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CHAPTER 5: DNA SEQUENCE ANALYSIS 

1 Introduction 

1.a Historical notes 

1.b Work flow 

1.c Applications 

2 Investigating frequencies of occurrencies of words 

 2.a Motivation 

2.b Probability distributions 

2.c Simulating from a probability distribution 
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3 Study examples 

3.a Words of length 2 

3.b Words of length 3 

4 Restriction sites 

5 R code 
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1 Introduction  

1.a Historical notes 

Sequencing projects 

 Based on the first Sanger sequencing technique, the Human Genome 
Project (1990–2003), allowed the release of the first human reference 
genome by determining the sequence of ~3 billion base pairs and 
identifying the approximately ~25,000 human genes (now we know there are 

less genes) 
 That stood as a great breakthrough in the field of comparative genomics 

and genetics as one could in theory directly compare any healthy or non-
healthy sample against a golden standard reference and detect genetic 
polymorphisms or variants that occur in a genome.  
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Sequencing projects 

 Few years later, as sequencing techniques became more advanced, more 
accurate, and less expensive, the 1000 Human Genome Project was 
launched (January 2008). 
 

The main scope of this consortium is to sequence, ~1000 anonymous participants of 
different nationalities and concurrently compare these sequences to each other in 
order to better understand human genetic variation.  

 

 The International HapMap Project (short for “haplotype map”) aims to 
identify common genetic variations among people, making use of data from 
six different countries. 

 Shortly after the 1000 Human Genome Project, the 1000 Plant Genome 
Project (http://www.onekp.com) was launched, aiming to sequence and 
define the transcriptome of ~1000 plant species from different populations 
around the world.  
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Notably, out of the 370,000 green plants that are known today, only ~125,000 
species have recorded gene entries in GenBank and many others still remain 
unclassified.  

 While the 1000 Plant Genome Project was focused on comparing different 
plant species around the world, within the 1001 Genomes Project, 1000 
whole genomes of A. Thaliana plants across different places of the planet 
were sequenced. 

 Similar to other consortiums, the 10,000 Genome Project aims to create a 
collection of tissue and DNA specimens for 10,000 vertebrate species 
specifically designated for whole-genome sequencing.  
 

Vertebrates have a series of nerves along the back which need support and 
protection. That need brings us to the backbones and notochords 

 

 The goal of the 1000 Fungal Genome Project (http://1000.fungalgenomes.org) is 
to explore all areas of fungal biology.  
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 In human genetics, metagenome sequencing is becoming increasingly 
important, which lead to the Human Microbiome Project 
(http://www.hmpdacc.org/) 

 

- Metagenome sequencing is defined as an approach for the study of 
microbial populations in a sample representing a community by 
analysing the nucleotide sequence content.  
 

- The HMP plans to sequence 3000 genomes from both cultured and 
uncultured bacteria, plus several viral and small eukaryotic microbes 
isolated from human body sites. This, in conjunction with reference 
genomes sequenced by HMP Demonstration Projects and other 
members of the International Human Microbiome Consortium (IHMC), 
will supplement the available selection of non-HMP funded human-
associated reference genomes to provide a comprehensive pool of 
genome sequences to aid in the analysis of human metagenomic data. 

http://www.human-microbiome.org/
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Why Reference Sequences? 

 Within the human body, it is estimated that there are 10x as many 
microbial cells as human cells.  

 Our microbial partners carry out a number of metabolic reactions that are 
not encoded in the human genome and are necessary for human health ( 

human genome =  human genes + microbial genes).  

 The majority of microbial species present in the human body have never 
been isolated, cultured or sequenced, typically due to the inability to 
reproduce necessary growth conditions in the lab ( study microbial 

communities – metagenomics)  

 In order to assign metagenomic sequence to taxonomic and functional 
groupings, and to differentiate the novel from the previously described, it is 
necessary to have a large pool of described genomes from the same 
environment (reference genomes).  
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Why Reference Sequences? 

  

(http://www.hmpdacc.org/) 
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1.b Work flow  
 

 Whole-exome sequencing using next-generation sequencing (NGS) 
technologies is gaining popularity in the human genetics community due to 
the moderate costs, manageable data amounts and straightforward 
interpretation of analysis results (Pabinger et al. 2013). 

 

 As sequencing techniques improve and develop overtime, the amount of 
data produced increases exponentially and therefore the implementation 
of efficient platforms to analyze and visualize such large amounts of data in 
fast and efficient ways has become a necessity (Pavlopoulos et al 2013). 

 

 While whole-exome and, in the near future, whole-genome sequencing are 
becoming commodities, data analysis still poses significant challenges and 
led to the development of a plethora of tools supporting specific parts of 
the analysis workflow or providing a complete solution (Pabinger et al. 2013). 
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Basic workflow for whole-exome 

and whole genome sequencing 
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Recall: Detailed flow of a genome-wide association study 

 

(Ziegler 2009) 

 

NGS workflow: 

 After library preparation samples are sequenced 

on a platform 

 Quality assessment 

 Read alignment against reference genome 

 Idenitfy variants 

 Detected mutations are then annotated to infer 

biological relevance and further prioritized or 

filtered 

(Pabinger et al 2013) 

 

(Ziegler 2009) 
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1.c Applications 
 
The application determines the statistical analysis tool 
 

 The starting point of any sequencing project is the development of an 
appropriate study design, which starts (should start?) with a biological / 
research question 
 

 Hence, the work flow for NGS presented earlier is only part of the story 
 

 In order to have an idea about potentially interesting questions, we need to 
survey potential application fields 
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Three common scenarios for human geneticists using NGS data 

1) Identification of causitive genes in Mendelian disorders (germline 

mutations) 

2) Identification of candidate genes in complex diseases for further 

functional studies 

3) Identification of constitutional mutations as well as driver and 

passenger genes in cancer (somatic mutations) 

(Pabinger et al 2013) 

 

A germline mutation is one the was passed on to offspring because the egg or sperm 

cell was mutated. 

A somatic mutation is a mutation of the somatic cells (all cells except sex cells) that 

cannot be passed on to offspring. 

 



Bioinformatics              LECTURE 5 -  14 

 

 
 

Other scenarios ? 

 

Bioinformatics Computational biology 
Research, development or application 
of computational tools and 
approaches for expanding the use of 
biological, medical, behavioral or 
health data, including those to 
acquire, store, organize, analyze, or 
visualize such data 

Development and application of data-
analytical, theoretical methods, 
mathematical modeling and 
computational simulation to the 
study of biological, behavioral, and 
social systems. 

(BISTIC Definition Committee, NIH, 2000) 
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Other scenarios ? 

 The rule of thumb in the genomics community is that every dollar spent on 

sequencing hardware must be matched by a comparable investment in 

informatics (www.the-scientist.com/2011/3/1/60/1) 

 There is a constant stream of new software 

- What is its quality? 

- How to install it? 

- How to get it working? 

http://www.the-scientist.com/2011/3/1/60/1
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(http://seqanswers.com/forums/showthread.php?t=43)  
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Web-based programs (1) 

 

“ Galaxy is a scientific workflow, data 

integration, and data and analysis 

persistence and publishing platform 

that aims to make computational 

biology accessible to research scientists 

that do not have computer 

programming experience. It serves as a 

general bioinformatics workflow 

management system. “ 

http://en.wikipedia.org/wiki/Scientific_workflow_system
http://en.wikipedia.org/wiki/Data_integration
http://en.wikipedia.org/wiki/Data_integration
http://en.wikipedia.org/wiki/Digital_preservation
http://en.wikipedia.org/wiki/Digital_preservation
http://en.wikipedia.org/wiki/Computational_biology
http://en.wikipedia.org/wiki/Computational_biology
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Bioinformatics_workflow_management_systems
http://en.wikipedia.org/wiki/Bioinformatics_workflow_management_systems
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Web-based programs (2) 

 

(https://hyperbrowser.uio.no/hb/) 

“ Genomic HyperBrowser ‘s 

focus is on statistical 

inference on relations 

between genomic tracks. An 

example of analysis is to 

investigate the relationship 

between histone 

modifications and gene 

expression, using ChIP-based 

tracks of histone 

modifications versus tracks of 

genes marked with 

expression values from a 

microarray experiment. “ 

http://en.wikipedia.org/wiki/Histone_modification
http://en.wikipedia.org/wiki/Histone_modification
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Four common scenarios for bioinformaticians using NGS data 

1) Sequence assembly (see pactical sessions /homework assignment) 

2) Annotation (see practical sessions /homework assignment) 

3) Comparative genomics (see next class: BLAST-ing, FASTA-ing) 

4) Pattern recognition 
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Comparative genomics 

 Motivations: the study of the genomic sequence of organisms that are 

related to humans could ultimately help to identify targets for drug 

development; conserved regions must be important to life …. 

 
(McCain 2004) 
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Pattern recognition

Motivation: Human DNA sequences carry relevant biophysical information in 

the form of a one-dimensional chain of 4 nucleotide bases: Adenine, Guanine, 

Cytosine, Thymine. One way of retrieving this information is by looking at 

patterns / distributions of (collections or sequences of) these letters. 

 These chains are broadly divided into 3 parts: 

- Regions called genes 

- These are connected by intergenic regions (sometimes called the 

flanks)  

- Inside the genes these sequences divide into exons and introns. The 
exons code for proteins, the introns come in between exons. The 
coding DNA sequence (CDS) is obtained by taking the genes and 
splicing the non-coding intron regions out of it. 
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Pattern recognition

 In general, given the DNA sequence  

AATCGGATGCGCGTAGGATCGGTAGGGTAGGCTTTAAGATCATGCTATTTTCGAGATTCGATTCT

AGCTAGGTTTAGCTTAGCTTAGTGCCAGAAATCGGATGCGCGTAGGATCGGTAGGGTAGGCTTTA

AGATCATGCTATTTTCGAGATTCGATTCTAGCTAGGTTTTTAGTGCCAGAAATCGTTAGTGCCAGA

AATCGATT 

several questions can be asked: 

 Is it a gene? (What is the possible expression level? What is the possible protein 

product? How can we obtain the protein product?) 

 Can we determine the organism from which this sequence came? 

 What sort of statistics to be used for describing this sequence?  

 Do parameters describing the sequence differ from those describing bulk 

DNA in that organism? 

 Can we spot motifs? 
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DNA sequence motifs 

  atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 
 
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGa 
 
tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 
 
gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 
 
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttatag 
 
gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 
 
cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat 
 
aacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 
 
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaag 
 
ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa 
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DNA sequence motifs 

  atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 
 
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGa 
 
tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 
 
gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 
 
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttatag 
 
gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 
 
cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat 
 
aacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 
 
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaag 
 
ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa 
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DNA sequence motifs 

 

  

atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 
 
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGa 
 
tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 
 
gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 
 
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttatag 
 
gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 
 
cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat 
 
aacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 
 
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaag 
 
ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa 

atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 
 
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa 
 
tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 
 
gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 
 
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttatag 
 
gtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 
 
cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcat 
 
aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 
 
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag 
 
ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa 
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Why finding (15,4) motif is difficult 

  atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 
 
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa 
 
tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 
 
gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 
 
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttatag 
 
gtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 
 
cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcat 
 
aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 
 
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag 
 
ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa 

AgAAgAAAGGttGGG 

cAAtAAAAcGGcGGG 
..|..|||.|..||| 



Bioinformatics              LECTURE 5 -  27 

 

 
 

DNA sequence motifs 

 Definition: Sequence motifs are short, recurring patterns in DNA that are 

presumed to have a biological function.  

- Often they indicate sequence-specific binding sites for proteins such as 

nucleases and transcription factors (TF).  

- Others are involved in important processes at the RNA level, including 

ribosome binding, mRNA processing (e.g., splicing, editing) and 

transcription termination. 

 

 Potential research question:  

Find a motif in a sample of  

- 20 “random” sequences (e.g., of length 600 nucleotides) where 

- each sequence contains an implanted pattern of length 15, and 

- each pattern appears with 4 mismatches as (15,4)-motif. 



Bioinformatics              LECTURE 5 -  28 

 

 
 

2 Investigating frequencies of occurrences of words 

2.a Motivation 
 
Introduction 

 Words are short strings of letters drawn from an alphabet 

 In the case of DNA, the set of letters is A, C, T, G 

 A word of length k is called a k-word or k-tuple 

 Differences in word frequencies help to differentiate between different 

DNA sequence sources or regions 

 Examples: 1-tuple: individual nucleotide; 2-tuple: dinucleotide; 3-tuple: 

codon 

 The distributions of the nucleotides over the DNA sequences have been 
studied for many years  hidden correlations in the sequences 
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Introduction 
 

 

 
(Som et al. 2003) 
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Biological words of length 1 – base composition 

 There are constraints on base composition imposed by the genetic code 

 The distribution of individual bases within a DNA molecule is not ordinarily 

uniform 

- There may be an excess of G over C on the leading strands  

 
- This can be described by the “GC skew”, characterized by: 

 (#G - #C) / (#G + #C) 

 # = nr of 

- What is the implication for AT skew on the lagging strand? 
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Biological words of length 1 – base composition 

 GC or AT skew sign changes link to where DNA replication starts or finishes. 

 Originally this asymmetric nucleotide composition was explained as 

different mechanism used in DNA replication between leading strand and 

lagging strand 

 But recent research (2013) shows there is much more to it:  
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Biological words of length 1 - base composition 

 DNA biosynthesis proceeds in the 

5′- to 3′-direction. This makes it 

impossible for DNA polymerases 

to synthesize both strands 

simultaneously. A portion of the 

double helix must first unwind, 

and this is mediated by helicase 

enzymes. 

 The leading strand is synthesized 

continuously but the opposite 

strand is copied in short bursts of 

about 1000 bases, as the lagging 

strand template becomes 

available. The resulting short 

strands are called Okazaki 

fragments (after their discoverers, 

Reiji and Tsuneko Okazaki).  

 

 

 

 

 Only one strand is transcribed during transcription;  the strand that 

contains the gene is called the sense strand 
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2.b Probability distributions 

 

Probability is the science of uncertainty 

 

1. Rules  data: given the rules, describe the likelihoods of various 

events occurring 

2. Probability is about prediction – looking forwards 

3. Probability is mathematics 
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Statistics is the science of data 

1. Rules  data: given only the data, try to guess what the rules were. 

That is, some probability model controlled what data came out, and 

the best we can do is guess – or approximate – what that model was. 

We might guess wrong, we might refine our guess as we obtain / 

collect more data 

2. Statistics is about looking backward 

3. Statistics is an art. It uses mathematical methods but it is much more 

than maths alone 

4. Once we make our best statistical guess about what the probability 

model is (what the rules are), based on looking backward, we can 

then use that probability model to predict the future  the purpose 

of statistics is to make inference about unknown quantities from 

samples of data. 
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Statistics is the science of data 

 Probability distributions are a fundamental concept in statistics.  

 Before computing an interval or test based on a distributional assumption, 

we need to verify that the assumption is justified for the given data set.  

 For this chapter, the distribution does not always need to be the best-fitting 

distribution for the data, but an adequate enough model so that the 

statistical technique yields valid conclusions.  

 Simulation studies: one way to obtain empirical evidence for a probability 

model 
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Assumptions 

 Simple rules specifying a probability model: 

- First base in sequence is either A, C, T or G with prob pA, pC, pT, pG 

- Suppose the first r bases have been generated, while generating the 

base at position r+1, no attention is paid to what has been generated 

before.  

 A, C, T or G is generated with the probabilities above 

 Notation for the output of a random string of n bases may be: L1, L2, …, Ln  

(Li = base inserted at position i of the sequence) 

 Whatever we would like to do with such strings, we will need to introduce 

the concept of a random variable 
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Probability distributions 

 Suppose the “machine” we are using produces an output X that takes 

exactly 1 of the J possible values in a set 𝜒 =  {𝑥1, 𝑥2, … , 𝑥𝑛 } 

- In the DNA sequence J=4 and 𝜒 =  {𝐴, C, T, G } 

- X is a discrete random variables (since its values are uncertain) 

- If pj is the prob that the value (realization of the random variable X) xj 

occurs, then 

 𝑝1, … , 𝑝𝐽  ≥ 𝑂 and 𝑝1 +  … +  𝑝𝐽 = 1 

 The probability distribution (probability mass function) of X is given by the 

collection 𝑝1, … , 𝑝𝐽 

- P(X=xj) = pj, j=1, …, J 

 The probability that an event S occurs (subset of 𝜒) is P(X ∈ 𝑆) = 

∑  (𝑝𝑗𝑗:𝑥𝑗 ∈𝑆 ) 
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Probability distributions 

 What is the probability distribution of the number of times a given pattern 

occurs in a random DNA sequence L1, …, Ln? 

- New sequence X1, …, Xn: 

Xi=1 if Li=A and Xi=0 else 

- The number of times N that A appears is the sum 

N=X1+…+Xn 

- The prob distr of each of the Xi: 

P(Xi=1) = P(Li=A)=pA 

P(Xi=0) = P(Li=C or G or T) = 1 - pA 

 What is a “typical” value of N? 

- Depends on how the individual Xi  (for different i) are interrelated  
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Independence 

 Discrete random variables X1, …, Xn are said to be independent if for any 

subset of random variables and actual values, the joint distribution equals 

the product of the component distributions 

 According to our simple model, the Li are independent and hence 

P(L1=l1,L2=l2, …,Ln=ln)=P(L1=l1) P(L2=l2) …P(Ln=ln) 
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Expected values and variances 

 Mean and variance are two important properties of real-valued random 

variables and corresponding probability distributions. 

 The “mean” of a discrete random variable X taking values x1, x2, . . . (de- 

noted EX (or E(X) or E[X]), where E stands for expectation, which is another 

term for mean) is defined as: 

E(X) =∑ 𝑥𝑖  𝑃(𝑋 = 𝑥𝑖)𝑖  

 

- E(Xi)= 1 ×pA+0 × (1 −pA) 

- If Y=c X, then E(Y) = c E(X) 

- E(X1 +… + Xn) = E(X1) + … + E(Xn) 

 Because Xi are assumed to be independent and identically distributed (iid): 

E(X1 +… + Xn) = n E(X1) = n pA 
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Expected values and variances 

 The idea is to use squared deviations of X from its center (expressed by the 
mean). Expanding the square and using the linearity properties of the 
mean, the Var(X) can also be written as: 
 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2] 
 

- If Y=c X then Var (Y) = c2 Var (X) 
- The variance of a sum of independent random variables is the sum of 

the individual variances 
 

 For the random variables Xi: 

Var (Xi) = [12  × 𝑝𝐴 +  02  ×′ (1 − 𝑝𝐴)] −  𝑝𝐴
2 = 𝑝𝐴(1 − 𝑝𝐴) 

    Var (N) = n Var (X1) = 𝑛𝑝𝐴(1 − 𝑝𝐴)



Bioinformatics              LECTURE 5 -  42 

 

 
 

Expected values and variances 

 The expected value of a random variable X gives a measure of its location. 
Variance is another property of a probability distribution dealing with the 
spread or variability of a random variable around its mean. 

 
𝑉𝑎𝑟(𝑋) = 𝐸 ( [𝑋 − 𝐸(𝑋)]2 ) 

 
- The positive square root of the variance of X is called its standard 

deviation sd(X) 
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The binomial distribution 
 

 The binomial distribution is used when there are exactly two mutually 
exclusive outcomes of a trial. These outcomes are appropriately labeled 
"success" and "failure". The binomial distribution is used to obtain the 
probability of observing x successes in a fixed number of trials, with the 
probability of success on a single trial denoted by p. The binomial 
distribution assumes that p is fixed for all trials. 

 The formula for the binomial probability mass function is : 

𝑃(𝑁 = 𝑗) = (
𝑛
𝑗 ) 𝑝𝑗(1 − 𝑝)𝑛−𝑗, j = 0,1, …,n 

with the binomial coefficient (
𝑛
𝑗 ) determined by 

(
𝑛
𝑗 ) =  

𝑛!

𝑗! (𝑛 − 𝑗)!
, 

and j!=j(j-1)(j-2)…3.2.1, 0!=1 
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The binomial distribution 

 

 The mean is np and the variance is np(1-p) 

 The following is the plot of the binomial probability density function for 

four values of p and n = 100. 
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2.c Simulating from probability distributions 

 The idea is that we can study the properties of the distribution of N when 

we  can get our computer to output numbers N1, …, Nn having the same 

distribution as N 

- We can use the sample mean to estimate the expected value EN: 

𝑁̅ =  (𝑁1 +  … +  𝑁𝑛)/𝑛 

- Similarly, we can use the sample variance to estimate the true variance 

of N: 

𝑠2 =  
1

𝑛 − 1
 ∑(𝑁𝑖 −  𝑁̅)2

𝑛

𝑖=1

 

Why do we use (n-1) and not n in the denominator?  
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Simulating from probability distributions 

 What is needed to produce such a string of observations? 

- Access to pseudo-random numbers: random variables that are 

uniformly distributed on (0,1): any number between 0 and 1 is a 

possible outcome and each is equally likely 

 In practice, simulating an observation with the distribution of X1: 

- Take a uniform random number u 

- Set X1=1 if 𝑈 ≤ 𝑝 ≡  𝑝𝐴  and 0 otherwise.  

- Why does this work?   …  

- Repeating this procedure n times results in a sequence X1, …, Xn from 

which N can be computed by adding the X’s 
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Simulating from probability distributions 

 

 Simulate a sequence of bases L1, …, Ln: 

- Divide the interval (0,1) in 4 intervals with endpoints 

𝑝𝐴, 𝑝𝐴 + 𝑝𝐶 , 𝑝𝐴 + 𝑝𝐶 + 𝑝𝐺 , 1  

- If the simulated u lies in the leftmost interval, L1=A 

- If u lies in the second interval, L1=C; if in the third, L1=G and otherwise 

L1=T 

- Repeating this procedure n times with different values for U results in a 

sequence L1, …, Ln 

 Use the “sample” function in R: 
pi <- c(0.25,0.75) 

x<-c(1,0) 

set.seed(2009) 

sample(x,10,replace=TRUE,pi) 
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Simulating from probability distributions 

 

 By looking through a given 

simulated sequence, we can count 

the number of times a particular 

pattern arises (for instance, the 

base A) 

 By repeatedly generating 

sequences and analyzing each of 

them, we can get a feel for 

whether or not our particular 

pattern of interest is unusual 
 

  
x<- rbinom(2000,1000,0.25) 
mean(x) 
sd(x)^2 
hist(x,xlab="Number of successes",main="") 
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Simulating from probability distributions 

 Using R code: 
 
x<- rbinom(2000,1000,0.25) 
mean(x) 
sd(x)^2 
hist(x,xlab="Number of successes",main="") 

What is the number of observations? 

 Suppose we have a sequence of 1000bp and assume that every base occurs 

with equal probability. How likely are we to observe at least 300 A’s in such 

a sequence? 

- Exact computation using a closed form of the relevant distribution 

- Approximate via simulation  

- Approximate using the Central Limit Theory 

Number of observations = 2000 

Number of trials = 1000 
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Exact computation via closed form of relevant distribution 

 The formula for the binomial probability mass function is : 

𝑃(𝑁 = 𝑗) = (
𝑛
𝑗 ) 𝑝𝑗(1 − 𝑝)𝑛−𝑗, j = 0,1, …,n 

   and therefore 

𝑃(𝑁 ≥ 300) =  ∑ (
1000

𝑗
) (

1000

𝑗=300

1/4)𝑗(1 − 1/4)1000−𝑗  

      = 0.00019359032194965841  
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(http://faculty.vassar.edu/lowry/binomialX.html)  
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Approximate via simulation 

 Using R code and simulations from the theoretical distribution, 

 𝑃(𝑁 ≥ 300) can be estimated as 0.000196 via 

x<- rbinom(1000000,1000,0.25) 
sum(x>=300)/1000000 
 

 Note that the probability 𝑃(𝑁 ≥ 300) is estimated to be 0.0001479292 via  
 

1-pbinom(300,size=1000,prob=0.25) 
pbinom(300,size=1000,prob=0.25,lower.tail=FALSE) 
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Approximate via Central Limit Theory 

 The central limit theorem offers a 3rd way to compute probabilities of a 

distribution 

 It applies to sums or averages of iid random variables 

 Assuming that X1, …, Xn are iid random variables with mean 𝜇 and variance 

𝜎2, then we know that for the sample average 

𝑋̅𝑛 =  
1

𝑛
 (𝑋1 +  … +  𝑋𝑛), 

E(𝑋̅𝑛) = 𝜇 and Var (𝑋̅̅ ̅
𝑛) = 

𝜎2

𝑛
 

 Hence,  

𝐸 (
𝑋̅𝑛 −  𝜇

𝜎/√𝑛
) = 0, 𝑉𝑎𝑟 (

𝑋̅𝑛 −  𝜇

𝜎/√𝑛
) = 1 
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Approximate via Central Limit Theory 

 The central limit theorem states that if the sample size n is large enough,  

𝑃 (𝑎 ≤  
𝑋̅𝑛− 𝜇

𝜎

√𝑛

 ≤ 𝑏) ≈  𝜙(𝑏) −  𝜙(𝑎), 

with 𝜙(. ) the standard normal distribution defined as 

𝜙(𝑧) = 𝑃(𝑍 ≤ 𝑧) =  ∫ 𝜙(𝑥)𝑑𝑥
𝑧

−∞

 

 The central limit theorem in action using R code: 

bin25<-rbinom(1000,25,0.25) 
av.bin25 <- 25*0.25 
stdev.bin25 <- sqrt(25*0.25*0.75) 
bin25<-(bin25-av.bin25)/stdev.bin25 
hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size 
25",main="") 
x<-seq(-4,4,0.1) 
lines(x,dnorm(x))   
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Approximate via Central Limit Theory 
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Approximate via Central Limit Theory 

 Estimating the quantity 𝑃(𝑁 ≥ 300) when N has a binomial distribution 

with parameters n=1000 and p=0.25, 

𝐸(𝑁) = 𝑛𝜇 = 1000 × 0.25 = 250, 

𝑠𝑑(𝑁) =   √𝑛 𝜎 = √1000 ×
1

4
×

3

4
 ≈ 13.693 

𝑃(𝑁 ≥ 300) = 𝑃 (
𝑁 − 250

13.693
 >  

300 − 250

13.693
) 

 

                                       ≈ 𝑃(𝑍 >  3.651501) =  0.0001303560 

 R code: 
pnorm(3.651501,lower.tail=FALSE) 

 

How do the estimates of 𝑃(𝑁 ≥ 300) compare?  
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3 Study examples 

3.a Studying words of length 2 

 

Introduction 

 Dinucleotides are important because physical parameters associated with 

them can describe the trajectory of the DNA helix through space (such as 

DNA bending), which may affect gene expression. 

- CC dinucleotides contribute to the bending of DNA in chromatin 

(Bolshoy 1995) 

 Also occurrences of CGs are of interest … 

 The CpG sites or CG sites are regions of DNA where a cytosine nucleotide 

occurs next to a guanine nucleotide in the linear sequence of bases along its 

length. "CpG" is shorthand for "—C—phosphate—G—" (cytosine and guanine 

separated by only one phosphate; phosphate links any two nucleosides together in DNA) 

http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Cytosine
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Guanine
http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/Base_pair
http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/Nucleoside
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CpG sites 
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CpG sites 
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Occurrences of 2-words 

 

 Concentrating on abundances, and assuming the iid model for L1, …, Ln: 

𝑃(𝐿𝑖 = 𝑙𝑖 , 𝐿𝑖+1 = 𝑙𝑖+1) = 𝑝𝑙𝑖 𝑝𝑙𝑖+1  

 Has a given sequence an unusual dinucleotide frequency compared to the 

iid model? 

- Compare observed O with expected E dinucleotide numbers 

χ2 =  
(O−E)2

E
, 

   with 𝐸 = (𝑛 − 1)𝑝𝑙𝑖
𝑝𝑙𝑖+1

.  

Why (n-1) as factor? How many df? 
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Comparing to the reference 

 How to determine which values of χ2are unlikely or extreme? 

- Recipe:  

 Compute the number c given by  

𝑐 = {
1 + 2𝑝𝑙𝑖 −  3𝑝𝑙𝑖

2 ,  if 𝑙𝑖 =  𝑙𝑖+1

1 − 3𝑝𝑙𝑖
𝑝𝑙𝑖+1

,        if 𝑙𝑖  ≠  𝑙𝑖+1
  

 Calculate the ratio 
χ2

c
, where χ2is given as before 

 If this ratio is larger than 3.84 then conclude that the iid model is 

not a good fit 

 Note: qchisq(0.95,1) = 3.84 
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3.b Studying words of length 3 

 There are 61 codons that specify amino acids and three stop codons  64 

meaningful 3-words. 

  Since there are 20 common amino acids, this means that most amino acids 

are specified by more than one codon.  

 This has led to the use of a number of statistics to summarize the "bias" in 

codon usage  

- An amino acid may be coded in different ways, but perhaps some codes 

have a preference? (higher frequency?) 
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Predicted relative frequencies 

 For a sequence of independent bases L1, L2, ... , Ln the expected 3-tuple 

relative frequencies can be found by using the logic employed for 

dinucleotides we derived before 

 The probability of a 3-word can be calculated as follows: 

assuming the iid model 

 This provides the expected frequencies of particular codons, using the 

individual base frequencies.  It follows that among those codons making up 

the amino acid Phe, the expected proportion of TTT is 

P(TTT)

P(TTT) +  P(TTC)
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The codon adaptation index 

 Comparison of predicted and observed triplet frequencies in coding 

sequences for a subset of genes and codons from E. coli.  

 Figures in parentheses below each gene class show the number of genes in 

that class.  

 

(Table 2.3 from Deonier et al 2005) 

Class II : Highly expressed genes 

Class I   : Moderately expressed genes 
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4 Restriction sites 

Introduction 

 Because DNA can be long but is very thin, it is easily broken during 

processing. Note that the DNA in human chromosome 1, at 245,000,000bp, 

is 8.33cm long and only 20 x10-8 cm thick 

 Molecular scissors: Restriction endonucleases provides the means for 

precisely and reproducibly cutting the DNA into fragments of manageable 

size (usually in the size range of 100s to 1000s of base pairs)  

 Cloning puts DNA of manageable 

size into vectors that allow the 

inserted DNA to be amplified 
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Introduction 

 A restriction map is a display of positions on a DNA molecule where 

cleavage by one or more restriction endonucleases can occur.  

 It is created by determining the ordering of the DNA fragments generated 

after digestion with one or more restriction endonucleases.  

 The restriction map is useful not only for dissecting a DNA segment for 

further analysis but also as a "fingerprint" or bar code that distinguishes 

that molecule from any other molecule. 

 A graphical summary is given in the following figure (Figure 3.1 – Deonier et 

al 2005)  

  



Bioinformatics              LECTURE 5 -  67 

 

 
 

Introduction 

 The order of fragments (D, A, F, G, C, E, B) is originally unknown. A variety 

of techniques may be employed to determine this order.   

 

Fragments of linear DNA migrate through agarose 

gels with a mobility that is inversely proportional to 

the log10 of their molecular weight. 
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Introduction 

 

 An example of a restriction enzyme is EcoR1 

 The EcoRI restriction enzyme, the first restriction enzyme isolated from E. 

Coli bacteria, is able to recognize the base sequence 5' GAATTC 3'.  

 Each strand of DNA is cut between the G and the A in this sequence. This 

leaves "sticky ends" or single stranded overhangs of DNA. Each single 

stranded overhang has the sequence 5" AATT 3'. 
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Introduction 

 If we were to digest the DNA with a restriction endonuclease such as EcoR1, 

then we can ask ourselves the following questions: 

1) approximately how many fragments would be obtained (how many 

times was the sequence cut), and  

2) what would be their size distribution (which lengths are obtained 

for the restriction fragments)?  
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The number of restriction sites 

 

 Restriction endonuclease recognition sequences have length t (4, 5, 6 or 8 

typically), where t is much smaller than n. 

 Our model assumes that cleavage can occur between any two successive 

positions on the DNA.  

 This is wrong in detail because, depending upon where cleavage occurs 

within the bases of the recognition sequence (which may differ from 

enzyme to enzyme), there are positions near the ends of the DNA that are 

excluded from cleavage.  

 However, since t is much smaller than n, the ends of the molecule do not 

affect the result too much  
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The number of restriction sites 

 We again use Xi to represent the outcome of a trial occurring at position i, 

but this time Xi does not represent the identity of a base (one of four 

possible outcomes) but rather whether position i is or is not the beginning 

of a restriction site.  

 In particular,   

 We denote by p the probability that any position i is the beginning of a 

restriction site:  
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The number of restriction sites 

 

 Unlike with tossing a fair coin, for the case of restriction sites on DNA, p 

depends upon  

- the base composition of the DNA and  

- the identity of the restriction endonuclease.  
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The number of restriction sites 

 Model assumptions 

- The DNA has equal proportions of A, C, G, and T (e.g. P(G)=0.25).  

- The probability that any position is the beginning of a site is the 

probability that this first position is G, the next one is A, the next one is 

A, the next one is T, the next one is T, and the last one is C.  

- Since, by the iid model, the identity of a letter at any position is 

independent of the identity of letters at any other position, we see 

from the multiplication rule that  

 

- Notice that p is small, a fact that becomes important later.  
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The number of restriction sites 

 

 The appearance of restriction sites along the molecule is represented by 

the string X1, X2, ... , Xn,  

 The number of restriction sites is N = X1 + X2 + … + Xm, with m = n - 5.  

- The sum has m terms in it because a restriction site of length 6 cannot 

begin in the last five positions of the sequence, as there aren't enough 

bases to fit it in.  

 For simplicity of exposition we take m = n in what follows.  

 What really interests us is the number of "successes" (restriction sites) in “n 

trials”. 
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The number of restriction sites 
 

 If X1, X2, …, Xn were independent of one another, then the probability 
distribution of N would be a binomial distribution with parameters n and p;  

- The expected number of sites would therefore be np  
- The variance would be np(1 - p). 

 The binomial approximation usually works well, even though we know that 
the Xi are in fact NOT independent of one another (because of overlaps in 
the patterns corresponding to Xi and Xi+1, for example).  

 We have already seen that computing probabilities of events can be 
cumbersome when using the probability distribution  

𝑃(𝑁 = 𝑗) = (
𝑛
𝑗 ) 𝑝𝑗(1 − 𝑝)𝑛−𝑗, j = 0,1, …,n 

 

 Since n is large and p is small (see before), we can rely on the Poisson 
approximation of the binomial distribution 
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Poisson approximation to the binomial distribution 
 

 In what follows, we assume that n is large and p is small, and we set λ= np.  

 We know that for j = 0, 1, ... , n,  

𝑃(𝑁 = 𝑗) = (
𝑛
𝑗 ) 𝑝𝑗(1 − 𝑝)𝑛−𝑗  

 Writing 

and given that the number of restriction sites (j) is small compared to the 
length of the molecule (n), such that 

𝑛(𝑛 − 1)(𝑛 − 2) … (𝑛 − 𝑗 + 1) ≈ 𝑛𝑗 , (1 − 𝑝)𝑗 ≈ 1, 
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Poisson approximation to the binomial distribution 

    in which 𝜆 = 𝑛𝑝. 

 From calculus, for any x,  

 Since n is large (often more than 104), we replace (1 −
𝜆

𝑛
)𝑛 by 𝑒−𝜆 to get 

our final approximation in the form  

 This is the formula for the Poisson distribution with parameter 𝜆 = 𝑛𝑝 
(note: this parameter represents both the mean and variance) 
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Poisson approximation to the binomial distribution 
 

 Example: 

- To show how this approximation can be used, we estimate the 

probability that there are no more than two EcoRI sites in a DNA 

molecule of length 10,000, assuming equal base frequencies 

- Earlier we obtained p=0.00024 for this setting. 

- The problem is to compute 𝑃(𝑁 ≤ 2) 

 Therefore 𝜆 = 𝑛𝑝 = 2.4  

 Using the Poisson distribution: 𝑃(𝑁 ≤ 2) ≈ 0.570 

 Interpretation: More than half the time, molecules of length 10,000 

and uniform base frequencies will be cut by EcoRI two times or less 

 R code:  
ppois(2,2.4)  
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Distribution of restriction fragment lengths 

 There is a more general version of the Poisson distribution: it generalizes n 

into “length” and p into “rate”. We suppose that “events” (restriction sites) 

occur on a line at rate μ. 

 Then the probability of k sites in an interval of length l  bp is  

𝑒−𝜇 𝑙  (𝜇 𝑙)𝑘

𝑘!
,  k=0,1,2, … 

 We can also calculate the probability that a restriction fragment length X is 

larger than x. If there is a site at y, then the length of that fragment is 

greater than x if there are no events in the interval (y, y + x): 

𝑃(𝑋 > 𝑥) =  𝑒− 𝜇 𝑥 =  𝑒−𝜆 (
𝑥
𝑛

) 
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Distribution of restriction fragment lengths 

 The previous has some important consequences: 

𝑃(𝑥 ≤ 𝑥) =  ∫ 𝑓(𝑦)𝑑𝑦 
𝑥

0

= 1 −  𝑒− 𝜇 𝑥 

 

so that the density function for X is given by 

 

𝑓(𝑥) =  𝜇 𝑒− 𝜇 𝑥 , 𝑥 > 0. 

 

- The distance between restriction sites therefore follows an exponential 

distribution with parameter 𝜇; the mean distance between restriction 

sites is 1/μ   
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Simulating restriction fragment lengths 

 If we simulated a sequence using the iid model, we could compute the 

fragment sizes in this simulated sequence and visualize the result  

 R code simulating a DNA sequence having 48500 positions and uniform 

base probabilities: 

x<-c(1:4) 
propn <- c(0.25,0.25,0.25,0.25) 
seq2 <- sample(x,48500,replace=TRUE,prob=propn) 
seq2[1:15] 
length(seq2[])  
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Simulating restriction fragment lengths 

 What else is needed? 

- R code identifying the restriction sites in a sequence string, with bases 

coded numerically: function rsite 

- Code of the restriction sites we are looking for: e.g., for AluI it would be 

AGCT. 

- R code to compute the fragment lengths: subtract positions of 

successive sites 

 

(R code posted online) 
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Simulating restriction fragment lengths 
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Is our theoretical model to simulate restriction fragment lengths valid? 

 

Histogram based on theoretical 

model  

 

 

 

 

Histogram of fragment sizes (bp) 

produced by AluI digestion of 

bacteriophage lambda DNA 
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Simulating restriction fragment lengths

 To determine whether the actual distribution differs significantly from the 
mathematical model (exponential distribution), we could break up the 
length axis into a series of "bins" and calculate the expected number of 
fragments in each bin by using the model-based (theoretical) density 
 

 We could then compare the observed with expected number of fragments 
(using the same bin boundaries) via for instance a 𝜒2 – test. 
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5 R code (at home) 

 R scripts used throughout this Chapter can be replayed via the code 
included in the file 

RCode to Chapter5 and BackgroundInfo.7z 

 R scripts illustrating relevant R packages for sequence pattern recognition 
and sequence comparison (see also practical session): 

- DNA sequence statistics: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter1.html 

- Quering sequence data bases: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter3.html  

- Pairwise sequence alignment: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter4.html 

- Multiple alignments and phylogenetic analysis: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter5.html 

- Computational gene finding: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter7.html 

- Comparative genomics: http://a-little-book-of-r-for-

bioinformatics.readthedocs.org/en/latest/src/chapter9.html 

http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter1.html
http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter1.html
http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter3.html
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Main reference 

 Deonier et al. Computational Genome Analysis, 2005, Springer. 
 (Chapters 6,7) 
 

 

Background reading  

 Pabinger et al. 2013. A survey of tools for variant analysis of next-generation genome 

sequencing data. Briefings in Bioinformatics. 

 Pavlopoulos et al. 2013. Unraveling genomic variation from next generation sequencing 

data. BioData Mining 6:13. 

 

 
 


