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expression data analysis comes of age
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Many different biological questions are routinely studied using transcriptional profiling on microarrays. A wide

range of approaches are available for gleaning insights from the data obtained from such experiments. The

appropriate choice of data-analysis technique depends both on the data and on the goals of the experiment. This

review summarizes some of the common themes in microarray data analysis, including detection of differential

expression, clustering, and predicting sample characteristics. Several approaches to each problem, and their rela-

tive merits, are discussed and key areas for additional research highlighted.
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Advances in the molecular understanding of disease have already
had widespread practical applications. Pre-genomic molecular
biology produced diagnostics such as prostate specific antigen
screening for prostate cancer and drugs such as the protein
kinase inibitor Gleevec and the monoclonal antibody Herceptin,
respectively effective in well-defined subsets of leukemia and
breast cancer patients. The advent of microarray technologies for
large-scale transcriptional profiling has fueled hopes that similar
advances might become commonplace, leading to new methods
of diagnosis and treatment for any number of diseases. The
response has been profound, with researchers, clinicians and
companies rushing to embrace the new techniques.

As more and more researchers jump on the microarray band-
wagon, however, it has become increasingly clear that simply gen-
erating the data is not enough; one must be able to extract from it
meaningful information about the system being studied. Despite
the combined efforts of biologists, computer scientists, statisti-
cians and software engineers, there is no one-size-fits-all solution
for the analysis and interpretation of genome-wide expression
data. As transcriptional profiling has grown in popularity, statis-
tical methods for interpreting the data have proliferated. The
advantage of this growth is that a wealth of tools are now available
for those hoping to sift valuable nuggets of knowledge from the
widening river of data. However, there are now so many options
available that choosing among them is challenging. An under-
standing of both the biology and the computational methods is
essential for tackling the associated ‘data mining’ tasks without
being distracted by the abundant fool’s gold.

Detecting differential expression
The most basic question one can ask in a transcriptional profil-
ing experiment is which genes’ expression levels changed signifi-
cantly. Answering this question involves many considerations.
There may be two experimental conditions or many, the condi-
tions may be independent or related to each other in some way
(as in a time series), or there may be many different combina-
tions of experimental variables. Replicates, if present at all, might
be samples from different animals or repeated hybridizations of
the same samples. Reflecting this variety, many different meth-
ods are commonly used for identifying significant changes.

Most of the earliest transcriptional profiling experiments mea-
sured differential expression by the ratio of expression levels
between two samples. Genes with ratios above a fixed cut-off k
(that is, those whose expression underwent a k-fold change) were
said to be differentially expressed1–4. Costly replication of arrays
was rare. As suggested elsewhere in this issue (see review by 
G. Churchill, pages 490–495)5, replication is essential in experi-
mental design because it allows an estimate of variability (see also
ref. 6). The ability to assess such variability allows identification
of biologically reproducible changes in gene expression levels. As
researchers recognized this, experiments with replicates became
more common. Yet many analyses still designated as differentially
expressed those genes with expression ratios or ‘fold-changes’
above a fixed threshold in more than one of the replicates7,8.

Li and Wong9 introduced a more sophisticated fold-change
approach to analyzing oligonucleotide array data. They first fit a
model that accounts for random, array- and probe-specific
noise, and then evaluated whether the 90% confidence interval
for each gene’s fold-change excludes 1.0. Unlike standard fold-
change approaches, this method incorporates available informa-
tion about variability in the gene-expression measurements.
However, because the error model is fitted to the entire data set, it
can suffer when the data set is either too small or too heteroge-
neous. Other model-based methods designed for two-color
arrays10,11 also incorporate data-derived estimates of variation.

More typically, researchers now rely on variants of common
statistical tests. These generally involve two parts: calculating a
test statistic and determining the significance of the observed sta-
tistic. A standard statistical test for detecting significant change
between repeated measurements of a variable in two groups is
the t-test; this can be generalized to multiple groups via the
ANOVA F statistic (see, for example, ref. 12). Variations on the t-
test statistic (often called ‘t-like tests’) for microarray analysis are
abundant13–15. The use of non-parametric rank-based statistics
is also common, via both traditional statistical methods16 and
more ad hoc ones designed specifically for microarray data17,18.
For most practical cases, computing a standard t or F statistic is
appropriate, although referring to the t or F distributions to
determine significance is often not, as discussed below. The main
hazard in using such methods occurs when there are too few
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replicates to obtain an accurate estimate of experimental vari-
ances. In such cases, modeling methods that use pooled variance
estimates9 may be helpful.

Regardless of the test statistic used, one must determine its sig-
nificance. Standard interpretations of t-like tests assume that the
data are sampled from normal populations with equal variances.
Expression data may fail to satisfy either or both of these con-
straints. Although log transformation can improve normality
(see review by J. Quackenbush, pages 496–501, this issue)19 and
help equalize variances, ultimately the best estimates of the data’s
distribution come from the data themselves. Permutation tests,
generally carried out by repeatedly scrambling the samples’ class
labels and computing t statistics for all genes in the scrambled
data, best capture the unknown structure of the data13,14,20. Such
permutation tests are ideal when the number of arrays is suffi-
cient to offer the desired degree of confidence.

One advantage of permutation methods is that they allow more
reliable correction for multiple testing. The issue of multiple tests is
crucial, as microarrays typically monitor the expression levels of
thousands of genes. Standard Bonferroni correction (that is, multi-
plying the uncorrected p-value by the number of genes tested) is
overly restrictive. Step-down methods designed to minimize this
overcorrection21 are little better for thousands of genes. Both
methods are overly strict because they are based on the assumption
that each gene represents an independent test. In fact, the correla-
tion structure between gene-expression patterns is significant and
complex. To capture this structure, Dudoit et al.20 propose a per-
mutation-based approximation of Westfall and Young’s method22,
for which C code is available online (http://www.cbil.upenn.edu/
tpWY). (A package of R functions for other techniques evaluated
in ref. 20 is available at http://www.stat.berkeley.edu/users/terry/
zarray/Software/smacode.html.) The advantage of permutation is
apparent in Fig. 1.

All these approaches focus on determining the ‘family-wise
error rate,’ the overall chance that at least one gene is incorrectly
identified as differentially expressed. For microarray studies
focusing on finding sets of predictive genes, it may instead be
acceptable to bound the ‘false discovery rate’ (FDR), the proba-
bility that a given gene identified as differentially expressed is a
false positive. A simple method for bounding the FDR is pro-
posed by Benjamini and Hochberg23. While this, too, assumes
that each gene is an independent test20, a permutation-based
approximation of this method is implemented in the SAM pro-
gram by Tusher et al.13, and a more permissive permutation-
based approach to bounding the FDR appears in the Whitehead’s
GeneCluster software package14. Although in some data sets even
the lowest FDR may be prohibitively high, this can be a valuable

approach to finding some valid leads when more stringent analy-
ses find none.
Time-series analysis. One common differential expression prob-
lem that has received relatively little specific attention until
recently is time-series analysis. Entire books have been written
on time-series analysis methods24,25, and growing numbers of
available data sets follow biological processes over time1,2,26. Yet
so far, most have been analyzed by the statistical methods
described above, perhaps supplemented by pattern-discovery
techniques, without accounting for the known temporal rela-
tionships between samples. Exceptions include the use of time-
series data for inference of regulatory pathways, as discussed
below, and a small but growing number of papers that seek to
exploit this knowledge more fully.

The canonical time-series data in the field come from two
experiments following the yeast cell cycle27,28. Spellman’s analy-
sis incorporates a Fourier transform to test the periodicity of
individual genes in three separate data sets, before combining
these into a single significance score used to rank the genes. Later
analyses of the same data sets29,30 look at other time-warping or
phase-shifting algorithms to test periodicity. Software for several
of these is available online29. Evaluating or modifying time-series
analysis methods for the microarray domain, particularly given
the difficulty of taking sufficiently frequent array measurements
to monitor many processes of interest, is an area ripe for addi-
tional attention. Also of interest is the suitability of such methods
for analysis of samples related in other ways, such as cells exposed
to different doses of a drug, or expression patterns from related
bacterial strains.

Pattern discovery
Pattern discovery provides a high-level overview of a data set and
may be the first analysis step in a study that ultimately involves
other analytical methods. Such techniques include a variety of
dimension-reduction methods such as singular value decompo-
sition, as well as various ‘clustering’ techniques designed for find-
ing groups within the data. What these methods have in
common is that they simplify the data set, ideally in ways that
impart additional information about its structure, and that they
are considered ‘unsupervised’, meaning that the reduction is
derived solely from the data rather than reflecting any previous
knowledge or classification scheme.

Principal components analysis31,32, singular value decomposi-
tion33,34 and multidimensional scaling35,36 are related dimension-
reduction techniques that can be used for visualizing large data
sets. Each of these approaches projects the data into a new space
based on linear combinations of variables that retain a large
amount of the original data’s variation. These techniques rely on
the idea that most of the data’s variation can be explained by a
smaller number of transformed variables. When this is true, a
two- or three-dimensional visual representation of highly multi-
dimensional data may provide valuable insight (Fig. 2a). How-
ever, much information may be lost, so the potential strength
inherent in these methods is also their greatest peril. Recalling

Fig. 1 The advantage of permutation-based adjustment for multiple testing.
The data set (from ref. 97) contains expression data for 376 genes in 30 cancer
cell lines selected for sensitivity or resistance to the compound cytochalasin D
(see Supplementary information). The x-axis shows unadjusted p-values
derived from independent t tests for each gene to detect differential expres-
sion between sensitive and resistant cell lines. The y-axis shows the adjusted p-
values using Bonferroni correction (black circles) and Westfall and Young’s
permutation-based method18,20 (blue squares). At the adjusted cutoff of 0.05,
the permutation method finds 11 significantly changing genes (instead of 7
without permutation). For example, the gene shown in red (COL6A2) with
unadjusted p-value of 0.00027 is adjusted to 0.1 by the Bonferroni method but
0.0457 using permutation, a difference of more than two-fold (dotted line).
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that data-reduction and visualization tools are projecting many
thousands of dimensions into two or three may prevent frustra-
tion if the reduced data fail to capture the expected aspects of a
data set.
Clustering. The term ‘clustering’ applies to a wide variety of
unsupervised methods for organizing multivariate data into
groups with roughly similar patterns37. Clustering has many
applications in expression-data analysis. Clues to unknown
gene function may be inferred from clusters of genes similarly
expressed across many samples26,38. Clustering samples over
the expression levels of multiple genes has been proposed as a
way of defining new disease subclasses14,39. Cluster analysis
may be used primarily for data reduction and visualization, or
it may be used to generalize or predict the categorization of new
samples40. To solve any of these problems, researchers can
choose from a vast library of techniques for grouping multi-
variate data.

Perhaps most familiar to biologists are the hierarchical cluster-
ing methods26,28. In this family of techniques, all data instances
start in their own clusters, and the two clusters most closely
related by some similarity metric are merged. The process of

merging the two closest clus-
ters is repeated until a single
cluster remains. This arranges
the data into a tree structure
that can be broken into the
desired number of clusters by
cutting across the tree at a 
particular height. Tree struc-
tures are easily viewed and
understood (Fig. 2b), and the
hierarchical structure provides
potentially useful informa-
tion about the relationships
between clusters. Trees are
known to reveal close relation-
ships very well. However, as
later merges often depend on

aggregated measures of clusters containing many scattered ele-
ments, the broadest clusters can sometimes be hard to interpret.

Another common family of clustering methods is that of parti-
tion or centroid algorithms. These methods generally require
specification of the number, k, of clusters, and start with k data
points that may be chosen either randomly or deliberately. These
k points are used as the ‘centroids’ — the multidimensional cen-
ter points — of an initial set of clusters. The algorithm then par-
titions the samples into the k clusters, optimizing some objective
function (such as within-cluster similarity) by iteratively assign-
ing samples to the nearest centroid’s cluster and adjusting 
the centroids to represent the new clusters’ center points. The 
k-means method37 is a well-known centroid approach. A varia-
tion that allows samples to influence the location of neighboring
clusters is known as the self-organizing map or Kohonen
map41,42. Such maps are particularly valuable for describing the
relationships between clusters. New centroid methods specifi-
cally for microarray data have also been proposed43.

Other techniques abound. Some seek to optimize a measure of
within-cluster similarity or separation between clusters, but avoid
specifying the number of clusters ahead of time, instead specifying

Fig. 2 Two pattern-discovery tech-
niques. Data for both figures measure
expression for 11 genes characteriz-
ing sensitivity to compound cytocha-
lasin D in 60 cancer cell lines97. a, The
first three principal components, plot-
ted using Matlab software (Math-
works). Apparent features include a
tight cluster of leukemia samples (red
dots, nearly superimposed) and the
more scattered outlying cluster of
CNS tumors (black dots). A single lung
cancer sample (NSCLC-NCIH226) also
appears as an outlier — the solitary
orange dot at the top. b, Hierarchical
clustering of the same data, using
Cluster/TreeView (http://rana.lbl.gov/
EisenSoftware.htm). Names of sam-
ples extremely sensitive or resistant to
cytochalasin D (see Supplementary
information) are prefixed ‘S’ and ‘R’
respectively. The samples fall into two
main clusters, roughly, but not per-
fectly, separating the sensitive and
resistant samples. As in a, fine struc-
ture shows a tight leukemia cluster
(underlined in green) and a tight CNS
cluster (underlined in red), but does
not suggest that the CNS cluster or
NSCLC-NCIH226 (underlined in blue)
are outliers. Apparent in both a and b
is the relative heterogeneity of the
breast cancer cell lines.
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information-theoretic bounds on cluster membership44–46.
Model-based methods assume the data can be generated by a
specified statistical model (such as a mixture of Gaussian distribu-
tions), and search for model parameters that best fit the data47,48.
So-called ‘fuzzy’ clustering finds groups, but may allow elements
to appear in more than one cluster or in no clusters at all49.
Evaluating clusters. How does one choose among this panoply of
techniques? Intuitively, a good clustering method should ensure
that objects in the same cluster are similar to each other and dif-
ferent from objects in other clusters. Many cluster-evaluation
metrics have been designed to formalize these intuitions40,46.
There is, however, no single best way to evaluate a clustering
method, and no single best clustering method for a data set. Dif-
ferent techniques often highlight different patterns in the data, so
complementary methods may be helpful in analyzing a single
data set (Fig. 2).

How best to compare clustering approaches depends on the
purpose of clustering and on the information available. For
example, if the ‘true’ or best clustering is known (as it might be
with simulated data), a good metric might measure the fraction
of co-clustered pairs from the true solution that are grouped
together by the new method40,46. If clustering is to be used pri-
marily for data reduction, one might evaluate it strictly from that
point of view — the best clustering is the one that allows expres-
sion of the entire data set in minimal space. This generally
requires making assumptions about data distributions and the
data representation format. If clusters are to be used to predict
classifications of other samples, one might choose to evaluate
each clustering by its predictive power50. Another desirable prop-
erty of a clustering is stability; that is, if the experiment were
repeated again, one would hope to obtain similar clusters. A
standard technique for testing cluster reliability involves adding a
small amount of noise to the data and re-clustering. Several
microarray studies have incorporated these techniques, either
using simple but reasonable noise models35,51, or by sampling
the noise distribution directly from the data52.

Choosing the right number of clusters is crucial for many hier-
archical and partitioning algorithms. Although this problem has
been addressed extensively by statisticians53, it is particularly
problematic for microarray data, which may be somewhat evenly
distributed in gene expression space and thus may not have any
solution featuring isolated and compact clusters. One approach
to setting the desired number of clusters is based on the observa-
tion that good clusters will probably not change dramatically if a
small randomly chosen subset of the samples is discarded. Ben-
Hur et al. thus use repeated sampling to determine the number of
clusters that provides the most stable solution54. Another
approach, the ‘gap statistic’ of Tibshirani et al., compares a mea-
sure of within-cluster distances from the cluster centroids to its
expectation, and chooses the number of clusters maximizing the
difference55.

Overall, choosing a clustering method is still very much
dependent on the data, the goals, and the investigator’s personal
preferences. One caveat, however, is to be sure that the primary
goal is the pattern-discovery or dimension reduction that clus-
tering offers. If the intent is to distinguish between currently
defined sample classes (say, tumors and normal tissue samples),
the class prediction methods described below may be more effec-
tive. While there are many exciting examples of clustering algo-
rithms that happen to identify a desirable distinction between
samples39, there are probably many more (generally unpub-
lished) examples in which clustering identified only some known
artifact (for example, array production lot) or obvious character-
istic of the patient (for example, age). Clustering can chance on
the ‘correct’ sample classification only if the desired distinction is
quite prominent among the sources of variation in the data set.
So it is important to note that, while a clustering algorithm might
fail to find a desired separation, the prediction methods
described below may well succeed in defining the desired classes
given the same data.

Class prediction
In contrast to pattern discovery, class prediction methods are
techniques specifically designed to classify objects into known
groups. A wealth of machine-learning literature54 describes com-
putational techniques for classifying multidimensional data.
Most such methods include a training phase run on samples
whose classes are already known, and a testing phase, in which
the algorithm generalizes from the training data to predict classi-
fications of previously unseen samples (Fig. 3). Because of this
directed training phase, prediction methods are referred to as
‘supervised’ classification methods. For microarray data, predic-
tion generally refers to the classification of patients’ samples by
characteristics such as disease subtype or response to treatment.
The goal may be diagnostic, offering a new way to distinguish
similar-looking diseases14,56,57, or it may be a true effort to pre-
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Fig. 3 An overview of the process for building a prediction model to classify
samples. The partition into training and test data is ideally chosen at random
across the entire set of samples. Many prediction methods require tuning some
parameter (such as the number of genes, the number of nearest-neighbors to
consider, or the number of decision trees built). This choice is often evaluated
by cross-validation — the process of repeatedly removing smaller test sets from
the training set, building new models (starting with the gene selection
process) with the remaining data, and evaluating performance across all the
different models built. For example, “leave-one-out cross validation” (also
called “n-way”) builds n models, each using n−1 training examples and evalu-
ated on the remaining one; the accuracy for predicting all n samples is
reported. Observing that predictors may succeed by chance even in cross-
validation, Radmacher et al. suggest using permutation testing to determine
the significance of the observed results98. Ultimately the final model, perhaps
chosen during the cross-validation process, is then tested on entirely new data
not used in the model generation process. The model itself, as well as the pre-
diction results and the influential genes, may yield new biological insights.

Ka
tie

 R
is

©
20

02
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
g

en
et

ic
s



review

506 nature genetics supplement • volume 32 • december 2002

dict clinical outcome39,58–60 (see also review by C.M. Perou,
pages 533–540, this issue)61.

Gene-expression data presents unusual challenges for
machine-learning algorithms, which are generally designed to
work with large numbers of samples over relatively few variables.
In contrast, a typical microarray experiment measures thousands
of genes (variables), but includes only tens or hundreds of
patients’ samples. Most algorithms stumble when faced with
problems of these dimensions. A common problem is ‘overfit-
ting’ the data, which refers to the case where an algorithm models
the training samples too exactly, without sufficient generaliza-
tion. In consequence, classification of the training examples may
well be perfect, but subsequent attempts to classify new test data
fail dismally. Compounding the challenge of learning from
microarray data is the high level of noise. The variance of array
measurements can be substantial, many data points may be miss-
ing entirely, and occasionally training examples may even be mis-
classified. All these traits make sample prediction from array data
particularly challenging.

As with clustering, choosing a prediction method requires
selecting from a vast range of techniques. Some of the most
straightforward linear and quadratic discriminant methods are
described clearly by Dudoit et al.62. Related methods include
weighted voting14, shrunken centroids63 and compound covari-
ates64. A deceptively simple but powerful approach is k-nearest-
neighbor prediction, in which the prediction for a test sample x is
the most common class label among the k training samples most
similar to x (refs 58,62,65,66). Simple neural networks66 may be
effective at learning the complex functions often inherent in multi-
class diagnostic problems56. New pattern-discovery algorithms
such as Splash67 have shown some success at learning non-linear
functions of the input variables. Two other well-studied classes of
algorithms are of growing interest for microarray prediction prob-
lems: support vector machines and decision tree classifiers.

Support vector machines (SVMs) are a family of statistical
machine-learning methods that have been proposed as particu-
larly suitable to the dimensions of microarray learning
problems68,69. Intuitively, SVMs try to draw a hyperplane in n-
dimensional gene-expression space between the training exam-
ples from two classes. If no separating hyperplane exists, the
samples are mapped into a higher-dimensional space where such
a separator does exist. The algorithms minimize potential over-
fitting problems by choosing the separator farthest from the
training samples, thus leaving room for generalization. More
complex mapping functions provide non-linear mappings into
higher dimensional spaces, resulting in a non-linear classifier for
the original data. While these models may be difficult to inter-
pret, they are potentially quite powerful.

Decision tree algorithms classify samples by filtering them
through a tree-like structure, testing at each branchpoint (called
a ‘node’) some simple attribute of that sample, such as whether
the expression of p53 is greater than 100 (ref. 66). Single decision
trees are particularly prone to overfitting. However, as tree mod-
els are easily built, easily understood, and able to model quite
complex functions, there are many modified tree-based tech-
niques for avoiding overfitting and improving performance.
Solutions to overfitting include ‘pruning’ the tree; that is,
restricting the number of consecutive branches so that it is forced
to generalize. More powerful solutions are possible by repeatedly
sampling the data to build many trees and combining these trees
into a single predictive model using techniques known as ‘bag-
ging’70 and ‘boosting’71,72. Combined tree models may be harder
to interpret than single trees, but standard approaches allow
determination of which genes contributed most heavily to the
models’ predictive powers73.

Choosing a prediction method. In deciding how best to
approach a prediction problem, it is first important to consider
the desired outcome. Are there just two classes to be distin-
guished, or many? Is it desirable to find the minimal number of
predictive genes, in order to minimize the number of leads or to
provide a simple diagnostic tool? Would it be better to have an
easily interpretable model, which may help provide new medical
insights, or is the only goal the greatest prediction accuracy pos-
sible? If the output will ultimately affect patients’ treatment, it
may be essential to have an accurate confidence estimate for each
prediction. All of these issues can influence the choice of a pre-
diction method.

There are few unbiased comparative studies of prediction
methods for gene-expression analysis. Some appear in the sup-
plementary information of published studies reporting particu-
lar biomedical results58,74, and a thorough study by Dudoit et al.
compares several standard statistical prediction methods on a
diverse collection of public data sets62. Furthermore, most array
data sets lack enough samples to prove a method clearly superior;
generally, only a few errors separate the winners from the
losers69. However, a few trends emerge. Simple k-nearest neigh-
bors tends to perform well after a gene-filtering step58,62. Dudoit
et al. also find that diagonal linear discriminant analysis does well
overall, while CART (a decision tree algorithm prone to overfit-
ting) and Fisher’s linear discriminant lagged behind on most
data sets evaluated. The aggregated tree models fell somewhere in
between, but had the advantage of presenting relatively accurate
confidence estimates. Pomeroy et al. found that k-nearest neigh-
bors, weighted voting, and SVMs were all comparable, but a
combination of several methods outperformed any single pre-
dictor58. Overfitting may be avoided by using simpler SVM map-
ping functions when complex ones are not needed69,75, or by
limiting the number of iterations of boosting algorithms75. There
is some consensus that simpler methods outperform complex
ones in the typical case where the number of genes is much larger
than the number of samples62,69,75.

The number of classes in the prediction problem may impose
modest constraints on the choice of algorithm. Whereas neural
networks, decision trees and k-nearest neighbors can, in princi-
ple, separate any number of output classes, SVMs and various
linear methods are inherently binary — they only distinguish
between two classes. It is, however, possible to combine binary
predictors together to separate multiple classes65,76. A more
important question is whether the prediction algorithm should
consider the data for all available genes, or whether prior gene
selection (often by the methods described above for detecting
differential expression) should be used to reduce the dimension-
ality of the problem. For methods like k-nearest neighbors and
weighted voting, which can be confused by too many irrelevant
variables, preselection of genes may be appropriate66. However,
there is evidence that SVM prediction improves given all the
data65. Recent work confirms that pairs of genes selected for their
combined ability to distinguish output classes predict better than
genes selected individually77. If the genes used for prediction are
to provide additional clues to the biological system under investi-
gation, it may be particularly helpful to give the prediction
method a chance to find these interesting gene interactions.

Inferring regulatory pathways and networks
Analysis of differential expression may provide new information
about the biological pathways involved in a process. This is often
done by looking for over-representation of functional classes in
gene clusters derived from expression data39. Yet this approach
relies heavily on existing functional annotation, which is notori-
ously incomplete for most organisms of interest. Looking specif-
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ically for information on gene interactions indicated by expres-
sion data may ultimately suggest new pathways and associations.
Even simple pairwise comparisons can indicate novel interac-
tions78. However, the prediction results above imply that more
complex gene relationships may be discovered as we learn to
combine the data in more complex ways.

Although it is optimistic to assume that expression data alone
will be sufficient for the inference of complete regulatory path-
ways, several recent studies successfully tackle parts of the prob-
lem. Studying the properties of synchronous, Boolean network
models suggested new strategies for inferring regulatory net-
works from expression data79.

Bayesian network models and variations are now the focus for
a growing number of researchers concerned with discovering
novel interactions, information dependencies and regulatory
relationships from expression data. Whereas the posterior proba-
bilities of all models are likely to be very low, repeated random
resampling of the data (called ‘bootstrapping’) can help in iden-
tifying ‘high-probability’ gene relationships shared by a signifi-
cant fraction of the models built from the different data
subsets79. Methods for designing new experiments to discrimi-
nate among contradictory network models consistent with exist-
ing data have also been described81.

More recent modifications of Bayesian network methods focus
further on finding probabilistically supported gene interactions
or on combining these into subnetworks82,83, on modeling
‘latent’ or hidden variables representing biological information
unavailable to the model84,85, and on incorporating prior biologi-
cal knowledge or annotation82,86. Most of these methods have
been tested on previously published data, from which they redis-
cover some known relationships, propose revisions or contradic-
tions of others, and suggest many novel interactions. Current
pathway methods seem to do reasonably well in finding correlated
sets of genes — genes that are co-expressed or are all targets of the
same transcription factor. However, it has proved more difficult
to infer the direction of causal relationships successfully directly
from transcriptional data. In general, models that incorporate
existing constraints from other data sources seem to produce
hypotheses that agree better with existing biological knowledge
than do models learned from the expression data alone82.

Future directions
The basic problems described here are still areas of active
research. The desire to find ever more reliable answers to harder
problems demands more powerful statistical methods coupled
with better understanding of the data. Future projects may focus
on finding modestly sized sets of predictive genes, better charac-
terizing the structure and predictive power of gene-expression
data, or combining the knowledge gained from multiple cluster-
ing approaches. One goal of network inference methods is the
simulation of cellular and systemic responses to interventions
such as gene knockouts or drug treatment. While current
approaches are just initial attempts to answer complex biological
questions, the potential of such methods remains tantalizing.

The interpretation of microarray results remains a crucial
issue. Because of the observational nature of many microarray
studies, possible bias and confounding variables are substantial
concerns87. Thus, transcriptional profiling is often used primar-
ily to generate hypotheses for further testing by less or differently
biased methods. Ultimately, the greatest contributions to under-
standing function will probably come from directly combining
microarray data with other sources of genomic and biomedical
information. Algorithms for integrating different types of data
are already showing promise. Integrating clinical data from
patients’ records has been proposed as an approach to aiding

interpretation87,88, and preliminary approaches suggest ways of
combining microarray data with other clinical or experimental
variables89,90. Several groups have considered ways of directly
combining expression data with analysis of gene regulatory
motifs91–93. Furthermore, much of the evidence supporting or
disproving hypotheses derived from microarray studies is found
in the existing medical literature. Thus, systems to augment
expression analysis with automated literature extraction or orga-
nization94–96 are likely to prove extremely valuable in drawing
meaningful and reproducible conclusions. By continuing efforts
to boost the rigor and power of analyses and to integrate knowl-
edge from complementary sources, we are progressing toward
realizing the full potential of these powerful new technologies.
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