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1 Introduction

1.a Historical notes
Sequencing projects

e Based on the first Sanger sequencing technique, the Human Genome
Project (1990-2003), allowed the release of the first human reference
genome by determining the sequence of ~3 billion base pairs and

identifying the approximately ~25,000 human genes (now we know there are
less genes)

e That stood as a great breakthrough in the field of comparative genomics
and genetics as one could in theory directly compare any healthy or non-
healthy sample against a golden standard reference and detect genetic
polymorphisms or variants that occur in a genome.
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Sequencing projects

e Few years later, as sequencing techniques became more advanced, more
accurate, and less expensive, the 1000 Human Genome Project was
launched (January 2008).

The main scope of this consortium is to sequence, ~1000 anonymous participants of
different nationalities and concurrently compare these sequences to each other in
order to better understand human genetic variation.

e The International HapMap Project (short for “haplotype map”) aims to
identify common genetic variations among people, making use of data from
six different countries.

e Shortly after the 1000 Human Genome Project, the 1000 Plant Genome
Project (http://www.onekp.com) was launched, aiming to sequence and
define the transcriptome of ~1000 plant species from different populations
around the world.
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Notably, out of the 370,000 green plants that are known today, only ~125,000
species have recorded gene entries in GenBank and many others still remain
unclassified.

e While the 1000 Plant Genome Project was focused on comparing different
plant species around the world, within the 1001 Genomes Project, 1000
whole genomes of A. Thaliana plants across different places of the planet
were sequenced.

e Similar to other consortiums, the 10,000 Genome Project aims to create a
collection of tissue and DNA specimens for 10,000 vertebrate species
specifically designated for whole-genome sequencing.

Vertebrates have a series of nerves along the back which need support and
protection. That need brings us to the backbones and notochords

e The goal of the 1000 Fungal Genome Project (http://1000.fungalgenomes.org) is
to explore all areas of fungal biology.
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¢ In human genetics, metagenome sequencing is becoming increasingly

important, which lead to the Human Microbiome Project
(http://www.hmpdacc.org/)

— Metagenome sequencing is defined as an approach for the study of
microbial populations in a sample representing a community by
analysing the nucleotide sequence content.

— The HMP plans to sequence 3000 genomes from both cultured and
uncultured bacteria, plus several viral and small eukaryotic microbes
isolated from human body sites. This, in conjunction with reference
genomes sequenced by HMP Demonstration Projects and other
members of the International Human Microbiome Consortium (IHMC),
will supplement the available selection of non-HMP funded human-
associated reference genomes to provide a comprehensive pool of
genome sequences to aid in the analysis of human metagenomic data.


http://www.human-microbiome.org/
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Why Reference Sequences?

e Within the human body, it is estimated that there are 10x as many
microbial cells as human cells.
e Our microbial partners carry out a number of metabolic reactions that are

not encoded in the human genome and are necessary for human health (2
human genome = human genes + microbial genes).

e The majority of microbial species present in the human body have never
been isolated, cultured or sequenced, typically due to the inability to

reproduce necessary growth conditions in the lab (= study microbial
communities — metagenomics)

e In order to assign metagenomic sequence to taxonomic and functional
groupings, and to differentiate the novel from the previously described, it is
necessary to have a large pool of described genomes from the same
environment (reference genomes).
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SEQUENCE ALIGN METAGENOMIC MAP TAXONOMY
WGS AND REFERENCE & FUNCTIONAL
GENOME SEQUENCE ANNOTATION

(http://www.hmpdacc.org/)
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1.b Work flow

e \Whole-exome sequencing using next-generation sequencing (NGS)
technologies is gaining popularity in the human genetics community due to
the moderate costs, manageable data amounts and straightforward
interpretation of analysis results (Pabinger et al. 2013).

e As sequencing techniques improve and develop overtime, the amount of
data produced increases exponentially and therefore the implementation
of efficient platforms to analyze and visualize such large amounts of data in
fast and efficient ways has become a necessity (Pavlopoulos et al 2013).

e While whole-exome and, in the near future, whole-genome sequencing are
becoming commodities, data analysis still poses significant challenges and
led to the development of a plethora of tools supporting specific parts of
the analysis workflow or providing a complete solution (Pabinger et al. 2013).
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Basic workflow for whole-exome
and whole genome sequencing

Lab

Library Preparation, Exome Capturing, ...

I “‘Jhoe‘tF(f‘;l‘ﬂ?-%(ﬂJ * Whole-Genome-Seq
NGS Platform

lllumina, SOLID, 454, ...

Quality A:sessment Prioritization / Filtering
Trimming, Filtering, ...
; Y
Lab
Read Alignment Validation

Reference Genome

Pipelines
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Recall: Detailed flow of a genome-wide association study

Laboratory

Low level analysis

High level analysis

(Ziegler 2009)

Biological question

Sampling

—p= Selection of DNA chip

DNA preparation |

Chip hybridization

— Chip scan

Image analysis >

Normalization

—»  Genotype calling J—»[Standard quality control

Statistical analysis J—b

Replication fVaIidationH Impact on population ]

Imputation }—;

Statistical analysis

Data mining ]—;

Replication / Validatior]

NGS workflow:

e After library preparation samples are sequenced
on a platform

e Quality assessment

e Read alignment against reference genome

e |denitfy variants

e Detected mutations are then annotated to infer
biological relevance and further prioritized or
filtered
(Pabinger et al 2013)
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1.c Applications
The application determines the statistical analysis tool

e The starting point of any sequencing project is the development of an
appropriate study design, which starts (should start?) with a biological /
research question

e Hence, the work flow for NGS presented earlier is only part of the story

e In order to have an idea about potentially interesting questions, we need to
survey potential application fields
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Three common scenarios for human geneticists using NGS data

1)

2)

3)

Identification of causitive genes in Mendelian disorders (germline
mutations)

Identification of candidate genes in complex diseases for further
functional studies

Identification of constitutional mutations as well as driver and
passenger genes in cancer (somatic mutations)

(Pabinger et al 2013)

A germline mutation is one the was passed on to offspring because the egg or sperm
cell was mutated.

A somatic mutation is a mutation of the somatic cells (all cells except sex cells) that
cannot be passed on to offspring.
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Other scenarios ?

Bioinformatics Computational biology

Research, development or application | Development and application of data-
of computational tools and analytical, theoretical methods,
approaches for expanding the use of | mathematical modeling and
biological, medical, behavioral or computational simulation to the
health data, including those to study of biological, behavioral, and
acquire, store, organize, analyze, or social systems.

visualize such data

(BISTIC Definition Committee, NIH, 2000)
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Other scenarios ?

e The rule of thumb in the genomics community is that every dollar spent on
sequencing hardware must be matched by a comparable investment in
informatics (www.the-scientist.com/2011/3/1/60/1)

e There is a constant stream of new software

— What is its quality?
— How to install it?
— How to get it working?


http://www.the-scientist.com/2011/3/1/60/1
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I M |l SEQanswers

the next generation sequencing community

W SEQanswers > Bioinformatics > Bioinformatics User Name User Name  ["| Remember Me?
.4 Software packages for next gen sequence analysis password

Community v

You are currently viewing the SEQanswers forums as a guest, which limits your access. Click here to register now, and join the discussion

Similar Threads
Thread Thread Starter Forum Replies Last Post

ERANGE and other packages for RNAseq analysis warrenemmett RNA Sequencing 9 07-02-2013 12:58 PM
Software packages capable of aligning roughly 9000 bp josecolquitt Bioinformatics 4 05-18-2010 04:17 AM
DNAnexus free account: next-gen sequence analysis in the cloud DNAnexus Vendor Forum 0 04-27-2010 10:46 PM
Sequence Analysis Software Developer Cofactor Genomics Industry Jobs! 0 01-27-2010 09:02 AM
Companies offering next gen sequence analysis services gavin.oliver Bioinformatics 8 01-12-2010 04:27 AM

212|311 |>|Last»

sci_guy L Software packages for next gen sequence analysis
Member
28 Dec 2009: This thread has been closed. Please see our wiki software portal for information about each of these packages.
Location: Sydney, Australia
) A reasonably thorough table of next-gen-seq software available in the commercial and public domain
Join Date: Jan 2008

P Integrated solutions

(http://seqanswers.com/forums/showthread.php?t=43)
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Web-based programs (1)

Resource

Galaxy: A platform for interactive large-scale
genome analysis

Belinda Giardine,' Cathy Riemer,' Ross C. Hardison,' Richard Burhans,' Laura
Elnitski,” Prachi Shah,'-? Yi Zhang,' Daniel Blankenberg,' Istvan Albert,' James
Taylor," Webb Miller,’ W. James Kent,?> and Anton Nekrutenko'*

"Center for Comparative Genomics and Bioinformatics, Huck Institutes for Life Sciences, Penn State University, University Park,
Pennsylvania 16802, USA; ?National Human Genome Research Institute, Bethesda, Maryland 20892, USA; *Department of
Computer Science and Engineering, University of California at Santa Cruz, Santa Cruz, California 95064, USA

“ Galaxy is a scientific workflow, data
Accessing and analyzing the exponentially expanding genomic sequg . . dd q Ivsi
biomedical researchers. Here we describe an interactive system, Galax Integration, and data and analysis

annotation databases with a simple Web portal to enable users to persistence and publishing platform
independent queries, and visualize the results. The heart of Galaxy is

from each user; performs operations such as intersections, unions, and that aims to make computational
tools. Galaxy can be accessed at http:/ /g2.bx.psu.edu. biology accessible to research scientists

[Supplemental material is available online at www.genome.org.] that do not have computer
programming experience. It serves as a
general bioinformatics workflow
management system. “



http://en.wikipedia.org/wiki/Scientific_workflow_system
http://en.wikipedia.org/wiki/Data_integration
http://en.wikipedia.org/wiki/Data_integration
http://en.wikipedia.org/wiki/Digital_preservation
http://en.wikipedia.org/wiki/Digital_preservation
http://en.wikipedia.org/wiki/Computational_biology
http://en.wikipedia.org/wiki/Computational_biology
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Bioinformatics_workflow_management_systems
http://en.wikipedia.org/wiki/Bioinformatics_workflow_management_systems
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Web-based programs (2)

HyperBrowser v1.6 (powered by Galaxy) Analyze Data Shared Data Help User
Tools | Options v | “ || History [ Options v |
search tools = By (=
o:
HYPERBROWSER ANALYSIS 0 bytes

€D Your history is empty. Click 'Get

Statistical analysis of
Data' on the left pane to start

tracks
= Analyze genomic tracks
Visual analysis of tracks

]XUXUX[ HyperBrowser
Specialized analysis of tracks

Text-based analysis interface o =

111

HYPERBROWSER TRACK “ Genomic HyperBrowser ‘s

PROCESSING
HyperBrowser track repository | . . .
Cistiie Tade focus is on statistical

Generate tracks : am = . .
e If you have a genomic track, this is the place to analyze it!
Cormatiand comvert traks ¥ g ’ P ¥ inference on relations
GTrack tools To analyze a track, simply: b . k
ARTICLE/DOMAIN-SPECIFIC 1. Click Statistical analysis of tracks: Analyze genomic tracks in the left-hand menu. etween ge nomic tracks. An
TOOLS 2. Select tracks from your Galaxy history of browse our collection.

(To load a track to your history, click Get data: Upload file) T
The differential disease 3. Select the analysis you are interested in: eXam p l e Of ana lySIS IS tO
requlome o any property of a single track . . . .
e o any relation between a pair of tracks |nvest|gate the relat|onsh|p
Monte Carlo null models For help using the system: .
et 1. Click The Genomic Hyperbrowser: Help in the left-hand menu. betwee n h I Sto ne
Gene tools 2. Or, look through the following screencasts:
microRNA tools (further screencasts are available from the help menu) mo d |f | C at | ons an d ge ne

HYPERBROWSER INTERNAL
TOOLS

expression, using ChlP-based
Admin of genomes and tracks
Development tools

Assorted tools

tracks of histone
modifications versus tracks of
(https://hyperbrowser.uio.no/hb/) genes marked with
expression values from a

microarrav experiment. “



http://en.wikipedia.org/wiki/Histone_modification
http://en.wikipedia.org/wiki/Histone_modification
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Four common scenarios for bioinformaticians using NGS data

1) Seq uence assembly (see pactical sessions /homework assignment)
2) Annotation (see practical sessions /nhomework assignment)

3) Comparative genomics (see next class: BLAST-ing, FASTA-ing)

4) Pattern recognition

DNA Sequence Pattern Recognition Methods in GRAIL

Edward C. Uberbacher, Ying Xu, Manesh Shah, Sherri Matis
Xiaojun Guan and Richard J. Muralf
Informatics Group
Computer Sciences and Mathematics and Biology Divisions
Oak Ridge National Laboratory
Qak Ridge, TN 37831-6364

Introduction

The goal of the GRAIL project!'*345 has been to create a comprehensive analysis environment
where a host of questions about genes and genome structure can be answered as quickly and accu-
rately as possible. Constructing this system has entailed solving a number of significant technical
challenges including: (a) making coding recognition in sequence more sensitive and accurate, (b)
compensating for isochore base compositional effects in coding prediction, (c¢) developing methods
to determine which parts of each strand of a long genomic DNA are the coding strand, (d) improv-
ing the accuracy of splice site prediction and recognizing non-consensus sites, and (e) recognizing
variable regulatory structures such as polymerase II promoters. An additional chalienge has been
to construct algorithms which compensate for the deleterious effects of insertion or deletion (indel)
errors in the coding region recognition process. This paper addresses progress on these technical

tanmnn and tha acemaat cbade af cnnwnnee Fantbunn manacnitian seeathada
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Comparative genomics

e Motivations: the study of the genomic sequence of organisms that are
related to humans could ultimately help to identify targets for drug
development; conserved regions must be important to life ....

SHAKING THE TREE OF LIFE

Comparative genomics — the study of the genomic sequence of organisms
that are related to humans — could ultimately help to identify targets for drug

development.

onfucius said that the
measure of man is
man, but curious crea-
tures may be useful
yardsticks in deter-
mining the workings of the human
body. Careful comparisons of the

BY JACK MCCAIN, Contributing Editor

tree (Figures 1-4). Note that the
tree’s true shape is unknown in
many instances and is subject to
substantial ongoing revision.

The National Human Genome
Research Institute (NHGRI), part of
the National Institutes of Health, is

Genome Research, Cambridge,
Mass.; The Institute for Genomic
Research [TIGR], Rockville, Md.;
Washington University Medical
Center, St. Louis). Organisms se-
lected for sequencing include many
with along history of use as models

(McCain 2004)
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Pattern recognition

Motivation: Human DNA sequences carry relevant biophysical information in
the form of a one-dimensional chain of 4 nucleotide bases: Adenine, Guanine,
Cytosine, Thymine. One way of retrieving this information is by looking at
patterns / distributions of (collections or sequences of) these letters.

e These chains are broadly divided into 3 parts:
— Regions called genes
— These are connected by intergenic regions (sometimes called the
flanks)

— Inside the genes these sequences divide into exons and introns. The
exons code for proteins, the introns come in between exons. The
coding DNA sequence (CDS) is obtained by taking the genes and
splicing the non-coding intron regions out of it.
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Pattern recognition

e In general, given the DNA sequence

AATCGGATGCGCGTAGGATCGGTAGGGTAGGCTTTAAGATCATGCTATTTTCGAGATTCGATTCT
AGCTAGGTTTAGCTTAGCTTAGTGCCAGAAATCGGATGCGCGTAGGATCGGTAGGGTAGGCTTTA
AGATCATGCTATTTTCGAGATTCGATTCTAGCTAGGTTTTTAGTGCCAGAAATCGTTAGTGCCAGA
AATCGATT

several questions can be asked:
e |s it a gene? (What is the possible expression level? What is the possible protein

product? How can we obtain the protein product?)

e Can we determine the organism from which this sequence came?

e What sort of statistics to be used for describing this sequence?

e Do parameters describing the sequence differ from those describing bulk
DNA in that organism?

e Can we spot motifs?
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DNA sequence motifs

atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgeccgecg
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGA
tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgeccagggteccga
gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGCttatag
gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGCaattatgagagagctaatctatcgecgtgegtgttcat
aacttgagttAAAAAAAAGGGGGGGCtggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaad

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGA
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DNA sequence motifs

atgaccgggatactgatAAAAAAAAGGGGGGGGgcgtacacattagataaacgtatgaagtacgttagactcggecgecgecg
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGA
tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgeccagggteccga
gctgagaattggatgAAAAAAAAGGGGGGGtCccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGCttatag
gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGGaccgcttggcgcacccaaattcagtgtgggcgagecgcaa
cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGCaattatgagagagctaatctatcgecgtgegtgttcat
aacttgagttAAAAAAAAGGGGGGGCtggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaagd

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGA
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DNA sequence motifs

atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgecgecg
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGA
tgagtatccctgggatgacttAAAAAAAAGGGGGGGEgCctctcccgatttttgaatatgtaggatcattcgccagggtecga
gctgagaattggatgAAAAAAAAGGGGGGGtCcacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGCttatag
gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGCaattatgagagagctaatctatcgecgtgcgtgttcat
aacttgagttAAAAAAAAGGGGGGGCtggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGAaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGA

atgaccgggatactgatAgAAgAAAGGLLGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgeccgecg
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAACGGCGGGA
tgagtatccctgggatgacttAAAATAALGGAGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga
gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
tcccttttgecggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGettatag
gtcaatcatgttcttgtgaatggatttAACAATAAGGGCTEGGgaccgcttggcgcacccaaattcagtgtgggcgagegcaa
cggttttggcccttgttagaggcccccgtAtAAACAAGGAaGGGCcaattatgagagagctaatctatcgegtgegtgttceat
aacttgagttAAAAAATAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgectgtatgacactatgta
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGCGGaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGAGCGGA
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Why finding (15,4) motif is difficult

atgaccgggatactgathgAAgAAAGGLEGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgeccgecg

acccctattttttgagcagat tagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAACGGCGGG%

tgagtatccctgggatgactt tAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggitcga
gctgagaattggatgcAAAAAAAQGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgatadaggaga
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAALAAAGGagGGGettatag
gtcaatcatgttcttgtgaatggatttAACAATLAAGGGCtGGgaccgcttggcgcacccaaattcagtgtgggcgagecgcaa
cggttttggcccttgttagaggccccogtAtAAACAAGGaGGGCccaattatgagagagctaatctatcgegtgegtgttcat
aacttgagttAAAAAALAGGGaGeccctggggcacatacaagaggagtcttccttatcagttagtgctgtatgacactatgta
ttggcccattggctaaaagcccaacttgactaaatggaagatagaatccttgcatAct GGaGcGGaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagCcttACtAAAAAGGAGCGGA

AQAAGAAAGGL GGG

oo FETT. W T
CAATAAAACGGCGGG
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DNA sequence motifs

e Definition: Sequence motifs are short, recurring patterns in DNA that are
presumed to have a biological function.
— Often they indicate sequence-specific binding sites for proteins such as
nucleases and transcription factors (TF).
— Others are involved in important processes at the RNA level, including
ribosome binding, mRNA processing (e.g., splicing, editing) and
transcription termination.

e Potential research question:
Find a motif in a sample of
- 20 “random” sequences (e.g., of length 600 nucleotides) where
— each sequence contains an implanted pattern of length 15, and
— each pattern appears with 4 mismatches as (15,4)-motif.
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2 Investigating frequencies of occurrences of words

2.2 Motivation

Introduction
e Words are short strings of letters drawn from an alphabet

e |n the case of DNA, the set of lettersis A, C, T, G

e A word of length k is called a k-word or k-tuple

e Differences in word frequencies help to differentiate between different
DNA sequence sources or regions

e Examples: 1-tuple: individual nucleotide; 2-tuple: dinucleotide; 3-tuple:
codon

e The distributions of the nucleotides over the DNA sequences have been
studied for many years = hidden correlations in the sequences
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Introduction
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Biological words of length 1 — base composition

e There are constraints on base composition imposed by the genetic code
e The distribution of individual bases within a DNA molecule is not ordinarily
uniform
- There may be an excess of G over C on the leading strands

- This can be described by the “GC skew”, characterized by:
" (#G - #C) / (HG + #C)
" #=nrof

- What is the implication for AT skew on the lagging strand?
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Biological words of length 1 — base composition

e GC or AT skew sign changes link to where DNA replication starts or finishes.

e Originally this asymmetric nucleotide composition was explained as
different mechanism used in DNA replication between leading strand and
lagging strand

e But recent research (2013) shows there is much more to it:

Research

GC skew at the 5’ and 3’ ends of human genes links
R-loop formation to epigenetic regulation
and transcription termination

Paul A. Ginno,'3# Yoong Wearn Lim,"3 Paul L. Lott,? lan Korf,'2
and Frédéric Chédin'%>

iDepartment of Molecular and Cellular Biology, 2Genome Center, University of California, Davis, California 95616, USA

Strand asymmetry in the distribution of guanines and cytosines, measured by GC skew, predisposes DNA sequences
toward R-loop formation upon transcription. Previous work revealed that GC skew and R-loop formation associate with
a core set of unmethylated CpG island (CGI) promoters in the human genome. Here, we show that GC skew can dis-
tinguish four classes of promoters, including three types of CGI promoters, each associated with unique epigenetic and
gene ontology signatures. In particular, we identify a strong and a weak class of CGI promoters and show that these loci
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Biological words of length 1 - base composition

e DNA biosynthesis proceeds in the
5'- to 3'-direction. This makes it
impossible for DNA polymerases
to synthesize both strands
simultaneously. A portion of the
double helix must first unwind,
and this is mediated by helicase
enzymes.

e The leading strand is synthesized
continuously but the opposite
strand is copied in short bursts of

about 1000 bases, as the lagging
strand template becomes
available. The resulting short
strands are called Okazaki
fragments (after their discoverers,
Reiji and Tsuneko Okazaki).

single-stranded binding proteins

e Only one strand is transcribed during transcription; the strand that

contains the gene is called the sense strand
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2.b Probability distributions

Probability is the science of uncertainty

1. Rules = data: given the rules, describe the likelihoods of various
events occurring

2. Probability is about prediction — looking forwards

3. Probability is mathematics
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Statistics is the science of data

1. Rules € data: given only the data, try to guess what the rules were.
That is, some probability model controlled what data came out, and
the best we can do is guess — or approximate — what that model was.
We might guess wrong, we might refine our guess as we obtain /
collect more data

2. Statistics is about looking backward

3. Statistics is an art. It uses mathematical methods but it is much more
than maths alone

4. Once we make our best statistical guess about what the probability
model is (what the rules are), based on looking backward, we can
then use that probability model to predict the future = the purpose
of statistics is to make inference about unknown quantities from
samples of data.
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Statistics is the science of data

e Probability distributions are a fundamental concept in statistics.

e Before computing an interval or test based on a distributional assumption,
we need to verify that the assumption is justified for the given data set.

e For this chapter, the distribution does not always need to be the best-fitting
distribution for the data, but an adequate enough model so that the
statistical technique yields valid conclusions.

e Simulation studies: one way to obtain empirical evidence for a probability
model
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Assumptions

e Simple rules specifying a probability model:
- First base in sequence is either A, C, T or G with prob p,, pc, p1, Ps
- Suppose the first r bases have been generated, while generating the
base at position r+1, no attention is paid to what has been generated
before.
e A, C, TorGisgenerated with the probabilities above
e Notation for the output of a random string of n bases may be: L, Ly, ..., L,
(L; = base inserted at position i of the sequence)
e Whatever we would like to do with such strings, we will need to introduce
the concept of a random variable
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Probability distributions

e Suppose the “machine” we are using produces an output X that takes
exactly 1 of the J possible valuesinaset y = {xq, x5, ..., %, }
- In the DNA sequence J=4 and y = {4,C,T,G}
- Xis a discrete random variables (since its values are uncertain)
- If p;is the prob that the value (realization of the random variable X) x;
occurs, then
" py, by =20andp; + ...+ p; =1
e The probability distribution (probability mass function) of X is given by the
collection p4, s D)
- P(X=x) = pj, j=1, ...,
e The probability that an event S occurs (subset of y) is P(X € S) =

Zj:ijS (p])
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Probability distributions

e What is the probability distribution of the number of times a given pattern
occurs in a random DNA sequence Ly, ..., L,,?
- New sequence Xq, ..., X;:
Xi=1 if Li=A and X;=0 else
- The number of times N that A appears is the sum
N=Xi+...+X,
- The prob distr of each of the X;:
P(Xi=1) = P(Li=A)=pa
P(X;=0) =P(Li=CorGorT)=1-p,4
e What is a “typical” value of N?
- Depends on how the individual X; (for different /) are interrelated
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Independence

e Discrete random variables Xy, ..., X,, are said to be independent if for any
subset of random variables and actual values, the joint distribution equals
the product of the component distributions

e According to our simple model, the L; are independent and hence

P(Li=ly,Ly=ly, ..., La=l,)=P(Li=l1) P(Ly=l,) ...P(L.=I5)
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Expected values and variances

e Mean and variance are two important properties of real-valued random
variables and corresponding probability distributions.

e The “mean” of a discrete random variable X taking values x3, x,, . . . (de-
noted EX (or E(X) or E[X]), where E stands for expectation, which is another
term for mean) is defined as:

E(X) =2 x; P(X = x;)

- E(X))=1 Xpa+0 X (1 —p,)
- If Y=c X, then E(Y) = c E(X)
- E(Xq +... + X)) = E(Xq) + ... + E(X,)
e Because X;are assumed to be independent and identically distributed (iid):
E(X1 +... + X,) =n E(X1) =n py4
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Expected values and variances

e The idea is to use squared deviations of X from its center (expressed by the
mean). Expanding the square and using the linearity properties of the
mean, the Var(X) can also be written as:

Var(X) = E(X?) — [E(X)]?]

- If Y=c X then Var (Y) = ¢*Var (X)
- The variance of a sum of independent random variables is the sum of
the individual variances

e For the random variables X;:

Var (X) = [1% X pg + 0% X' (1 —=pa)] — pi=pa(l —Dpa)
Var (N) =nVar (X)) =np,4(1 —p,)
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Expected values and variances

e The expected value of a random variable X gives a measure of its location.
Variance is another property of a probability distribution dealing with the
spread or variability of a random variable around its mean.

Var(X) = E ([X — ECO)?)

- The positive square root of the variance of X is called its standard
deviation sd(X)
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The binomial distribution

e The binomial distribution is used when there are exactly two mutually
exclusive outcomes of a trial. These outcomes are appropriately labeled
"success" and "failure". The binomial distribution is used to obtain the
probability of observing x successes in a fixed number of trials, with the
probability of success on a single trial denoted by p. The binomial
distribution assumes that p is fixed for all trials.

e The formula for the binomial probability mass function is :

P(N =j) = (7) p/(1-p)*7,j=0,1, ..n
n
J

(n) _ n!
J/ i (n =)
and j!=j(j-1)(j-2)...3.2.1, 0!=1

with the binomial coefficient ( ) determined by
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The binomial distribution

e The mean is np and the variance is np(1-p)
e The following is the plot of the binomial probability density function for
four values of p and n = 100.
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2.c Simulating from probability distributions

e The idea is that we can study the properties of the distribution of N when
we can get our computer to output numbers Ny, ..., N, having the same
distribution as N

- We can use the sample mean to estimate the expected value EN:

N= (N, + ..+ N,)/n

- Similarly, we can use the sample variance to estimate the true variance
of N:

n
1 B
2 — N: — N)2
s n_lzlu )
=

Why do we use (n-1) and not n in the denominator?
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Simulating from probability distributions

e What is needed to produce such a string of observations?

- Access to pseudo-random numbers: random variables that are
uniformly distributed on (0,1): any number between O and 1 is a
possible outcome and each is equally likely

e In practice, simulating an observation with the distribution of X;:

- Take a uniform random number u

- SetX;=1ifU <p = p, and 0 otherwise.

- Why does this work? ... P(X;=1)= P(U < p4) = pa

- Repeating this procedure n times results in a sequence Xy, ..., X, from
which N can be computed by adding the X’s
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Simulating from probability distributions

e Simulate a sequence of bases Ly, ..., Ly:
- Divide the interval (0,1) in 4 intervals with endpoints
ParPa +Pc,Pa+pc+p6 1

- If the simulated u lies in the leftmost interval, L;=A

- If ulies in the second interval, L;=C; if in the third, L;=G and otherwise
L.=T

- Repeating this procedure n times with different values for U results in a
sequence Ly, ..., L,

e Use the “sample” function in R:
pi <- ¢(0.25,0.75)
x<-c(1,0)
set.seed(2009)
sample(x,10,replace=TRUE,pi)
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Simulating from probability distributions

e By looking through a given
simulated sequence, we can count
the number of times a particular
pattern arises (for instance, the
base A)

e By repeatedly generating
sequences and analyzing each of
them, we can get a feel for
whether or not our particular
pattern of interest is unusual

500
|

400
I

Frequency
300
L

200
l

100
|

] -

[ I T I I 1
200 220 240 260 280 300

0
|

Number of successes

x<- rbinom(2000,1000,0.25)

mean(x)

sd(x)"2

hist(x,xlab="Number of successes",main

)
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Simulating from probability distributions

Number of observations = 2000

/ Number of trials = 1000

x<- rbinom(2000,1000,0.25)
mean(x)

sd(x)"2
hist(x,xlab="Number of successes",main="")

e Using R code:

What is the number of observations?

e Suppose we have a sequence of 1000bp and assume that every base occurs

with equal probability. How likely are we to observe at least 300 A’s in such
a sequence?

- Exact computation using a closed form of the relevant distribution
- Approximate via simulation

- Approximate using the Central Limit Theory
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Exact computation via closed form of relevant distribution

e The formula for the binomial probability mass function is :
" n / J— / .
P(N =j) = (j)PJ(l —-p)*7,j=0,1, ..,n
and therefore

1000

P(N = 300) = Z (1000) (1/4)7 (1 — 1/4)1000-]

, J
j=300

= 0.00019359032194965841
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P: exactly 300 out of 1000
Method 1. exact binomial calculation 0.00004566114740576428

Method 2. approximation viz normal 0.000038

Method 3. approximation viz Poisson --—-
P: 300 or fewer out of 1000

Method 1. exact binomial calculation 0.9995520708293378

Method 2. approximation viz normal 0999885

Method 3. approximation viz Poisson ------

F: 300 or more out of 1000
Method 1. exact binomial calculation 0.0001935%032194265841

Method 2. approximation viz normal 0.000153

Method 3. approximation via Poisson ------

IS testing 0 or more out of 1000

Two-Tail
0.0003025705168772097

One-Tail
Method 1. exact binomial calculation 0.000193590321945965841

Method 2. approximation viz normal 0.000153 0.000306

. approximation via Poisson - | ------

(http://faculty.vassar.edu/lowry/binomialX.html)
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Approximate via simulation

e Using R code and simulations from the theoretical distribution,
P(N = 300) can be estimated as 0.000196 via

x<- rbinom(1000000,1000,0.25)
sum(x>=300)/1000000

e Note that the probability P(N = 300) is estimated to be 0.0001479292 via

1-pbinom(300,size=1000,prob=0.25)
pbinom(300,size=1000,prob=0.25,lower.tail=FALSE)
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Approximate via Central Limit Theory

e The central limit theorem offers a 3" way to compute probabilities of a
distribution

e |t applies to sums or averages of iid random variables

e Assuming that Xy, ..., X,, are iid random variables with mean u and variance

a?, then we know that for the sample average
1

Xo = - X1+ .t Xp),
— _ 0.2
E(X,,) =uand Var (X,) = —

e Hence,

Xn_.u . Xn_.u .
E(a/ﬁ)_O’m(a/ﬁ)_l
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Approximate via Central Limit Theory
e The central limit theorem states that if the sample size n is large enough,

P(a < Btk o b> ~ ¢(b) — ¢(a),

N
with ¢ (.) the standard normal distribution defined as

b(2) = P(Z <7) = j b ()dx

e The central limit theorem in action using R code:

bin25<-rbinom(1000,25,0.25)

av.bin25 <- 25*0.25

stdev.bin25 <- sqrt(25*0.25*0.75)
bin25<-(bin25-av.bin25)/stdev.bin25
hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size
25", main="")

x<-seq(-4,4,0.1)

lines(x,dnorm(x))
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Approximate via Central Limit Theory
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Approximate via Central Limit Theory
e Estimating the quantity P(N = 300) when N has a binomial distribution
with parameters n=1000 and p=0.25,
E(N) =nu =1000 x 0.25 = 250,

1 3

sd(N) = vno= [1000 X=X~ ~ 13.693
N 47 4

N—250 300 — 250)

13.693 ~ 13.693

P(N > 300) = p(

~ P(Z > 3.651501) = 0.0001303560

e R code:
pnorm(3.651501,lower.tail=FALSE)

How do the estimates of P(N = 300) compare?
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3 Study examples
3.a Studying words of length 2

Introduction

e Dinucleotides are important because physical parameters associated with
them can describe the trajectory of the DNA helix through space (such as
DNA bending), which may affect gene expression.

- CCdinucleotides contribute to the bending of DNA in chromatin
(Bolshoy 1995)

e Also occurrences of CGs are of interest ...

e The CpG sites or CG sites are regions of DNA where a cytosine nucleotide
occurs next to a guanine nucleotide in the linear sequence of bases along its
length. "CpG" is shorthand for "—C—phosphate—G—" (cytosine and guanine

separated by only one phosphate; phosphate links any two nucleosides together in DNA)


http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Cytosine
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Guanine
http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/Base_pair
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Nucleoside
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CpG sites

CATTC  CCTTCTCTCC  AGGTGGE TEGGA
GETEATTTTECT  GETTCTGETAAGAATAGGCCAGG
CAGCTTCOC GGATG  CTCATCCCCTCT G
GGTTC  CTCCCAC c T Gt GTT
C CCTG  AGATGTTTTC A GACAATGATTC
CACTCT G CCTCCCATGTTGATCCCAGCTCCT
CTG GG TCAGGACCCCTGGGLCC  CCC
CTCCACTCAGTCAATCTTTITGTCCC TATAAGH
GATTAT GOGTEGCTEEGEGEGE  GCTGATTC A
AATGCCCTTEEGEEGETCACDL GEAGGEGAACTC
GGECTC  GOTTTGECCAGCCS CACCCCTGGT
TGAGC GCC  AGGGCCACCAGGGESE CT
ATETTCCTGCAGCCCCC CAGCAGCCCCACTCC
. GCTCACCCTA  ATTGGCTGGC  CCC AG
CTCTEGTGCTGTGATTGETCACAGCS  TGTC T
GG C GGG GATA  AGGTGA CA
GAGGCCCAGCT GGG GTGTCC CooG
ACTG GG GAGTTT AGGGEC  AMAG
GGECAGTGTGA GCAG  GTCCTGGGAGG C
c T  GAGCAGCTCCG  TCCTC  CA
GG TCAC GooGE TG CCCTGGOC
TSC  CaACT CACTCCTGTE ©  CCCAC
COCACCTOCCACCST  ATG  GTGC GGCTGOS
TG  TGATGGGGCTG GAG G CCCTG G
cT G GC CTGCT CTGAGGTG T
GTGOC GOOCCG CoCo ¥
GOTCCTGTTGASS  GTC  ©O0 T GTCOTGE
Al GOTGAGGTAAGG G GGGLETGGOC
GTTGG  C GT GOGTTGEGEAGGEE
GGC CTTC GEGAGGAG GO GGCCOGGE
GGTS GG GGEETCTGAGGGGA

CTCTTAGTTTTGGGTGCATTTGTCTGGTOTTOCAAA
CTAGATTGAAAGCTCTGAAAAMALAAMACTATCTTGT
GTTTCTATCTETTGAGCTCATAGTAGGTATCCAGGA
AGTAGTAGGGETTGACTGCATTEATTTGRGACTACAC
TGGGAGTTTTCTT  CCATCTOCCTTTAGTTTTCCT
TTTTTTCTTITCTTITCT T I TCT I I I I T T TCT I T oI TIT
TTGAGATGET  TCTTGLTCAGTCCCCCAGGLTEGA
GTGCAGTGGETG  ATCTTGGCTCACTGTAGCCTCL
ACCTCCCAGGTTCAAGCAATTCTACTGCCTTAGCCT
CC AGTAGCTGGGATTACAAGCACC  CCACCAT
TCCTGECTAATTTTTTTTTITTGTATT I TTAGTTGAGA
CAGGGTTTCACCATGTTGGTGATGCTGGTCTCAGA
CTCCTGOGGECCTAG  ATCCCCCTGCCTCAGCCT
CCCAGAGTGTTAGGATTACAGGCATGAGCCACTGET
ACC  GCCTCTCTCCAGTTTCCAGTTGGAATCCAA
GEGAAGTAAGTTTAAGATAAAGTTA  ATTTTGAAAT
CTTTGGATTCAGAAGAATTTGTCACCTTTAACACCT
AGAGTTGAA TTCATACCTGGAGAGCCTTAACATT
AAGCCCTAGCCAGCCTCCAGCAAGTGGACATTGET
CAGGTTTGGCAGGATT  TCCOCTGAAGTGGACT
GAGAGCCACACCCTGGOCTGTCACCATACCCATCC
COTATCCTTAGTGAAGCAAAACTCCTTTGTTCCETT
CTCCTTCTCOTAGTGACAGGAAATATTGTGATCCTA
AAGAATGAAMATAGCTTGTCACCT  TGGCCOTCAG
GCCTCTTGASTTCAGE  GTTCTGTTTAATCAAGT
GACATCTTOS  AGGCTCCCTGAATGTGGLAGATG
AAAGAGACTAGTTCAACCCTGACCTGAGGGGAAAG
COTTTGTGAAGGGTCAGGAG

Left: CpG sites at 1/10 nucleotides, constituting a CpG island. The
sample is of a gene-promoter, the highlighted ATG consitutes the

start codon.

Right: CpG sites present at every 1/100 nucleotides, consituting a
more normal example of the genome, or a region of the genome

that is commonly methylated.
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CpG sites

CpG Dinucleotide Distribution and DNA Methvlation

Tom Shimizu'+* Kouichi Takahashi®” Masaru Tomita'”’
tom@sfc.keio.ac. jp t94249kt@sfc.keio.ac.]jp mt@sfc.keio.ac.jp

. - v . [y B 5 s . -
I Laboratory for Bioinformatics, ? Graduate School of Media and Governance,
3 Department of Fnvironmental Information,
1
Keio University
5322 Endo, Mujisawa, Kanagawa 252 Japan

[t is known that the dinucleotide CpG is significantly underrepresented in genomic sequences of
organisms which extensively methylate their DNA[1]. In these species, most cytosine bases of CpG
dinucleotides are found to be methylated and this extensive CpG methylation is thought to have caused
the depletion of the dinucleotide over the course of evolution[2]. Thus, the extent of CpG depletion
in the genomic sequence can serve as an index of the extent of CpG methylation in an organism.

CpG islands are small regions of these CpG-depleted genomes which have remained relatively
CpG-rich, and are usually unmethylated[3]. They are associated with most housekeeping genes and
many tissue-specific genes and are most often found in the 5 flanking region[4]. It is also known that
the methylation state of CpG islands is sometimes associated with gene suppression.
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Occurrences of 2-words

e Concentrating on abundances, and assuming the iid model for L, ..., L:
P(L;=1;,Liy1 = liy1) = D1, 01,,
e Has a given sequence an unusual dinucleotide frequency compared to the
iid model?

- Compare observed O with expected E dinucleotide numbers

2 _ (0-E)?
= =

with E = (n — Dp,py,, .-
Why (n-1) as factor? How many df?
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Comparing to the reference

e How to determine which values of x?are unlikely or extreme?
- Recipe:
= Compute the number c given by

{1 +2py, — 3pf, ifl; = liyg
C = .
1-— Bplipli_H' if li + li+1

XZ

o
= |f this ratio is larger than 3.84 then conclude that the iid model is
not a good fit

= Note: gchisq(0.95,1) =3.84

= Calculate the ratio &, where ¥?is given as before
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3.b Studying words of length 3

e There are 61 codons that specify amino acids and three stop codons = 64
meaningful 3-words.

e Since there are 20 common amino acids, this means that most amino acids
are specified by more than one codon.

e This has led to the use of a number of statistics to summarize the "bias" in
codon usage

- An amino acid may be coded in different ways, but perhaps some codes
have a preference? (higher frequency?)
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Predicted relative frequencies

e For a sequence of independent bases Ly, L, ..., L, the expected 3-tuple
relative frequencies can be found by using the logic employed for
dinucleotides we derived before

e The probability of a 3-word can be calculated as follows:

P(Li == rl?L¢+1 — TQ?L?H_Q e ?“3) —
P(Li — TI)P(L—;H — Tz)ED(L@Jrg = ?’q)

assuming the iid model
e This provides the expected frequencies of particular codons, using the
individual base frequencies. It follows that among those codons making up
the amino acid Phe, the expected proportion of TTT is
P(TTT)
P(TTT) + P(TTC)
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The codon adaptation index

e Comparison of predicted and observed triplet frequencies in coding
sequences for a subset of genes and codons from E. coli.
e Figures in parentheses below each gene class show the number of genes in

that class.
Observed .
ene Claes T. Eoms Class T Class Il : Highly expressed genes
Codon Predicted (502) (191)
Class | : Moderately expressed genes

Phe TIT  0.493 0.551 0.291
TTC  0.507 0.449 0.709

Ala GCT  0.246 0.145 0.275
Gee 0.254 0.276 0.164

GCA  0.246 0.196 0.240

Gce  0.254 0.382 0.323

Asn AAT  0.493 0.409 0.172
AAC  0.507 0.591 0.828

(Table 2.3 from Deonier et al 2005)
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4 Restriction sites
Introduction

e Because DNA can be long but is very thin, it is easily broken during
processing. Note that the DNA in human chromosome 1, at 245,000,000bp,
is 8.33cm long and only 20 x10-8 cm thick

e Molecular scissors: Restriction endonucleases provides the means for
precisely and reproducibly cutting the DNA into fragments of manageable
size (usually in the size range of 100s to 1000s of base pairs)

e Cloning puts DNA of manageable  —
Insert =y
size into vectors that allow the >. .
inserted DNA to be amplified

Vector
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Introduction

e A restriction map is a display of positions on a DNA molecule where
cleavage by one or more restriction endonucleases can occur.

e It is created by determining the ordering of the DNA fragments generated
after digestion with one or more restriction endonucleases.

e The restriction map is useful not only for dissecting a DNA segment for
further analysis but also as a "fingerprint" or bar code that distinguishes
that molecule from any other molecule.

e A graphical summary is given in the following figure (Figure 3.1 — Deonier et
al 2005)
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Introduction

e The order of fragments (D, A, F, G, C, E, B) is originally unknown. A variety
of techniques may be employed to determine this order.

Undigested Molecule

D \ A * F +G+ C v E v B 3 different restriction

enzyme digests of
plasmid DNA

size marker

Digest with
restriction Construct
endonuclease restriction map

B
< 5.0, 3.5, 3.0,
D 2.5, 2.0, 1.5,
E Determine sizes by 0.5 kb
F gel electrophoresis

Fragments of linear DNA migrate through agarose
gels with a mobility that is inversely proportional to
the log10 of their molecular weight.
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Introduction

e An example of a restriction enzyme is EcoR1

e The EcoRl restriction enzyme, the first restriction enzyme isolated from E.
Coli bacteria, is able to recognize the base sequence 5' GAATTC 3'.

e Each strand of DNA is cut between the G and the A in this sequence. This
leaves "sticky ends" or single stranded overhangs of DNA. Each single
stranded overhang has the sequence 5" AATT 3.

|

—X—X—G ¥ A—A—T—T—C—X—X—

—X—X—C—T—T—A—A TG—x—x—

EcoRl l

—X—X—G A—A—T—T—C—X—X—
—X—X—C—T—T—A—A X __ G—X—X—

‘\_/ Sticky ends
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Introduction

e If we were to digest the DNA with a restriction endonuclease such as EcoR1,

then we can ask ourselves the following questions:
1) approximately how many fragments would be obtained (how many

times was the sequence cut), and
2) what would be their size distribution (which lengths are obtained

for the restriction fragments)?
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The number of restriction sites

e Restriction endonuclease recognition sequences have lengtht (4, 5, 6 or 8
typically), where t is much smaller than n.

e Our model assumes that cleavage can occur between any two successive
positions on the DNA.

e This is wrong in detail because, depending upon where cleavage occurs
within the bases of the recognition sequence (which may differ from
enzyme to enzyme), there are positions near the ends of the DNA that are
excluded from cleavage.

e However, since t is much smaller than n, the ends of the molecule do not
affect the result too much
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The number of restriction sites

e We again use X; to represent the outcome of a trial occurring at position i,
but this time X; does not represent the identity of a base (one of four
possible outcomes) but rather whether position i is or is not the beginning
of a restriction site.

e |n particular,

1. if base i is the start of a restriction site,
X;i=<2 e
0, if not.
e We denote by p the probability that any position i is the beginning of a
restriction site:

X — 1, with probability p,
© 7 1 0, with probability 1 — p.
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The number of restriction sites

e Unlike with tossing a fair coin, for the case of restriction sites on DNA, p
depends upon
— the base composition of the DNA and
— the identity of the restriction endonuclease.

—X—X—GiA—A—T—T—C—X—X—

—X—X—C—T—T—A—A TG—x—x—

EcoRl l

—X—X—G A—A—T—T—C—X—X—
—X—X—C—T—T—A—A X __ G—X—X—

\_/ Sticky ends
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The number of restriction sites

e Model assumptions

— The DNA has equal proportions of A, C, G, and T (e.g. P(G)=0.25).

— The probability that any position is the beginning of a site is the
probability that this first position is G, the next one is A, the next one is
A, the next one is T, the next one is T, and the last one is C.

— Since, by the iid model, the identity of a letter at any position is
independent of the identity of letters at any other position, we see
from the multiplication rule that

p = P(GAATTC) = P(G)P(A)P(4)P(T)P(T)P(C) = (0.25)° ~ 0.00024.

— Notice that p is small, a fact that becomes important later.
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The number of restriction sites

e The appearance of restriction sites along the molecule is represented by
the string X4, Xy, ..., X,
e The number of restriction sitesis N =X; + X5 + ... + X;,,, with m =n - 5.

— The sum has m terms in it because a restriction site of length 6 cannot
begin in the last five positions of the sequence, as there aren't enough
bases to fit it in.

e For simplicity of exposition we take m = n in what follows.
e What really interests us is the number of "successes" (restriction sites) in “n
trials”.
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The number of restriction sites

o If X1, X5, ..., X,, were independent of one another, then the probability

distribution of N would be a binomial distribution with parameters n and p;
- The expected number of sites would therefore be np
- The variance would be np(1 - p).

e The binomial approximation usually works well, even though we know that
the X; are in fact NOT independent of one another (because of overlaps in
the patterns corresponding to X; and X;,;, for example).

e \We have already seen that computing probabilities of events can be
cumbersome when using the probability distribution

P(N =j) = (7) p/(1-p)*7,j=0,1, ..n

e Since nis large and p is small (see before), we can rely on the Poisson
approximation of the binomial distribution
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Poisson approximation to the binomial distribution

¢ In what follows, we assume that n is large and p is small, and we set A= np.
e We know thatforj=0, 1, ..., n,
PV =) =(j)p/@-p
J

e Writing

(- Dn—2)(n—j+1)
IP(N:J) _ E(H )(”??(l;p)f p}(l _p) ‘

and given that the number of restriction sites (j) is small corﬁpared to the
length of the molecule (n), such that

nn—-1Dn-2).(n—j+1)=n/,(1-p) =1,
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Poisson approximation to the binomial distribution

P(N = j) ~ (:p)ﬂu—) X (1_5_)“.

7! n

in which A = np.
e From calculus, for any x,

. _ 33 Ti L
Iim (l—-u) — o T

n—os (1

e Since n is large (often more than 104), we replace (1 — %)” by e~ to get

our final approximation in the form

)\:f >

P(N =j) ~ 3=0,1,2,...

e This is the formula for the Poisson distribution with parameter A = np
(note: this parameter represents both the mean and variance)
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Poisson approximation to the binomial distribution

e Example:

- To show how this approximation can be used, we estimate the
probability that there are no more than two EcoRl sites in a DNA
molecule of length 10,000, assuming equal base frequencies

- Earlier we obtained p=0.00024 for this setting.

- The problem is to compute P(N < 2)

" Therefore A =np = 2.4
= Using the Poisson distribution: P(N < 2) = 0.570
" |[nterpretation: More than half the time, molecules of length 10,000

and uniform base frequencies will be cut by EcoRI two times or less
e R code:

ppois(2,2.4)
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Distribution of restriction fragment lengths

e There is a more general version of the Poisson distribution: it generalizes n
into “length” and p into “rate”. We suppose that “events” (restriction sites)
occur on a line at rate p.

e Then the probability of k sites in an interval of length | bp is

—LLl l k
D k0,12, ..

e We can also calculate the probability that a restriction fragment length X is

larger than x. If there is a site at y, then the length of that fragment is
greater than x if there are no events in the interval (y, y + x):

X
PX>x)= e #*¥= ¢ *®
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Distribution of restriction fragment lengths

e The previous has some important consequences:

X
Per <) = [ fOIdy =1 emvr
0
so that the density function for X is given by
f(x)= pe H*~%, x > 0.
- The distance between restriction sites therefore follows an exponential

distribution with parameter u; the mean distance between restriction
sitesis 1/
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Simulating restriction fragment lengths

e If we simulated a sequence using the iid model, we could compute the
fragment sizes in this simulated sequence and visualize the result

e R code simulating a DNA sequence having 48500 positions and uniform
base probabilities:

x<-c(1:4)

propn <- ¢(0.25,0.25,0.25,0.25)

seq2 <- sample(x,48500,replace=TRUE,prob=propn)
seq2[1:15]

length(seq2[])
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Simulating restriction fragment lengths

e What else is needed?
— R code identifying the restriction sites in a sequence string, with bases
coded numerically: function rsite
— Code of the restriction sites we are looking for: e.g., for Alul it would be
AGCT.
— R code to compute the fragment lengths: subtract positions of
successive sites

(R code posted online)
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Simulating restriction fragment lengths

Histogram of alu.frag

||| o dlm o
| T

| | | | | | | | | |
0 500 1000 1500 2000 2500 a 500 1000 1500 2000 2500

Frequency
20 a0 40
|

10

Fragment Size Fragment Size



Bioinformatics LECTURES - 84

Is our theoretical model to simulate restriction fragment lengths valid?

Histogram of alu.frag
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Simulating restriction fragment lengths

e To determine whether the actual distribution differs significantly from the
mathematical model (exponential distribution), we could break up the
length axis into a series of "bins" and calculate the expected number of
fragments in each bin by using the model-based (theoretical) density

e We could then compare the observed with expected number of fragments
(using the same bin boundaries) via for instance a y? — test.
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5 R code (at home)
e R scripts used throughout this Chapter can be replayed via the code
included in the file
RCode to Chapter5 and Backgroundinfo.7z

e R scripts illustrating relevant R packages for sequence pattern recognition

and sequence comparison (see also practical session):
- DNA sequence statistics: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapterl.html
- Quering sequence data bases: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter3.html
- Pairwise sequence alighment: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter4.html
- Multiple alignments and phylogenetic analysis: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter5.html
- Computational gene finding: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter7.html
- Comparative genomics:_http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter9.html
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e Deonier et al. Computational Genome Analysis, 2005, Springer.
(Chapters 6,7)

Background reading

e Pabinger et al. 2013. A survey of tools for variant analysis of next-generation genome
sequencing data. Briefings in Bioinformatics.

e Pavlopoulos et al. 2013. Unraveling genomic variation from next generation sequencing
data. BioData Mining 6:13.
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