
ELEN0019-1 Audio Signal Processing
Principles and Experiments

Julien OSMALSKYJ

University of Liège

2014

1 / 36



Contents

1 Course organization

2 Introduction

3 DSP Architecture

4 Input / Output

5 Software : Code Composer Studio

6 Project example

2 / 36



Contents

1 Course organization

2 Introduction

3 DSP Architecture

4 Input / Output

5 Software : Code Composer Studio

6 Project example

3 / 36



General information

Julien Osmalskyj

Office R28

www.montefiore.ulg.ac.be/~josmalskyj/dsp.php

Email : josmalsky@ulg.ac.be

4 / 36

www.montefiore.ulg.ac.be/~josmalskyj/dsp.php


Course organization

Practical course organized in 12 lab sessions of 4 hours.
Groups of 2 - 3 students.

6 sessions for the course

6 sessions for the final project

No theoritical session except this first one.

Evaluation
Evaluation is based only on the students final project. No
evaluation of the lab sessions.

Everybody has to attend each lab session in order to succeed
the course.

5 / 36



Students projects examples

Guitar Tuner

Equalizer

Tap-delay

Chorus - Flanger

Compressor

Loudspeaker frequency correction

Signal analyzer

etc.

6 / 36



Contents

1 Course organization

2 Introduction

3 DSP Architecture

4 Input / Output

5 Software : Code Composer Studio

6 Project example

7 / 36



Introduction

Digital signal processors are used in many areas such as

sound

video

computer vision

music analysis

etc.

They are found in

Cellular phones

Disk drives

MP3 players

etc.

8 / 36



Introduction

Principle

A DSP digitizes an analog signal, manipulates it using
mathematical and logical operations and converts the result
back to an analog wave form.

ADC
Analog
Signal

Digital
Signal

Processing
DAC

Analog
Signal

FIGURE : General DSP system

9 / 36



Introduction

Real-time constraint
DSP are processors specialized for real-time processing. Audio
samples arrive at a constant rate (e.g. every 1/48000 seconds)
and must be processed before the next samples arrive.

DSP have a specific architecture and specialized instructions
optimized to minimize the number of CPU clock cycles.

MAC instruction (Multiply ACcumulate) for fast convolutions

Fast memory access

Harvard or modified Harvard architecture

Programmable in Assembly or C language

10 / 36



Contents

1 Course organization

2 Introduction

3 DSP Architecture

4 Input / Output

5 Software : Code Composer Studio

6 Project example

11 / 36



Texas Instrument C6748 Processor

In this course, we use a Texas Instrument OMAP-L138
processor which is a single chip containing a C6748 DSP core
and and ARM9 processor.

Based on Texas Instrument very long instruction word
(VLIW)

Clock rate of 375 MHz

Fetches eight 32-bit instruction every clock cycle

Both floating-point and fixed-point architecture

12 / 36



Interrupts

4 types of interrupt on the CPU :

Reset

Maskable

Non-maskable (NMI)

Exception

Reset and Non-maskable interrupts have the highest priority.
12 maskable interrupts (INT4 - INT15) can be associated with
external devices, on-chip peripherals or software control.

Receive samples

In this course, events corresponding to a new input sample
(events #61 or #8) are associated with INT4 interrupt.

13 / 36



Interrupt selector (IS)

128 systems events are available in the DSP. The IS allows to
select one event and route it to the appropriate CPU interrupt.

FIGURE : Interrupt selector

14 / 36



Interrupt Service Table (IST)
The code executed when an interrupt occurs is determined by
the content of the IST. The IST contains one Interrupt Service
Fetch Packet (ISFP) associated with each maskable interrupt.
The ISFP associated with INT4 contains a branch instruction to
a function interrupt4() which must be defined in the C
program.

FIGURE : Interrupt Service Table

15 / 36



OMAP-L138 eXperimenter
The board used in this course is the Zoom OMAP-L138
eXperimenter. It includes the OMAP-L138 processor and many
on-board peripherals.

FIGURE : OMAP-L138 eXperimenter
16 / 36



OMAP-L138 eXperimenter

FIGURE : OMAP-L138 eXperimenter

17 / 36



Contents

1 Course organization

2 Introduction

3 DSP Architecture

4 Input / Output

5 Software : Code Composer Studio

6 Project example

18 / 36



Input / Output

Library

A basic library for accessing DSP inputs and outputs is used for
this course.

3 ways of reading input samples and writing output samples.

Polling

Interrupts

Direct Memory Access (DMA)

19 / 36



Library functions

Functions are available for reading and writing samples in each
mode.

int32_t input_sample()

int16_t input_left_sample()

int16_t input_right_sample()

void output_sample(int32_t out_data)

void output_left_sample(int16_t out_data)

void output_right_sample(int16_t out_data)

20 / 36



Data format
AIC3106 codec converts samples of both channels to 16-bit
signed integers. Channels are combined to form a 32-bit sample.

1 typedef union {
2 uint32_t uint;
3 short channel[2];
4 } AIC31_data_type;

FIGURE : Union structure to store samples

1 AIC31_data_type codec_data;
2 codec_data.uint = input_sample();
3 short left_sample = codec_data.channel[LEFT];
4 short right_sample = codec_data.channel[RIGHT];

FIGURE : Read both left and right channels

21 / 36



Polling scheme

Principle

Processor queries the codec when the processing is finished.
The input and output functions wait for the codec to be ready.

Initialization function :

L138_initialise_poll(FS_48000_HZ, ADC_GAIN_0DB,
DAC_ATTEN_0DB)

FS_48000_HZ : Sampling frequency set to 48000 Hz

ADC_GAIN_0DB : Gain at the input set to 0 dB

DAC_ATTEN_0DB : Attenuation at the output set to 0 dB

22 / 36



Polling code example

1 #include "L138_aic3106_init.h"
2
3 void main(void) {
4 uint32_t sample;
5
6 L138_initialise_poll(FS_48000_HZ ,ADC_GAIN_0DB ,DAC_ATTEN_0DB);
7 while (1) {
8 sample = input_sample();
9 output_sample(sample);

10 }
11 }

FIGURE : Input / Output using polling

23 / 36



Interrupt-based scheme

Principle

INT4 is triggered when a sample arrives at the input of the
codec and the code of function interrupt4() is executed.

Initialization function :

L138_initialise_intr(FS_48000_HZ, ADC_GAIN_0DB,
DAC_ATTEN_0DB)

24 / 36



Interrupt-based code example

1 #include "L138_aic3106_init.h"
2
3 interrupt void interrupt4(void) { // interrupt routine
4 uint32_t sample;
5 sample = input_sample();
6 output_sample(sample);
7 return;
8 }
9

10 void main(void) {
11 L138_initialise_intr(FS_48000_HZ ,ADC_GAIN_0DB ,DAC_ATTEN_0DB);
12 while (1) ;
13 }

FIGURE : Input / Output using interrupts

25 / 36



Direct Memory Access (DMA)

Principle

EDMA3 controller transfers blocks of N samples between the
codec and the memory without intervention of the CPU. An
interruption is triggered when all N samples have been
transferred.

Initialization function :

L138_initialise_edma(FS_48000_HZ, ADC_GAIN_0DB,
DAC_ATTEN_0DB)

26 / 36



DMA code example I

1 interrupt void interrupt4(void) { // interrupt routine
2 switch(EDMA_3CC_IPR) {
3 case 1: // TCC = 0
4 procBuffer = PING; // process ping
5 EDMA_3CC_ICR = 0x0001; // clear EDMA3 IPR bit TCC
6 break;
7
8 case 2: // TCC = 1
9 procBuffer = PONG; // process pong

10 EDMA_3CC_ICR = 0x0002; // clear EDMA3 IPR bit TCC
11 break;
12
13 default: // may have missed an interrupt
14 EDMA_3CC_ICR = 0x0003; // clear EDMA3 IPR bits 0 and 1
15 break;
16 }
17 EVTCLR0 = 0x00000100;
18 buffer_full = 1; // flag EDMA3 transfer
19 return;
20 }

FIGURE : DMA interrupt routine
27 / 36



DMA code example II

1 int main(void) {
2 L138_initialise_edma(FS_48000_HZ ,ADC_GAIN_0DB ,DAC_ATTEN_0DB);
3 zero_buffers();
4
5 while(1) {
6 while (!is_buffer_full());
7 process_buffer();
8 }
9 }

FIGURE : DMA scheme main function

The process_buffer() function implements the processing of
the block of samples.

28 / 36



Contents

1 Course organization

2 Introduction

3 DSP Architecture

4 Input / Output

5 Software : Code Composer Studio

6 Project example

29 / 36



Code Composer Studio

Code Composer Studio (CCS) is the integrated development
environment provided by Texas Instrument.

It is based on the Eclipse framework and offers a convenient
editor and a debugger.

Important note

By default, CCS compiles the code in debug mode. To achieve
better performances, configure CCS to compile the code in
release mode.

30 / 36



Code Composer Studio : Editor

FIGURE : CCS Editor

31 / 36



Code Composer Studio : Debugger

FIGURE : CCS Debugger

32 / 36



Contents

1 Course organization

2 Introduction

3 DSP Architecture

4 Input / Output

5 Software : Code Composer Studio

6 Project example

33 / 36



Project Example

Let us create a simple project which switches the left and right
channels of an input signal.

The procedure to program the DSP is the following.

Create new CCS project

Configure include paths and linker file search path

Add necessary files to the projects

Code the program

Compile in debug or release mode

Run the program by starting the debugger

Detailled procedure for creating a new project in CCS is
explained in Chapter 2 of the course notes.

34 / 36



Interrupt service routine
1 #include "L138_aic3106_init.h"
2
3 AIC31_data_type codec_data;
4 int channel = LEFT;
5
6 interrupt void interrupt4(void) {
7 codec_data.uint = input_sample();
8 short left_sample = codec_data.channel[LEFT];
9 short right_sample = codec_data.channel[RIGHT];

10
11 if (channel == LEFT) {
12 codec_data.channel[LEFT] = left_sample;
13 codec_data.channel[RIGHT] = right_sample;
14 channel = RIGHT;
15 }
16 else {
17 codec_data.channel[LEFT] = right_sample;
18 codec_data.channel[RIGHT] = left_sample;
19 channel = LEFT;
20 }
21 output_sample(codec_data.uint);
22 return;
23 }

35 / 36



Interrupt service routine

The main function only initializes the DSP using interrupt-based
scheme and starts the main loop. At each sampling instant

T = 1/48000s

the program will be interrupted.

1 void main(void) {
2
3 L138_initialise_intr(FS_48000_HZ ,ADC_GAIN_0DB ,DAC_ATTEN_0DB);
4
5 while (1);
6 }

FIGURE : Main function

36 / 36


	Course organization
	Introduction
	DSP Architecture
	Input / Output
	Software: Code Composer Studio
	Project example

