
Texas Instrument C6748 DMA Tutorial

Julien Osmalskyj

October 24, 2015

1 DMA Ping Pong Buffering
For real-time processing, a ping-pong buffering organization is chosen. Two sets
of input and output buffers are used.

• PING buffers (in and out) are being filled with samples by the ADC (IN)
and emptied to the DAC (OUT).

• At the same time, the CPU processes samples stored in PONG IN buffer
and stores the resulting new samples in the PONG OUT buffer.

• Once the PING buffers have been filled and emptied, interrupt4 is trig-
gered and the buffers are swapped so that the PONG buffers are sent to
the codec and the PING buffers are sent to the CPU for processing.

DMA and Ping-Pong buffering are configured in the isr.c file. The size of
the buffers is BUFCOUNT x 2 = BUFLENGTH. The ping and pong buffers contains
stereo samples, that is a serie of left and right samples concatenated, as shown
in Figure 1.

L RL R L R

BUFLENGTH

Figure 1: Ping/Pong buffers structure. Left and right samples are concatenated.

When an input buffer is completely filled with new samples from the outside
world, and the corresponding output buffer has been emptied to the DAC, an
interruption (INT4) is triggered. INT4 reads which buffers should be used for
processing samples and which ones should be used by the codecs to be read and
output samples.

The interruption sets a global flag proc_buffer to either 0 or 1, which
corresponds to the PING or PONG buffers. It also sets a flac buffer_full
to notify that a buffer is ready for processing. Figure 2 shows the code for
interrupt4.
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1 i n t e r r up t void i n t e r rup t4 (void ) { // in t e r r up t s e r v i c e rou t ine
2
3 switch (EDMA_3CC_IPR) {
4
5 case 1 : // i f r e g i s t e r TCC = 0
6 procBuf f e r = PING; // process ping b u f f e r s
7 EDMA_3CC_ICR = 0x0001 ; // c l e a r EDMA3 IPR b i t TCC
8 break ;
9

10 case 2 : // i f r e g i s t e r TCC = 1
11 procBuf f e r = PONG; // process pong b u f f e r s
12 EDMA_3CC_ICR = 0x0002 ; // c l e a r EDMA3 IPR b i t TCC
13 break ;
14
15 default : // may have missed an in t e r r up t
16 EDMA_3CC_ICR = 0x0003 ; // c l e a r EDMA3 IPR b i t s 0 and 1
17 break ;
18 }
19
20 EVTCLR0 = 0x00000100 ;
21 bu f f e r_ f u l l = 1 ; // no t i f y t ha t b u f f e r s are ready
22 return ;
23 }

Figure 2: DMA Interrupt routine in isr.c.

When a buffer is ready, flag buffer_full = 1. It means that a pair of
buffers contains samples to be processed by the CPU. The processing of the
samples must be done in the process_buffer() function. The maximum
time available for processing the samples is the time needed to fill and empty
input and output buffers by the EDMA controller. Consequently, it depens on
the size of the buffers and the sampling rate:

FS = 48000Hz → 48000 samples/sec

BUFLENGTH = 2048 samples

Available time =
2048

48000
= 0.0427s = 42ms

If FS = 8000Hz, then the available processing time is 256ms.

The process_buffer() function starts by setting two pointers *inBuf and
*outBuf either to PONG IN and PONG OUT or to PING IN and PING OUT
by testing the proc_buffer flag set by the interrupt4 interruption. This gives
a direct access to the data acquired by the DMA controller, as shown in Figure 3.

Note that inBuff and outBuff are pointers and therefore correspond to
addresses in the input and output buffers. To actually access the data stored
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*inBuf

inBuf = &pong_in[0]

Pong In

0 1 2 3 Buflength

*outBuf

outBuf = &pong_out[0]

Pong Out

0 1 2 3 Buflength

Figure 3: Pointers to Ping and Pong buffers in the process_buffer function.

at these addresses, the pointers need to be dereferenced using the ∗ operator.
Therefore, inBuf corresponds initially to the address of PongIN[0] and *inBuf
corresponds to the content of PongIN[0].

Once the processing is finished, the process function sets the buffer_full
flag to 0 to indicate that the processing is done. This last process is needed in
order to avoid timing errors and therefore undefined behaviour. If the processing
is finished before the EDMA transfler of the second pair of buffers is finished,
this ensures that the process_buffer function is not executed twice, or more.
Figure 4 shows the code of the process_buffer function. Here there is no
processing at all, as the input samples are simply copied to the output buffer.
Once the processing is done, the buffer_full flag is set to 0. The program
then waits for the EDMA controller to finish filling samples in the input buffers.
Once it is done, the interrupt will be triggered, the buffer_full flag will be
set to 1 and the process_buffer function will be executed again.

The execution of the processing function is controlled by the main program,
as shown in Figure 5. The main function starts an infinite loop in which is
constantly tests whether the buffer_full flag is set to 1 or not.

Files organization

The files are organized as follows. The main program file main.c runs the main
loop. It only initializes the DSP and runs the main infinite loop. It must include
the prototypes.h, which declares all the functions available in isr.c. That
files contains all the functions related to DMA configuration and processing of
the data buffers. Other functions can be added to isr.c, but they have to be
also declared in prototypes.h.

2 Frame-based convolution
Using frame-based signal processing, convolutions can be performed by adapting
the convolution algorithm so that the signal is processed by blocks of samples.
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1 void proce s s_buf f e r (void ) {
2 int16_t ∗ inBuf , ∗outBuf ; // po in t e r s to process b u f f e r s
3 int16_t left_sample , r ight_sample ;
4 int i ;
5
6 i f ( procBuf f e r == PING) { // i f b u f f e r s to process are PING
7 inBuf = pingIN ; // s e t the po in t e r s to the PING bu f f e r s
8 outBuf = pingOUT ;
9 }

10
11 i f ( procBuf f e r == PONG) { // i f b u f f e r s to process are PONG
12 inBuf = pongIN ; // s e t the po in t e r s fo the PONG bu f f e r s
13 outBuf = pongOUT;
14 }
15
16 /∗ process b u f f e r here ∗/
17 for ( i = 0 ; i < (BUFCOUNT) ; i++) { // simple pass through
18
19 le f t_sample = ∗ inBuf++; // read pingIN [ 0 ] and increment

address
20 right_sample = ∗ inBuf++; // read pingIN [ 1 ] and increment

address
21
22 ∗outBuf++ = left_sample ; // copy the input samples to the

output b u f f e r
23 ∗outBuf++ = right_sample ;
24 }
25
26 bu f f e r_ f u l l = 0 ; // ind i c a t e t ha t b u f f e r has been processed
27 return ;
28 }

Figure 4: Process buffer function in isr.c.

1 int main (void ) {
2 L138_init ia l i se_edma (FS_48000_HZ ,ADC_GAIN_0DB,DAC_ATTEN_0DB) ;
3 ze ro_buf f e r s ( ) ;
4
5 while (1 ) {
6 i f ( i s_bu f f e r_ fu l l ( ) ) {
7 proce s s_buf f e r ( ) ;
8 }
9 }

10 }

Figure 5: Main function in main.c.
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Figure 6: Basic idea of the Overlap-Add method.

This allows to process more than one sample at a time, and gives more processing
time as the DMA controller needs some time to fill some buffers while the other
ones are being processed.

2.1 Overlap-Add
The Overlap-Add method is based on the observation that when we consider
two discrete-time signals xk[n] and h[n], with lengths L and M respectively, the
resulting convolution yk[n] = xk[n] ∗ h[n] has a length of L + M − 1. Using
this idea, we can divide the input stream x[n] into L-length blocks and convolve
each block with h[n], and then sum all the convolution outputs along the L-
boundaries, as shown in Figure 6.

Using the EDMA controller, we have an easy way of splitting the input
stream into fixed-length input blocks. Therefore, we can process each block
separately using the overlap-add algorithm.

In Figure 6, the operation of convolving a very long signal x[n] with h[n] is
equivalent to the operation of convolving each L-block denoted xk[n] with h[n]
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Figure 7: Tail resulting from convolution must be added to the next convolved
block.

and then conducting addition judiciously to deal with the “tail” region from
each block convolution, as it will be explained next. An important aspect is
that after convolving each block with h[n], the resulting intermediate signal is
L + M − 1 samples in length, and therefore, we have M − 1 extra samples at
the end due to the convolution. These M − 1 extra samples must be added to
the first M − 1 samples of the next convolved block, as shown in Figure 7.

One main challenge in a real-time processing scenario is that the timing of
completing a block convolution needs to be approximately synchronized with
the overall output speed so that tail region may be added to the next block at
the right time. If the process of convolving each block is slower than outputting
the samples of blocks already convolved, then the tail region will not have the
opportunity to be added to the next block, resulting in an erroneous output.
One way to deal with this is to slow down the rate of the output. However,
another much more attractive way is to make use of the Fast Fourier Transform
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for convolutions.

2.2 Overlap-Add Convolution with FFT
Computing convolution using the standard equation results in a lot of computa-
tional effort. The process can be improved through the use of the FFT in order
to speed up the algorithm. Indeed, performing a convolution in the time domain
results in a simple multiplication in the frequency domain. The procedure to
perform a convolution with the FFT is described below.

1. Zero-pad the filter h[n] with K −M zeros, where K is the first power of
two greater than L +M − 1, where L is the length of one block of data,
and M is the length of the filter h.

2. Compute the K-point FFT of the zero-padded filter h[n] and save it.

3. Zero-pad each input segment xk[n] of length L with K −L zeros to make
it the same size as the filter.

4. Compute the K-point FFT of the segment.

5. Multiply sample-by-sample the two FFT results from Steps 2 and 4.

6. Take the inverse FFT of the resulting product to produce yk[n].

Next, we need to use the same overlap-add algorithm than for the classical con-
volution. Indeed, the output blocks yk[n] need to only be of length L. Therefore,
we need to save the K−L remaining samples in order to add them to the output
of the next processed block. The process is illustrated by Figure 8.

Figure 8: FFT overlap-add method.
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