a user interface to the transfer controller,
which is responsible for reading and writing data from / to memory. The channel controller
keeps track of the number of concurrent DMA transfers and schedules reads and writes
to be carried by the transfer controller. The EDMA3 controller contains two channel
controllers, EDMA3_CC0 and EDMA3_CC1, each capable of handling up to 32 DMA
transfers concurrently. A DMA transfer is associated to an EDMA3 channel in the C6748
processor. Thus, there are 32 EDMA3 channels available. The architecture of the EDMA3
controller is summarized in Figure 5.1.
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Figure 5.2: List of synchronization events associated with EDMA3 channels. Source: [3]

5.2.2 DMA transfer

To perform a DMA transfer, a number of parameters must be set into the EDMA3 con-
troller. For a transfer to happen, at least a source address and a destination address as
well as the number of bytes to be transferred should be specified. Moreover, the event
triggering a DMA transfer must be programmed. In addition, it is necessary to determine
how the completion of the transfer will be signaled to a program running in the CPU.
DMA transfers can either be event-triggered, meaning that the transfers are initiated by
peripheral devices or external hardware, or manually-triggered, meaning that the transfers
are initiated by the CPU writing to the 32-bit EDMA3 event set register (ESR).

Event-triggered transfers In this case, a peripheral initiates the DMA transfers. Each
transfer is associated with an EDMA3 channel and each channel is in turn associated with
a synchronization event. The list of synchronization events is shown in Figure 5.2.

In this course, the exercises and projects make use of event #0 McASP0 Receive and event
#1 McASP0 Transmit, which are synchronized with the operations of the AIC3106 codec.
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Figure 5.3: Three-dimensional data transferred by the EDMA3 controller. Source: [6]

Synchronization events cause bits in the EDMA3 Event Register (ER) to be set and then,
DMA transfers will be triggered if the corresponding bit in the EDMA3 Event Enable
Register (EER) is set.

Manually-triggered transfers In this case, the CPU writes to the Event Set register
(ESR) to manually trigger transfers, regardless of the bits set in the EER. Each bit of the
ESR corresponds to one of the 32 EDMA3 channels in the corresponding channel controller.
For example, setting bit 5 in the ESR will manually trigger a transfer on channel #5.

Data transfer The data transferred by the EDMA3 controller are a three-dimensional
block of CCNT frames of BCNT arrays containing each ACNT bytes, as shown in Fig-
ure 5.3. Transfers can be configured as either A-synchronized, in which case each an event
triggers the transfer of a single array of ACNT bytes, or AB-synchronized, in which case
each event triggers the transfer of a single frame of BCNT arrays of ACNT bytes. In this
course, the examples use A-synchronized transfers with ACNT = 4, which corresponds to
two 16-bit samples (left and right channels) read from or written to the AIC3106 codec,
BCNT = Bufcount/2, where Bufcount corresponds to a constant, and CCNT = 1.
Therefore, each EDMA3 transfer moves a block of Bufcount 16-bit samples (left and right)
per sampling period. Indeed, each McASP0 event starts the transfer of two 16-bit samples
(ACNT = 4 bytes = 32 bits) and Bufcount/2 McASP0 events are required to complete
one block transfer. Note that the McASP0 events occur at the AIC3106 codec sampling
rate. For realtime I/O, two concurrent DMA transfers are needed: one from the ADC to
memory and another onf from memory to the DAC.

EDMA3 parameter RAM Each DMA transfer is specified by a set of parameters
stored in a 32-byte block of parameter RAM (PaRAM). There is one block of PaRAM
per EDMA3 channel. There is one block for each of the 32 channels and 96 blocks which
can be used for parameter set linkage (explained later), for a total of 128 PaRAM sets.
Figure 5.4 shows the format of the parameter RAM of the EDMA3 controller. The fields
of a parameter RAM set are described below.

• Channel options (OPT) This word of 32 bits specifies the configuration of a trans-
fer. The relevant bits are bit 20 TCINTEN, bits 17-12 TCC and bit 2 SYNCDIM.
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Figure 5.4: Format of the parameter RAM. Source: [6]

• Channel source (SRC) and desination (DST) This word specifies the addresses
of the source and destination of the data to be transferred.

• ACNT, BCNT, CCNT Unsigned 16-bit values representing the number of bytes
in an array, the number of arrays and the number of frames.

• SRCBIDX Address offset between the arrays in a source frame.

• DSTBIDX Address offset between the arrays in a destination frame.

• Link Address (LINK) This is a 16-bit address of the PaRAM block from which
the parameters will be copied when the current parameter set is exhausted. This
field is used for Ping-Pong buffering (explained later).

• BCNTRLD Reload value of the BCNT field when BCNT has decremented to 0.

• SRCCIDX Address offset between the frames in a source block.

• DSTCIDX Address offset between the frames in a destination block.

Starting a transfer In this course, McASP0 receive or transmit event is used to trigger
an EDMA3 transfer. Therefore the EDMA3 is synchronized with the McASP0 and the
AIC3106 codec. Therefore, according to Figure 5.2, channels #0 and #1 are used and
therefore, PaRAM sets #0 and #1 need to be configured. In addition, it is necessary to
set the bits 0 and 1 in the Event Enable Register (EER) of the EDMA3 controller.

In the case of an A-synchronized transfer, after a triggering event, BCNT is decremented
by 1, SRC is incremented by SRCBIDX and DST is incremented by DSTBIDX. When
BCNT reaches 0, the A-synchronized transfer is completed. If TCINTEN bit in OPT
field is set, then a CPU event is caused and the bit TCC in the EDMA3 event pending
register (EPR) is set. A CPU interrupt is triggered only if the system event caused by a
transfer completion is routed to a CPU interrupt through the interrupt selector, specified
in INTMUXn. The interrupt must be enabled in the register IER. For example, in this
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course system event #8 EDMA3_0_CC0_INT1 is routed to CPU interrupt 4 by writing
the value 8 in INTMUX1.

Once a transfer is completed, if the LINK field is not set to null, then the PaRAM set
is refreshed by copying into it the content of the PaRAM set specified in the LINK field.
This allows to switch buffers very easily as explained below.

5.3 DMA in practice

5.3.1 Ping-Pong buffering

For real-time signal processing, we use a ping-pong buffering scheme in this course. This
allows to enhance the performance of a program. In that kind of scheme, two sets of
input and output buffers are used. While the ping input buffer is being filled with data
coming from the codec, and the ping output buffer is sent to the DAC, the content of
the pong input buffer are processed and the results are stored in the pong output buffer.
Thus, while the EDMA3 controller transfers data to some buffers, the CPU processes
other buffers, maximizing the performance. Once a transfer is completed, the buffers are
swapped.

This scheme is implemented in the OMAP-L138 using the EDMA3 linking mechanism.
Two parameter sets PaRAM #0 and #1 are configured and two more sets are configured
to update each channel. Thus, initially, the SRC and DST fields for PaRAM set #0 are set
to McASP0 input and the ping input buffer, and the LINK field is set to another PaRAM
set (for example PaRAM #36), in which the SRC and DST fields are set to the McASP0
input and pong input buffer. Therefore, on completion of one transfer from the ADC to the
ping input buffer, the parameters are updated to transfer data from ADC to pong input
buffer instead of the ping one. This allows to implement easily the ping-pong buffering
scheme.

5.3.2 Project organization

The files needed to create a DMA based project are stored in the folder C:\DSP\DMA.
To use DMA, just create a project as explained in Chapter 2, then add the files isr.c,
prototypes.h, L138_aic3106_init_edma.c, L138_aic3106_init_edma.h and the linker
and interrupt vector files as in Chapter 2.

The DMA initialization function, EDMA3_PaRAM_setup(), is defined in the file isr.c.
This file also contains the declaration of the PING and PONG buffers and the defini-
tion of initialization functions, as well as the interrupt function called each time a buffer
is full. It also contains the function process_buffer() in which the processing must
be implemented. The size of the buffer is defined in the constant BUFCOUNT, in the file
isr.c. By default, the size is set to 1024. Note that the real size of a stereo buffer
is twice the size defined in BUFCOUNT. Thus, a ping or pong buffer has a real size of
BUFLENGTH = BUFCOUNT × 2. The buffers are stored in external SDRAM, al-
lowing a maximum of 128 Mb of data storage. Keep in mind that a bigger buffer will
create more latency and thus decrease the real-time efficiency of the program.

The interrupt4() function simply switches the pointers of the Ping / Pong buffers. It also
sets a flag buffer_full = 1. When this flag is set to 1, the function process_buffer()
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1 int main (void ) {
2 L138_init ia l i se_edma (FS_48000_HZ ,ADC_GAIN_0DB,DAC_ATTEN_0DB) ;
3 ze ro_buf f e r s ( ) ;
4
5 while (1 ) {
6 while ( i s_bu f f e r_ fu l l ( ) ) ;
7 proce s s_buf f e r ( ) ;
8 }
9 }

Figure 5.5: Main function in main.c.

1 #define BUFCOUNT 1024
2 #define BUFLENGTH (BUFCOUNT ∗ 2)
3
4 #pragma DATA_SECTION(ping_IN , " .EXT_RAM")
5 #pragma DATA_SECTION(pong_IN , " .EXT_RAM")
6 #pragma DATA_SECTION(ping_OUT, " .EXT_RAM")
7 #pragma DATA_SECTION(pong_OUT, " .EXT_RAM")
8
9 int16_t ping_IN [BUFLENGTH] ;

10 int16_t pong_IN [BUFLENGTH] ;
11 int16_t ping_OUT[BUFLENGTH] ;
12 int16_t pong_OUT[BUFLENGTH] ;
13
14 int16_t ∗pingIN = &ping_IN [ 0 ] ;
15 int16_t ∗pingOUT = &ping_OUT [ 0 ] ;
16 int16_t ∗pongIN = &pong_IN [ 0 ] ;
17 int16_t ∗pongOUT = &pong_OUT [ 0 ] ;
18
19 volat i le int bu f f e r_ f u l l = 0 ;
20 int procBuf f e r ;

Figure 5.6: DMA buffers declarations in isr.c.

is executed and the processing is actually done. Do not forget to reset the flag at the end
of the processing function to avoid unpredictable behavior.

The process_buffer() function defines two local pointers for the Ping or Pong buffers. It
then checks which buffer to use. Next it processes the signal. By default, it simply transfer
the samples from the input buffer to the output buffer. The code of any filter must be
programmed in that function.

Figure 5.6 shows the initialization of the buffers in the file isr.c. The pragma directives
inform the compiler that the ping and pong buffers should be created in external memory.

Figure 5.7 shows the interrupt routine which checks whether the Ping or Pong buffer should
be used next. This routine then sets the buffer full flag to 1 so that the processing can be
done. Finally, Figure 5.8 shows the processing function.

This file organization allows to have a very simple main.c file, which only initializes the
buffers and the DSP and starts the main loop. At each loop iteration, we check the
buffer_full flag. When it is set to 1, the process_buffer is executed. The main function
is shown in Figure 5.5.
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1 i n t e r r up t void i n t e r rup t4 (void ) { // i n t e r r u p t s e r v i c e rou t ine
2
3 switch (EDMA_3CC_IPR) {
4
5 case 1 : // TCC = 0
6 procBuf f e r = PING; // proces s ping
7 EDMA_3CC_ICR = 0x0001 ; // c l e a r EDMA3 IPR b i t TCC
8 break ;
9

10 case 2 : // TCC = 1
11 procBuf f e r = PONG; // proces s pong
12 EDMA_3CC_ICR = 0x0002 ; // c l e a r EDMA3 IPR b i t TCC
13 break ;
14
15 default : // may have missed an i n t e r r u p t
16 EDMA_3CC_ICR = 0x0003 ; // c l e a r EDMA3 IPR b i t s 0 and 1
17 break ;
18 }
19
20 EVTCLR0 = 0x00000100 ;
21 bu f f e r_ f u l l = 1 ; // f l a g EDMA3 t r an s f e r
22 return ;
23 }

Figure 5.7: DMA Interrupt routine in isr.c.

1 void proce s s_buf f e r (void ) {
2
3 int16_t ∗ inBuf , ∗outBuf ; // po in t e r s to proces s b u f f e r s
4 int16_t left_sample , r ight_sample ;
5 int i ;
6
7 i f ( procBuf f e r == PING) { // use ping or pong b u f f e r s
8 inBuf = pingIN ;
9 outBuf = pingOUT ;

10 }
11
12 i f ( procBuf f e r == PONG) {
13 inBuf = pongIN ;
14 outBuf = pongOUT;
15 }
16
17 /∗ proces s b u f f e r here ∗/
18 for ( i = 0 ; i < (BUFCOUNT) ; i++) { // s imple pass through
19
20 le f t_sample = ∗ inBuf++;
21 right_sample = ∗ inBuf++;
22
23 ∗outBuf++ = left_sample ;
24 ∗outBuf++ = right_sample ;
25 }
26
27 bu f f e r_ f u l l = 0 ; // i n d i c a t e t ha t b u f f e r has been processed
28 return ;
29 }

Figure 5.8: Process buffer function in isr.c.
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Figure 5.9: Basic idea of the Overlap-Add method.

5.4 Frame-based convolution

This section explains the overlap-add algorithm to compute convolutions by frames in a
DSP. In real-time signal processing, an input signal is constantly fed into the DSP to be
processed, and then the associated output is ready without delay (at least, not perceptible
delay). If we have a long input signal that continues in time indefinitely, we do not want
to wait until the entire input signal has terminated before filtering it. This would be
equivalent to doing something “off-line” after all the input is available. Moreover, the DSP
does not have an infinite memory to store the signal. So instead, we would like to filter
the blocks of input as they come in.

To achieve such a block based filtering, we need to use an adapted version of the convolution
algorithm, named the overlap-add algorithm. This process can then be enhanced by using
the Fast Fourier Transform, which will be explained in Chapter 6.

5.4.1 Overlap-Add

The Overlap-Add method is based on the observation that when we consider two discrete-
time signals xk[n] and h[n], with lengths L and M respectively, the resulting convolution
yk[n] = xk[n] ∗ h[n] has a length of L +M − 1. Using this idea, we can divide the input
stream x[n] into L-length blocks and convolve each block with h[n], and then sum all the
convolution outputs along the L-boundaries, as shown in Figure 5.9.

Using the EDMA controller described in the previous sections, we have an easy way of
splitting the input stream into fixed-length input blocks. Therefore, we can process each
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Figure 5.10: Tail resulting from convolution must be added to the next convolved block.

block separately using the overlap-add algorithm.

In Figure 5.9, the operation of convolving a very long signal x[n] with h[n] is equivalent
to the operation of convolving each L-block denoted xk[n] with h[n] and then conducting
addition judiciously to deal with the “tail” region from each block convolution, as it will
be explained next. An important aspect is that after convolving each block with h[n], the
resulting intermediate signal is L+M −1 samples in length, and therefore, we have M −1
extra samples at the end due to the convolution. These M − 1 extra samples must be
added to the first M − 1 samples of the next convolved block, as shown in Figure 5.10 1.

One main challenge in a real-time processing scenario is that the timing of completing a
block convolution needs to be approximately synchronized with the overall output speed
so that tail region may be added to the next block at the right time. If the process of
convolving each block is slower than outputting the samples of blocks already convolved,
then the tail region will not have the opportunity to be added to the next block, resulting
in an erroneous output. One way to deal with this is to slow down the rate of the output.
However, another much more attractive way is to make use of the Fast Fourier Transform
for convolutions. This will be described in the next chapter.

1Images from this section come from http://www.comm.utoronto.ca/~dkundur/course/real-time-
digital-signal-processing.



Chapter 6

Fast Fourier Transform

Fourier analysis describes the transformations between time and frequency domain repre-
sentations of signals. Four different forms of Fourier transformations (the Fourier transform
(FT), the Fourier Series (FS), the discrete-time Fourier transform (DTFT) and the discrete
Fourier transform (DFT)) are applicable to different classes of signals according to whether
they are discrete or continuous and whether they are periodic and aperiodic.

The DFT is the form of Fourier Transform analysis applicable to signals that are discrete
and periodic in both domains (time and frequency). Thus, it transforms a discrete, periodic
time domain sequence into a discrete, periodic frequency domain representation. A periodic
signal may be characterized entirely by just one cycle. If that signal is discrete, then one
cycle comprises a finite number of samples. Therefore, both forward and inverse DFTs
are described by finite summations as opposed to infinite summations or integrals. This
is very important in digital signal processing since it means that is is pratical to compute
the DFT using a digital signal processor, or digital hardware.

The Fast Fourier transform is a computationally efficient algorithm for computing the DFT.
It requires fewer multiplications than a more straightforward programming implementation
of the DFT and its relative advantage in this respect increases with the length of the sample
sequences involved. The FFT makes use of the periodic nature of twiddle factors and of
symmetries in the structure of the DFT expression. Applicable to spectrum analysis and to
filtering, the FFT is one of the most commonly used operations in digital signal processing.

6.1 Discrete Fourier Transform

The Discrete Fourier Transform for a finite segment of a digital signal containing N samples
x[0], . . . , x[N − 1] is defined as follows.

X[k] =< x, ejtk2π/N >=

N−1∑
t=0

x[t]e−jtk2π/N (6.1)

which corresponds to the inner product of the input signal with periodic basis functions.
Each basis function represents a frequency in the range 0 to the sampling frequency. The
inverse DFT expresses the time domain signal as a complex weighted sum of N phasors
with spectrum X[k]. It is defined as follows.

x[t] =
1

N

N−1∑
k=0

X[k]ejtk2π/N (6.2)

42
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Figure 6.1: Twiddle factors W kn
N for N = 8 represented as vectors in the complex plane.

The bins of the DFT are numbered 0, N − 1 but correspond to frequencies between
[−ωs/2, +ωs/2], where ωs corresponds to the sampling frequency. Since N corresponds
to the sampling rate, we need to divide the bin numbers by N to get the frequencies in
terms of fractions of the sampling rate. Thus, to compute the frequency corresponding to
a given bin number, we can use the following relation.

f =
bi
N
fs

where bi corresponds to the index of the bin, and fs is the sampling frequency.

6.2 Fast Fourier Transform

6.2.1 Forward FFT

The N -point complex DFT of a discrete-time signal x[n] can be written

XN [k] =
N−1∑
n=0

x[n]W kn
N (6.3)

where the constants W are referred to as twiddle constants or twiddle factors, where

WN = e−j(2π/N) (6.4)

Computing all N values of XN [k] involves the evaluation of N2 terms of the form x[n]W kn
N ,

each of which requires a complex multiplication. For larger N , the computational require-
ments of the DFT can be very great (N2 complex multiplications).

The FFT algorithm takes advantage of the periodicity

W k+N =W k (6.5)

and symmetry
W k+N/2 = −W k (6.6)

of WN (where N is even).
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1 typedef struct {
2 f loat r e a l ;
3 f loat imag ;
4 } COMPLEX;

Figure 6.2: Complex structure in fft.h.

Figure 6.1 illustrates the twiddle factors W kn
N for N = 8 plotted as vectors in the complex

plane. Due to the periodicity of W kn
N , the 64 different combinations of n and k used in

evaluation of Equation 6.3 result in only 8 distinct values. The FFT makes use of this small
number of precomputed and stored values rather than computing each one as it is required.
Another in which the FFT saves computational effort is by decomposing N -point DFTs
into combinations of N/2-point DFTs. The decompositions are carred out until 2-point
DFTs have been reached, which do not involve any multiplication. This allows to speed
up the process a lot.

The FFT is much faster then the classical DFT as its complexity is O(Nlog(N)), versus
O(N2) for the classical DFT.

6.2.2 Inverse FFT

The inverse discrete Fourier transform (IDFT) converts a discrete frequency domain se-
quence XN [k] into a corresponding discrete-time domain sequence x[n]. It is defined as

x[n] =
1

N

N−1∑
k=0

XN [k]W
−kn
N (6.7)

Comparing this with the forward DFT Equation 6.3, we can see that the forward FFT
algorithm described previously can be used to compute the inverse DFT if the following
changes are made:

1. Scale the result by 1/N .

2. Replace twiddle factors W kn
N by their complex conjugates W−kn

N .

6.2.3 FFT in practice

In this course, we make use of a small FFT library provided with the reference book [8]. The
library is composed of one fft.h available to you in the omap folder of your workstation.

The library first defines a complex structure in order to represent the signals as complex
vectors. The structure is declared at the beginning of the file fft.h as shown in Figure 6.2.
Therefore, the first thing to do when using the FFT is to copy the real samples to a complex
vector in order to use the library.

Figure 6.3 gives an example of a simple program computing the FFT of a cosine wave form
stored in a lookup table. The first step is to set the twiddle factors in a complex array.
Then, we can call the function fft which takes three parameters: (1) the input vector, (2)
the size of the FFT and (3) the twiddle factors vector. Note that the result of the FFT is
stored in the input vector. Thus the input data is overwritten with the spectrum of the
input signal.
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1 //
2 // N−po in t FFT of sequence s t o r ed in a lookup t a b l e
3 //
4
5 #include <s td i o . h>
6 #include <math . h>
7 #include " f f t . h"
8
9 #define PI 3.14159265358979

10 #define N 128
11 #define FREQ 800.0
12 #define FS 8000.0
13
14 COMPLEX samples [N ] ;
15 COMPLEX twidd le [N ] ;
16
17 void main ( ) {
18 int n ;
19
20 for (n = 0 ; n < N; ++n) { // s e t up tw i dd l e f a c t o r s
21 twidd le [ n ] . r e a l = cos (PI∗n/N) ;
22 twidd le [ n ] . imag = −s i n (PI∗n/N) ;
23 }
24
25 for (n = 0 ; n < N; ++n) { // t e s t f requency
26 samples [ n ] . r e a l = cos (2∗PI∗FREQ∗n/FS) ;
27 samples [ n ] . imag = 0 . 0 ;
28 }
29
30 f f t ( samples , N, twidd le ) ;
31 }

Figure 6.3: Example of the FFT library usage.

In that example, to restore the original signal, we should compute the inverse FFT in order
to retrieve the time-domain signal. To do that, we must compute another set of twiddle
factors (as explained in the previous section), and then call again the fft function. Then
it is important to scale down the signal by dividing each time-domain sample by N .

6.3 FFT Convolution

In Section 5.4, we detailed a method to perform convolutions by block rather than waiting
for the entire signal. However, computing convolution using the standard equation results
in a lot of computational effort. The process can be improved through the use of the FFT
in order to speed up the algorithm. Indeed, performing a convolution in the time domain
results in a simple multiplication in the frequency domain. The procedure to perform a
convolution with the FFT is described below.

1. Zero-pad the filter h[n] with K −M zeros, where K is the first power of two greater
than L+M − 1, where L is the length of one block of data, and M is the length of
the filter h.

2. Compute the K-point FFT of the zero-padded filter h[n] and save it.
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Figure 6.4: FFT overlap-add method.

3. Zero-pad each input segment xk[n] of length L with K−L zeros to make it the same
size as the filter.

4. Compute the K-point FFT of the segment.

5. Multiply sample-by-sample the two FFT results from Steps 2 and 4.

6. Take the inverse FFT of the resulting product to produce yk[n].

Next, we need to use the same overlap-add algorithm than for the classical convolution.
Indeed, the output blocks yk[n] need to only be of length L. Therefore, we need to save
the K − L remaining samples in order to add them to the output of the next processed
block. The process is illustrated by Figure 6.4.
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