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PATERNITY EXCLUSION 
The elimination of a male as the 
potential father of a given 
offspring, owing to 
incompatibility between the 
multilocus genotypes of the two 
individuals concerned.

NONINVASIVE GENOTYPING 
Genotyping from samples that 
are collected without capturing 
the animal (such as hair or 
faeces).

AMPLIFIED FRAGMENT
LENGTH POLYMORPHISMS
A PCR-based DNA 
fingerprinting technique that 
reveals polymorphisms in 
restriction-enzyme recognition 
sites by generating dozens of 
dominant marker bands.

In 1997 a genotyping study revealed a striking new 
model for chimpanzee mating behaviour by indicat-
ing that half the offspring of a community were sired 
by males from outside the group1. It soon turned 
out that this conclusion2 resulted from genotyping 
errors that led to erroneous PATERNITY EXCLUSION. This 
is just one example of the serious effect that such errors 
can have on important biological issues.

A genotyping error occurs when the observed geno-
type of an individual does not correspond to the true 
genotype3. Although genotyping errors occur in all but 
the smallest data sets that are generated in genetic 
studies, they have almost exclusively been recognized 
in linkage analyses in humans, in forensic analysis 
and in NONINVASIVE GENOTYPING. They were considered in 
these research areas because independent approaches 
pointed out the inconsistencies of some genotypes 
with other evidence, such as known pedigrees in link-
age analysis. In 1976 Thompson was one of the first 
to note that mismatches in pedigree data could result 
from laboratory errors4.

An error can be detected as a discrepancy between 
the genotype of an experimental sample and a known 
genotype that has been inferred, for example, from rep-
licate genotyping (multiple-tube approach)5. An error 
can also be spotted if the experimental genotype is 
incompatible with reliable independent evidence, such 
as pedigree data. However, few studies in population 
genetics and evolution quantify the rate of genotyping 

error3,6 that would ensure the reliability of the inferred 
biological conclusion. Moreover, there is no consensus 
strategy or strict standard for limiting or quantifying 
the occurrence of the main types of error7. A biblio-
graphic survey indicates that an increasing number of 
researchers are aware of this difficulty (FIG. 1), but that 
the effect of genotyping errors still remains neglected. 
This is an important issue if we consider that all studies 
in which errors were checked reported a non-negligible 
error rate (from 0.2% to more than 15% per locus), and 
that a rate of between 0.5% and 1% is usual in many 
laboratories8,9. Even higher error rates are known to 
occur in studies that involve DNA of poor quality or 
quantity10,11. A realistic estimate of the proportion of 
SNPs in public databases that were not confirmed by 
subsequent studies is 16%. This is the result of sequenc-
ing errors or low allele frequencies12. The fact that 
an error rate as low as 0.5–1.0% has the potential to 
obscure medically important findings13 reinforces the 
need to confront this issue.

The aim of this paper is to examine the causes 
and consequences of genotyping errors and to give 
recommendations to limit their occurrence and their 
effect on the resulting biological message. All types 
of molecular marker are prone to genotyping error, 
including sequence data14, but here we focus on the 
most commonly used markers15: AMPLIFIED FRAGMENT

LENGTH POLYMORPHISMS (AFLPs), MICROSATELLITES and 
SNPs (TABLE 1). We do not consider DNA sequence 

GENOTYPING ERRORS: CAUSES, 
CONSEQUENCES AND SOLUTIONS
François Pompanon, Aurélie Bonin, Eva Bellemain and Pierre Taberlet

Abstract | Although genotyping errors affect most data and can markedly influence the 
biological conclusions of a study, they are too often neglected. Errors have various causes, but 
their occurrence and effect can be limited by considering these causes in the production and 
analysis of the data. Procedures that have been developed for dealing with errors in linkage 
studies, forensic analyses and non-invasive genotyping should be applied more broadly to any 
genetic study. We propose a protocol for estimating error rates and recommend that these 
measures be systemically reported to attest the reliability of published genotyping studies.
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MICROSATELLITE
A class of repetitive DNA that is 
made up of repeats that are 2–8 
nucleotides in length. They can 
be highly polymorphic and are 
frequently used as molecular 
markers in population genetics 
studies.

SIZE HOMOPLASY 
The generation of alleles that 
are the same size which are not 
the result of common ancestry 
(not homologous), but arose 
independently in different 
ancestors by parallel or 
convergent mutations.

ALLELIC DROPOUTS 
The stochastic non-
amplification of an allele; that is, 
amplification of only one of the 
two alleles present at a 
heterozygous locus.

FALSE ALLELE
An allele-like artefact that is 
generated by PCR.

errors that have a bearing on specific methods that are 
related to phylogenetic analysis14,16. However, the main 
principles enounced here apply to all genetic markers, 
including DNA sequences.

Causes of genotyping errors
An extensive survey of the literature and our own 
experience show that genotyping errors result from 
diverse, complex and sometimes cryptic origins. When 
an error is detected, the first difficulty is to clearly iden-
tify its cause, so that the experimental protocols can 

be improved to reduce error rates. Grouping errors into 
discrete categories according to their causes is chal-
lenging because different causes sometimes interact to 
generate an error. For clarity, we propose to group them 
into four categories: errors that are linked to the DNA 
sequence itself, errors that are due to the low quality or 
quantity of the DNA, biochemical artefacts and human 
factors. Below we develop one example for each category. 
A more extensive survey is given in TABLE 2.

Variation in DNA sequence. An error that is linked 
to the DNA sequence can be generated by a mutation 
close to a marker, if this flanking sequence is involved 
in the marker-detection process. In microsatellite stud-
ies, the most common error of this type is the occur-
rence of null alleles17,18. This corresponds to the failure 
to amplify an allele due to a mutation that is located 
on the complementary sequence of one of the prim-
ers, which prevents efficient amplification. Usually, 
only substitutions close to the 3′ end of the primer or 
insertions or deletions cause problems. An insertion 
or deletion that is close to a microsatellite marker can 
also generate SIZE HOMOPLASY, which leads to the scoring 
of two different alleles as a single one.

Low quantity or quality of DNA. Low DNA quantity 
and/or quality are known to promote genotyping errors. 
A low number of target DNA molecules in an extract 
results from either extreme dilution of the DNA or 
from degradation, which leaves only a few intact mol-
ecules. Both these conditions favour ALLELIC DROPOUTS 

and FALSE ALLELES10. They also markedly increase the risk 
of contamination10, because contaminant molecules 
have a higher probability of being amplified when the 
number of template DNA molecules is low.

Figure 1 | The recent increase in the number of papers that deal with genotyping 
errors. a | The trend in the number of papers that mention genotyping errors since 1989. 
b | Their repartition according to subject area. The figure represents the result of a search 
on ISI Web of Science in April 2005, with keywords: genotyp* error* OR allelic dropout OR false 
allele*. Subject categories are as follows. Humans: papers that deal with human genetics, 
including some that are clearly methodological. Animals (non-invasive): papers that deal with 
non-invasive genetic sampling in animals. Animals (except non-invasive): papers that deal 
with animals, without reference to non-invasive genetic sampling. Plants: papers that deal with 
plants. Methods: methodological papers, without any obvious reference to the type of data 
(human, animal or plant).

Table 1 | Diversity of molecular markers in genetic studies

Extracted information Common use Research area

Microsatellites — multiallelic, codominant and highly variable

Single-locus genotypes Association studies Medicine; agronomy

Multilocus genotypes Individual identification; kinship 
studies; assignment tests

Population genetics; population biology; 
forensic investigations

Allele frequencies Population structure 
assessment; population size 
and gene-flow estimation

Population genetics; population or 
conservation biology; evolutionary biology

SNPs — biallelic, usually codominant and highly abundant across genomes

Multilocus genotypes Individual identification Population genetics; population biology

Allele frequencies Estimation of genetic diversity Population genetics; population or 
conservation biology; evolutionary biology

Pattern of segregation in crosses; 
linkage disequilibrium between markers

QTL or gene mapping; linkage 
studies

Medicine; evolutionary biology; 
agronomy; population genomics

AFLPs — biallelic, dominant and highly abundant across genomes

Multilocus genotypes Individual identification Population genetics; population biology

Allele frequencies Estimation of genetic diversity; 
population structure assessment

Phylogeography; population genetics; 
evolutionary biology

Pattern of segregation in crosses; 
linkage disequilibrium between markers

QTL or gene mapping; linkage 
studies

Medicine; evolutionary biology; agronomy
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Table 2 | Classification of errors according to their main cause

Cause of error Mechanism of error occurrence Consequence of the error for 
the genotype

Reference(s)

Interactions between DNA molecules

DNA sequence flanking the marker No amplification (or less efficient amplification) 
because of a mutation in the target primer 
sequence

Null allele 18,36,85,86

DNA sequence flanking the marker Insertion or deletion in the amplified fragment Size homoplasy of different alleles 87

DNA sequence flanking the marker In heterozygous individuals, preferential 
amplification of one allele when its denaturation 
is favoured (because of low GC content)

Allelic dropout 85

Sample quality

Low quality or quantity of DNA In heterozygous individuals, amplification of 
only one allele

Allelic dropout 2,10,88

Low quality or quantity of DNA In heterozygous individuals, preferential 
amplification of the shorter allele

Short allele dominance (preferential 
long allele dropout)

85,89,90,91

Contamination of the DNA extract Amplification of a contaminant allele Mistaken allele 92

Low extract quality No restriction (or less restriction) or 
amplification that is due to inhibitors

Allelic dropout 2,23,91,93,94

Biochemical artefacts and equipment

Low quality reagents No restriction (or less restriction) or 
amplification that is due to inhibitors

Allelic dropout; mistaken allele NR

Low quality reagents Poor fragment labelling and detection Allelic dropout; mistaken allele NR

Poor equipment precision or reliability Examples include stochastic pipetting, 
evaporation during PCR, and poor fluorescent 
label detection

Allelic dropout; mistaken allele NR

Taq polymerase errors Slippage in the first steps of the PCR False allele 10,95,96,97

Taq polymerase errors Incomplete addition of extra adenine residues 
at the 3′ end of amplified fragments

False allele 19,20

Lack of specificity Amplification of non-specific products 
that is due to annealing of the primer to 
another locus

Mistaken allele 91

Lack of specificity Non-specific restriction reactions Mistaken allele 98

Electrophoresis artefact Inconsistency of allele size between 
different experiments, devices or studies 
(for example, capillary versus manual 
electrophoresis or fluorescence versus 
radioactive detection)

Size homoplasy of different alleles; 
mistaken allele

22,69,99,100

Electrophoresis artefact Distortion of the allele size by factors that alter 
the migration (for example, temperature or high 
concentration of PCR products)

Size homoplasy of different alleles; 
mistaken allele

101,102

Human factor

Sample manipulation Confusion between samples (for example, 
mislabelling or tube mixing)

Mistaken allele(s) 41

Experimental error Contamination with an exogenous DNA or 
cross-contamination between samples

Mistaken allele(s) 103,104,105

Experimental error Use of an inappropriate protocol (for example, 
reactant not added; incorrect Tm, primers or 
concentration of reactants)

Allelic dropout; mistaken allele(s) NR

Data handling Misreading of the profile or misidentification of 
the fluorescence peak

Mistaken allele 3,6,41,104

Data handling Miscopying or confusion of the genotypes in 
the database

Mistaken allele 6,106,107

Data handling Computing data (for example, bug in the 
database or analysis program)

Mistaken allele NR

AFLP, amplified fragment-length polymorphism; false allele, allele-like PCR-generated artefact10; null allele, a non-amplifying allele that is due to a mutation in the primer 
target sequence17; allelic dropout, the stochastic non-amplification of an allele, that is, amplification of only one of the two alleles present at a heterozygous locus2; 
mistaken allele, an allele that does not correspond to the true allele, excluding the null allele, allelic dropout and false allele. NR, not reported in the literature to our 
knowledge, but widely recognized; Tm, melting temperature.
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ALLELE CALLING 
The determination of an allele 
from an electropherogram or a 
fluorescent profile.

REPLICATED GENOTYPES 
Genotypes that are produced 
from different (preferentially 
independent) samples from the 
same individual.

Biochemical artefacts. At the end of the elongation step 
of a PCR, the Taq polymerase has a tendency to add a 
non-templated nucleotide (usually an adenine) to the 
3′ end of the newly synthesized strand19,20. This ‘+A 
artefact’ is common, and creates an artefactual band 
or peak on the readout gel or trace, respectively. The 
relative proportions of the true fragment and the +A 
artefactual fragment are very sensitive to the sequence 
of the 5′ end of the primer used in the genotyping assay, 
but also to PCR conditions and to the long elongation 
times that promote the +A artefact. In such a context, 
this biochemical artefact represents an important cause 
of genotyping error.

Human error. Unexpectedly, in the few studies designed 
to analyse the precise causes of genotyping error, the 
main cause was related to human factors. In their 
impressive study on microsatellite genotyping errors 
used in paternal exclusion in the Antarctic fur seal, 
Hoffman and Amos attributed 80.0%, 10.7%, and 6.7% 
of the errors to scoring, data input and allelic dropouts, 
in corresponding order6. The remaining 2.7% prob-
ably resulted from sample mix-up, pipetting error or 
contamination. This means that human factors were 
responsible for about 93% of the errors in this study. 
Admittedly, part of the error detected in this work 
resulted from the manual scoring of autoradiographs, a 
practice that is going out of use. However, scoring errors 
might also be an important issue in the automated and 
semi-automated scoring of fluorescence profiles3,21. For 
example, human subjectivity during manual scoring 
represented the main source of discrepancy between 
the AFLP data sets that were generated by independent 
scorers who were using the same electropherograms3. 
This means that the expertise and standards of the 
researcher have a bearing on the selection of AFLP 
loci. ALLELE CALLING has also been identified as a potential 
problem in SNP studies22. Therefore, among the various 
causes of error, allele calling might be the most impor-
tant difficulty. Obviously, the risk of human scoring 
error strongly depends on the quality of the data.

Quantifying genotyping errors
The most common metric for quantifying genotyp-
ing errors is the error rate per locus, but several other 
estimates are commonly used, such as the error rate 
per PCR, per allele or per multilocus genotype. All 
these metrics measure the proportion of mismatches 
between REPLICATED GENOTYPES and implicitly involve the 
comparison to a reference genotype BOX 1.

Because errors are not randomly distributed across 
PCRs, alleles or loci, the link between these metrics 
is not straightforward. In a study of brown bears that 
involved 18 microsatellites, a 0.8% error rate per locus 
should theoretically have given a multilocus genotype 
error rate of 25.1%. However, in practice the multi-
locus error rate was only 17.6% because errors did not 
occur independently3. This emphasizes the need for 
using common metrics to allow comparison between 
studies. But different metrics are not equally appropriate 
across different studies. When measuring the error rate 

per locus, allelic dropouts are less likely to be detected 
at homozygous loci (a heterozygous locus affected by 
allelic dropout and a bona fide homozygous locus will 
both appear as a single band or peak), and therefore 
rates are not comparable between loci or populations 
that vary in heterozygosity23. Calculating the error 
rates per PCR and per allele makes no sense for AFLP 
studies because a single PCR generates many dominant 
alleles, each one characterized by the presence of a 
single fragment. The error rate per multilocus genotype 
is meaningful for individual identification, population 
assignment, kinship studies and census studies because 
it reflects the reliability of the genotypes obtained. This 
estimate increases with the number of loci24, and a 
relatively low error rate per locus can generate a high 
error rate per multilocus genotype, which might not be 
compatible with the scientific question. The error rate 
for a particular allele or locus provides complementary 
information, and helps to identify error-prone loci that 
can be removed from the study to increase its reliability. 
For example, Bonin et al. showed, for AFLP data, that 
the mean error rate per locus can drop from 3.4% to 
2.0% by removing the 7 (out of 222) polymorphic loci 
that had the greatest error rate3. Usually some loci are 
more error-prone than others. For microsatellite mark-
ers, it has been demonstrated that the number of errors 
is directly correlated with the size of the PCR product6.

To summarize, the most universal metric is the error 
rate per locus. It gives an idea of the reliability of the 
laboratory protocol and of the experimental procedure, 
allowing comparisons to be made between studies and 
different types of marker.

However, the true error rate might be higher than 
the estimated rate. In SNP studies, the error-detection 
rate that has been estimated using trio designs (that 
is, involving the genotypes of the mother, father and 
offspring) and has been based on Mendelian inherit-
ance does not exceed 61% of existing errors25,26.This 
difference between the true and the estimated error 
rates is mainly due to errors that are ‘Mendelian com-
patible’ (that is, errors that produce genotypes that are 
consistent with Mendelian inheritance among rela-
tives). Unfortunately, many studies that are based on 
pedigree data are only checked for compatibility with 
Mendelian inheritance. Ewen et al. called for a more 
realistic approach to identifying other types of error, 
and highlighted the need for a consensus strategy not 
only based on Mendelian verification, but also on 
complementary methods such as duplicate samples and 
independent allele calling7. In addition, even within a 
pedigree, true genotypes might not be Mendelian com-
patible if a mutation has occurred, as it might when 
large data sets are being analysed. Moreover, by nature 
some errors are almost undetectable. An example of 
this would be when two identical genotypes result from 
different mutations, as might occur when an insertion 
or deletion at different sites along a DNA sequence 
generates size homoplasy among PCR products 
TABLE 2. Finally, it is always difficult and sometimes 
impossible to distinguish between errors, mutations 
and rare alleles in population studies.
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Box 1 | Quantifying error rates

Different estimates, based on replicates within a data set, have been defined to quantify error rates. Some metrics 
have been proposed for specific errors such as allelic dropouts or false alleles80. More global metrics, which take 
into account all types of detectable genotyping error, are also commonly used, although they have never been 
explicitly defined.

In this box we indicate how to estimate error rates at the allelic, locus, multilocus and reaction levels. First, a 
reference genotype must be defined as the genotype that minimizes the number of errors in comparisons 
between replicates. Several reference genotypes might exist. If only two replicates are carried out and give 
contradictory genotypes, either one or the other can be considered to be the reference. The calculation of error 
rates is based on the number of mismatches between the reference genotype and the replicates. Here we consider 
a case where n individual single-locus genotypes have been replicated t times. For diploid individuals, 2nt alleles 
and nt loci are typed and can be compared with the reference.

The following formulae are valid for codominant markers, but can be extended to dominant markers such as 
amplified fragment-length polymorphisms (AFLPs) by considering phenotypic mismatches instead of allelic 
mismatches, and phenotypes (the presence or absence of a fragment) instead of genotypes.

Mean error rate per allele
The mean allelic error rate, ea, is the ratio between ma, the number of allelic mismatches, and 2nt, the number of 
replicated alleles.

 (1)

Mean error rate per locus
The mean error rate per locus, el, is the ratio between ml, the number of single-locus genotypes including at least one 
allelic mismatch, and nt, the number of replicated single-locus genotypes.

 (2)

This metric can also be estimated for each particular locus, to help identify error-prone loci.

Error rate per multilocus genotype
The observed error rate per multilocus genotype, eobs, is the ratio between mg, the number of multilocus genotypes 
including at least one allelic mismatch, and nt, the number of replicated multilocus genotypes.

 (3)

If genotyping errors occur independently among l loci (which is unlikely), the error rate per multilocus genotype, 
eind, is deduced from the single-locus error rate, ei, at each locus, i:

 (4)

Error rate per reaction 
The error rate per reaction, er, is the ratio between ml , the number of single-locus genotypes including at least one 
allelic mismatch, and r, the total number of reactions.

 (5)

This metric is equivalent to the mean error rate per locus when the PCR reaction involves one locus or to the 
multilocus error rate when all loci are amplified in a single multiplex reaction.

The following table shows the estimation of the error rates per allele and per locus, for four replicates (t = 4) of three 
individuals (n = 3).

Individual Allele Replicate 
1

Replicate 
2

Replicate 
3

Replicate 
4

Reference 
genotype

Error rate 
per allele 
(mean = 1/4)

Error rate 
per locus 
(mean = 5/12) 

1 1
2

A
A

A
B

B
C

A
A

A
A

3/8 2/4

2 1
2

A
B

B
B

B
B

A
B

A or B
B

2/8 2/4

3 1
2

A
C

A
C

A
B

A
C

A
C

1/8 1/4

NATURE REVIEWS | GENETICS  VOLUME 6 | NOVEMBER 2005 | 851

R E V I E W S



© 2005 Nature Publishing Group 

 

No error

Father Mother

Offspring

Misscoring

Allelic dropout

149 153

149 153

143 153

151 153

153

STUTTER BANDS
Artefacts that occur during the 
PCR amplification of 
microsatellites.

HAPLOTYPE
The combination of alleles 
found at neighbouring loci on a 
single chromosome or haploid 
DNA molecule.

Consequences of genotyping errors
Linkage and association studies. Erroneous genotypes 
might markedly affect linkage and association studies 
by masking the true segregation of alleles. The effect on 
the results is measured by experimental or simulation 
studies and can be serious for even low rates of error 
(for example, < 3%)27.

For example, in linkage studies genotyping errors 
can affect HAPLOTYPE frequencies28 and eventually 
lead to an inflation of genetic map lengths29–31. Error 
rates as low as 3% can have serious effects on linkage-
disequilibrium analysis27, and a 1% error rate can gen-
erate a loss of 53–58% of the linkage information for 

a trait locus32. However, modest error rates might be 
tolerable in situations that do not involve rare alleles, 
as in QTL studies13.

In association studies, because recombination is 
rare, errors mostly affect non-recombinant genotypes, 
which are then erroneously interpreted as being the 
result of recombination. Errors, therefore, decrease 
the power for detecting associations8,13,33,34.

The importance of the experimental design also 
needs to be emphasized as it can generate errors 
that are not randomly distributed across phenotypes 
(these are known as differential errors). This can occur 
when cases and controls are genotyped in different 

Box 2 | Genotyping errors and their effects: a case study

Case study (goal and methods)
In this study, bear (Ursus arctos) tissues were genotyped to establish pedigrees and study sexually selected 
infanticide81. Eighteen microsatellite loci11,82 were amplified following the protocol described in Waits et al.83. The 
genotyping error rate in the data set was calculated by blind replication of ~3.5% of the amplifications (34 of the 977 
samples) and was estimated to be 0.8% (the mean error rate per locus), due to allelic dropouts and mistaken alleles3.

Microsatellite genotyping and error consequences
The scoring of a microsatellite allele depends on the profile of this microsatellite, and requires strict rules to be defined 
in advance. Typical microsatellite profiles are characterized by a succession of peaks that have growing intensity due to 
STUTTER BANDS10. The figure illustrates two types of genotyping error that are likely to induce false paternity and 
consequently bias the biological conclusions. In this hypothetical example, let us assume that the male is the real father 
of the offspring (see figure). The real male genotype is 149–153 (‘no error’): the offspring inherited allele 153 from his 
mother and allele 149 from his father. In the other two cases the male would incorrectly be excluded as the father of the 
offspring, either because of a scoring error (misscoring) or because of allelic dropout in the male genotype. Allele 149 
is mistyped as allele 151 in the first case (probably owing to overlapping peaks between the two alleles) and is missing 
in the second case (allelic dropout). Those errors have arisen when typing DNA that is extracted from tissues (that is, 
DNA which is presumed to be of good quality).

Dealing with errors, and some recommendations
Generally, the number of typed loci should be chosen as a compromise between the probability of identity82 and the 
probability of error. The more loci that are typed, the lower the probability of identity and the higher the 
multilocus-genotyping error rate24. In our study, with 18 typed loci, the probability of identity was low even for 
relatives (3.1 ×10–17; for siblings 
2.4 ×10–7) — allowing 
unambiguous distinction 
between individuals — and 
the error rate was 0.8% per 
locus. This error rate per locus 
indicates the occurrence of one 
error in every four or five 
multilocus genotypes. Because 
an incompatibility in the 
comparison of the trio 
(offspring–mother–father) 
genotypes was highly probable, 
we allowed one genetic mismatch 
in the parentage analysis, using 
the software PARENTE84.

More generally, to avoid this 
type of incorrect paternity 
exclusion we recommend allowing 
one or several genetic mismatches 
in the parentage analysis. This 
number will depend on the 
probability of identity (which in 
turn depends on the allele 
frequencies in the population) and 
on the calculated error rate.
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Sampling with replicates

Pilot study

Comprehensive study

Data analysis Study on a subset 
of the sample

Reliable 
genetic results

Abortion of the 
genetic study

Acceptable error rate?

Acceptable error rate?

Calculate the acceptable 
error rate with a 
simulation study

Real-time detection
of errors

Possiblity to identify
and overcome the main
cause(s) of error?

Consistency with independent 
reliable data (if possible)?

Remove 
error-prone loci
or error-prone 
samples

Modification of 
the protocol

or

Yes

Yes
Yes

Yes

No

No

No

NoNo

(1) Check data 
analysis

(2) Check data 
production

a
b

d

e

c

FST ESTIMATES
Statistics that were first defined 
by Sewall Wright to describe the 
genetic structure at different 
hierarchical levels (individuals, 
subpopulations and total 
populations).

POPULATION BOTTLENECK
A marked reduction in 
population size that often 
results in the loss of genetic 
variation and more frequent 
matings among closely related 
individuals. 

assays during the investigation of the genetic basis of 
a disease35. Differential and non-differential errors can 
have opposite consequences on the rate at which false 
positives are detected in statistical tests of association.

Individual identification. Genotyping errors can 
strongly affect individual identification studies that 
are based on multilocus genotypes by erroneously 
increasing the number of genotypes that are observed 
in a population sample. In census studies of rare or 
elusive species, the population size can be estimated 
on the basis of the genotypes that are identified from 
non-invasive samples (such as hair or faeces) that 
are collected in the field. In this context, genotyping 
errors can lead to a serious overestimate of popula-
tion size24,36. A 200% overestimate of population size 
was found with a 5% error rate per locus when using 
7 to 10 loci for genotype identification23. Such an 
overestimate obviously increases with the number of 
loci and with the number of samples per genotype24. 

Genotyping errors also have an effect on parentage 
analysis, as they can generate incorrect paternity or 
maternity exclusion2,36–38BOX 2. Such information on 
population size and structure is required in a field 
such as conservation biology, because inaccurate esti-
mates that are caused by genotyping errors can result 
in incorrect decisions being made in population man-
agement. In forensic DNA analyses, a false multilocus 
genotype can prevent the identification of a corpse or 
lead to erroneous identification (or exoneration) of 
criminal offenders39.

Population genetic studies. Most population genet-
ics studies that take genotyping error into account 
use non-invasive samples, which are error-prone 
because of the low quality and/or quantity of DNA. 
However, it has been demonstrated that even with 
high-quality DNA the error rate might not be neg-
ligible. Measurements on DNA tissue extracts from 
Antarctic fur seals6, as well as from brown bears3, 
detected an error rate of up to 0.8% per micro-
satellite locus BOX 2. The effect of genotyping error 
remains largely unknown in this field, because few 
studies have dealt with this topic until now3,6,37,38. 
Genotyping errors might lead to incorrect allele 
identification or incorrect allele frequencies, result-
ing in incorrect FST ESTIMATES, false migration rates, or 
false detection of selection or POPULATION BOTTLENECKS. 
Analyses that are based on allele frequencies will 
not be as affected by errors as those that are based 
on individual identification5 (for example, parent-
age analysis), but they will be sensitive to sampling 
effects.

In population genetics, the effect of scoring dif-
ferences might seem to be less than in other kinds of 
study. This has been demonstrated by an AFLP data 
set that was scored by two scientists. The two scor-
ers shared only 38% of the marker loci, but the same 
biological conclusions about the genetic structure 
of the population were extracted from the data3. In 
this study, the robustness of the inferred biological 
message to scoring differences was certainly due 
to the redundancy of the information contained in 
the large number of AFLP markers (more than 200 
polymorphic loci were screened in total). However, 
population genomics studies that follow selected 
markers among several hundred markers40 would be 
sensitive to the effect of genotyping error, especially 
if the errors were population-specific. There is a great 
need for studies on the effect of genotyping error in 
this emerging field.

How to limit genotyping errors and their effect
Unarguably the worst situation is to realize at the end 
of a study that the data were not reliable owing to 
genotyping errors, and that the data set is not retriev-
able. Such situations are almost never reported in the 
literature, but their occurrence is probably not rare. 
Therefore, it is important to take into account the 
possibility of genotyping errors when designing an 
experimental protocol.

Figure 2 | Flow chart that shows the important steps in a genotyping process for 
limiting the occurrence and effect of genotyping errors. The steps that end with a 
superscript letter (a–e) should be qualified as follows: a | The goal is to estimate the error rate 
associated with the samples, the method and the protocol used. This is done by replicating a 
sufficient number of samples. b | Deciding on an acceptable error rate depends on the error 
rate, the purpose of the genetic study, the genotyping method used, the ability to detect 
eventual errors and the cost in terms of money and time. c | The control study aims to find the 
cause of errors that did not exist in the pilot study. d | The calculated error rate must be 
considered in the data analysis. e | The results should be published with a reliability index that 
is based on the error rate measured.
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HARDYWEINBERG TEST
A test that assesses whether the 
frequency of each diploid 
genotype at a locus equals that 
expected from the random 
union of alleles.

This strategy involves demonstrating, through an 
appropriate procedure, that the data produced and 
the results obtained are reliable. The diversity of case 
studies, causes of error and laboratory contexts makes 
it impossible to propose a universal and simple pro-
cedure; the possible solutions for limiting the occur-
rence and effect of genotyping errors are therefore 
case -specific. The optimal strategy is determined by 
several factors, such as the biological question, the tol-
erable error rate, the sampling possibilities, the equip-
ment and technical skills that are locally available, the 
financial support and time constraints. Nevertheless, 
some general guidelines can be proposed to design the 
optimal procedure that can be adapted to a particular 
case.

General recommendations. The first step is to check 
that the genotyping experiments that are necessary to 
reach the scientific goal are realistic according to the 
sample quality and the technical skills that are available. 
Poor sample quality and limited technical skills41 obvi-
ously influence the error rate. The second step involves 
carrying out a pilot study that is designed first to evaluate 

the theoretical error rate that is compatible with the data 
analysis, and second to estimate the real error rate on the 
basis of the analysis of a subset of the samples (FIG. 2). 
Finally, it is important to be aware of potential problems 
throughout the experimental procedure, even after a 
successful pilot study, from sampling to data analysis. 
Therefore, quality controls should be carried out in real 
time during each step and each batch of experiments. 
They should also be able to detect as many types of error 
as possible. For example, highly reproducible errors 
such as null alleles cannot be detected by replicating the 
genotyping assays and so require HARDYWEINBERG TESTS 
or inheritance studies. On the contrary, stochastic allelic 
dropouts might not be detected by Hardy–Weinberg 
tests, but by replicating the genotyping assays.

Control procedures are costly and time consum-
ing. Therefore, the effort for reducing the error rate 
must be adapted to the predictable effect of the 
genotyping errors. Because genotyping errors can 
be generated even with high-quality standards3, and 
because they cannot all be detected42, efforts must be 
directed towards limiting both their production and 
their subsequent effect.

Figure 3 | The use of blind replicates to estimate the error rate. a | When the error rate is expected to be relatively low (as in 
most of the studies that use tissues as a source of DNA), a further 10% of blind experiments (starting from the sample, and not 
from the DNA extract) should be carried out. b | When the error rate is expected to be high, as in non-invasive studies, the 
multiple-tube approach (using the same DNA extract for the replicates) should also be used.
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MAXIMUM LIKELIHOOD 
APPROACH 
A statistical approach that is 
used to make inferences about 
the combination of parameter 
values that gives the greatest 
probability of obtaining the 
observed data.

POPULATION ADMIXTURE 
A process that leads to a 
composite gene pool in which at 
least some individuals come 
from more than one population.

LIKELIHOOD RATIO TEST
A method for hypothesis 
testing. The maximum of the 
likelihood that the data fit a full 
model of the data is compared 
with the maximum of the 
likelihood that the data fit a 
restricted model and the 
likelihood ratio (LR) test 
statistic is computed. If the LR is 
significant, the full model 
provides a better fit to the data 
than does the restricted model.

Limiting the production of errors during genotyping. 
Given that human factors are the main issue during 
genotype production3,6, the most efficient approach 
is to concentrate first on minimizing human error. 
This can be achieved in different ways. First, only 
well-trained bench scientists or technicians should 
be involved, as suggested by quality-assurance stand-
ards for forensic DNA-testing laboratories43. Second, 
only standardized and validated procedures should 
be used43. Third, human manipulation should be 
reduced as much as possible, according to the auto-
mation possibilities, from all handling and pipetting 
steps up to allele scoring21,44. However, software 
packages are not yet sophisticated enough to prevent 
scoring errors. Semi-automated scoring followed by 
human visual inspection seems to be the most reliable 
procedure45.

Limiting genotyping errors during laboratory 
experiments requires the systematic use of an appropri-
ate number of positive and negative controls, but also 
requires the implementation of replicates for real-time 
error detection and error-rate estimation. As positive 
and negative controls are widely used, we will only 
focus on replicates.

In every situation, even with high-quality DNA, 
replicating 5–10% of the samples has been recom-
mended3,46, but the amount can vary according to the 
goal of the study and the potential effect of errors. As 
far as possible, these replicates have to be carried out 
blind and independently. This involves implementing 
the process blind from the beginning of the experiment, 
by carrying out a systematic duplication of the samples 
during sample collection (FIG. 3a). Such a procedure will 
not only allow the detection of all laboratory errors, 
but will also pick up handling errors at any stage of 
the analysis. Moreover, comparing blind samples and 
original experiments will produce a fair estimate of the 
error rate.

When genotyping errors are highly probable (for 
example, in non-invasive studies that involve poor-
quality DNA extracts), blind replicates are still neces-
sary but are not sufficient. The systematic replication 
of each genotyping assay (that is, a multiple-tube 
approach10,47) is required to define the consensus 
genotypes (FIG. 3b). Because the cost that is associated 
with the systematic use of many replicates is far from 
negligible, many attempts have been made to reduce 
this number using a MAXIMUM LIKELIHOOD APPROACH48, 
or even to bypass the replication steps if the error 
rate is low enough to be monitored by alternative 
approaches49. There is a trade-off between the cost of 
the experiments and the reliability of the genotypes; 
one role of the pilot study is to determine the optimal 
number of replicates required.

In some cases, errors can also be detected by rep-
licating the genotyping process by using a different 
technology50, such as sequencing, that is associated 
with lower error rates than standard genotyping tech-
nologies. This procedure allows genotyping error rates 
to be determined directly, without assumptions about 
independence of measures or an underlying model for 

the errors. However, this approach is hardly applicable 
to some types of marker, such as AFLPs, and might not 
be suitable to detect some types of error (for example, 
allelic dropouts and null alleles). 

Cleaning the data set after genotyping. Even if all 
erroneous genotypes that are detected during the 
experiments are removed, and eventually corrected 
after re-genotyping, some undetected errors will 
remain in the data set. Some of these can still be 
detected or inferred by looking at the concordance 
of the scored genotypes with independent data3. 
For example, where pedigrees are known, checking 
for Mendelian inheritance can detect most of the 
remaining errors in linkage analyses51,52. However, 
the problem still persists if non-genetic data are not 
reliable53.

The power of detecting errors by consistency 
with independent data can influence the strategy for 
limiting errors. It might be more efficient to re-type 
erroneous genotypes by checking for consistency than 
by running many blind replicates. This is the case 
in experiments that involve the SNP typing of par-
ents and offspring, in which it is possible to inspect 
Mendelian inheritance54,55. Testing a Hardy–Weinberg 
equilibrium is commonly used to check the quality of 
the data, under the assumption that a high error rate 
generates disequilibrium56–59. However, many other 
causes lead to disequilibrium, including selection, 
inbreeding and POPULATION ADMIXTURE60. Moreover, only 
a few types of error cause disequilibrium, such as null 
alleles and allelic dropouts. Therefore, there is still a 
need for other controls and replicates for detecting 
errors that are compatible with Mendelian inheritance 
and a Hardy–Weinberg equilibrium.

Several computer programs specifically designed to 
detect potential errors are now available TABLE 3. Most 
of them check for Mendelian consistency and/or a 
Hardy–Weinberg equilibrium, and are commonly used 
for pedigree analyses and linkage studies. Some others 
have been developed to track errors that are compat-
ible with Mendelian inheritance or a Hardy–Weinberg 
equilibrium. For example, some detect a spurious 
excess of recombinants in linkage studies and others 
focus on inconsistencies between replicates.

However, removing errors might not reduce bias, 
depending on the number and kind of errors detected 
and the bias each one creates. For example, when 
correcting Mendelian-incompatible genotypes by 
re-typing or removing families in which they occur, 
the undetected errors can produce an excess of false 
positives for some family-based association tests61. 
This problem has been addressed by developing an 
appropriate LIKELIHOOD RATIO TEST that is based on a gen-
eral genotype error model61. In general, taking into 
account the occurrence of errors in the analysis is 
crucial, especially for large or error-prone data sets.

Accounting for errors during data analysis. The overall 
objective of this review is to help researchers to realize 
that they have to deal with genotyping errors by setting 
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SHORTALLELE DOMINANCE 
The preferential PCR 
amplification of the shorter 
allele from a heterozygote 
individual. This is equivalent to 
a long-allele dropout.

up a strategy that is appropriate for their own particu-
lar situation. Following ‘ready-to-use’ protocols is dan-
gerous because they do not allow the error -detection 
strategy to be adapted to the study in question, and can 
therefore lead to an inefficient management of errors. 
Even for a given study and a particular type of error, 
the way to deal with errors will vary according to sev-
eral parameters. For example, consider the simple case 
in which FST values among populations are estimated 
from a microsatellite data set in which allelic dropout 
is the main cause of error. Allelic dropout can occur 

stochastically (when alleles do not differ much in size) 
or not (SHORTALLELE DOMINANCE, when allele sizes are 
sufficiently different). The generated bias is even more 
important because the distribution of alleles is differ-
ent between populations. Therefore, the effect on the 
resulting FST values, and the tolerable error rate, depend 
on the real differentiation between populations. The 
acceptable error rate depends on many parameters, 
even for a precise topic such as FST estimation. The 
only way to estimate this is by comparing the results of 
a pilot study with those from simulations (see FIG. 2). 

Table 3 | The main software programs that account for genotyping errors 

Program Principle Field of 
application

References URLs

Evaluation of the effects of errors

GEMINI Carries out simulation studies PG/D 108 http://pbil.univ-lyon1.fr/software/Gemini/gemini.htm

PAWE Calculates asymptotic power and sample size 
in biallelic loci

L/Q 109,110 http://linkage.rockefeller.edu/pawe

Detection and/or calculation of genotyping error rate

PREST Checks for Mendelian-inconsistent errors (only) P 111 http://fisher.utstat.toronto.edu/sun/Software/Prest

Pedcheck Checks for Mendelian-inconsistent errors (only) P, L/Q 112 http://watson.hgen.pitt.edu/register/docs/
pedcheck.html

PedManager Checks for Mendelian-inconsistent errors (only) P, L/Q still under 
development

http://www.broad.mit.edu/ftp/distribution/software/
pedmanager

MENDEL Checks for Mendelian-inconsistent and 
Mendelian-consistent errors (for example, 
spurious excess of recombinants)

P, L/Q, 
PG/D

55 http://www.genetics.ucla.edu/software

SIMWALK Checks for Mendelian-inconsistent and 
Mendelian-consistent errors (for example, 
spurious excess of recombinants)

P, L/Q 65 http://www.genetics.ucla.edu/software

Genocheck Checks for Mendelian-inconsistent and 
Mendelian-consistent errors (for example, 
spurious excess of recombinants)

L/Q 113 http://softlib.rice.edu/geno.html

R/QTL Checks for Mendelian-inconsistent and 
Mendelian-consistent errors (for example, 
spurious excess of recombinants)

L/Q 114 http://www.biostat.jhsph.edu/~kbroman/qtl

CERVUS Checks for Mendelian-inconsistent errors and 
Hardy–Weinberg equilibrium 

P 37 http://helios.bto.ed.ac.uk/evolgen/cervus/cervus.
html

GIMLET Checks for consistency between repeats PG/D 115 http://pbil.univ-lyon1.fr/software/Gimlet/gimlet.htm

RelioType Checks for consistency between repeats PG/D 48 http://www.cnr.uidaho.edu/lecg/pubs_and_
software.htm

Micro-checker Checks for Hardy–Weinberg equilibrium PG/D 107 http://www.microchecker.hull.ac.uk

DROPOUT Calculates distribution of pairwise difference 
between genotypes 

PG/D 116 http://www.fs.fed.us/rm/wildlife/genetics

Analysis of data sets that contain errors

PARENTE Allows allelic mismatches in the analysis P, PG/D 84 http://www2.ujf-grenoble.fr/leca/membres/manel.html

PAPA Allows an underlying error model P 67 http://www.bio.ulaval.ca/louisbernatchez/
downloads_fr.htm

PseudoMarker Allows an underlying error model L/Q 8 http://www.helsinki.fi/~tsjuntun/pseudomarker

TDTae Calculates maximum likelihood estimates of 
genotyping error rates and tests statistical 
inference of association 

L/Q 52,54 ftp://linkage.rockefeller.edu/software/tdtae2

LRTae Calculates maximum likelihood estimates of 
genotyping error rates and tests statistical 
inference of association 

L/Q 68 ftp://linkage.rockefeller.edu/softare/lrtae

A more complete list of software packages that deal with genotyping errors can be found in general websites (see Online links box). The list of programs that are 
described in this table is not exhaustive. In particular, software programs that are designed for very specific purposes are not included. L/Q, linkage or QTL studies; P, 
pedigree analysis; PG/D, population genetics or demography.
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Such pilot studies are the best way to assess the situa-
tion and decide how to handle the genotyping error 
issue in practice.

However, there are several ways of accounting for 
error rate in the analysis, and of minimizing their 
effect. Attention must first be paid to choosing statis-
tics that are robust to genotyping errors. For example, 
Akey et al. showed that among four common estimates 
of linkage disequilibrium, two were less sensitive to 
genotyping error, although there were exceptions 
depending on haplotype frequencies27. Consequently, 
choosing the more robust measure is not straightfor-
ward. Theoretical studies and simulations are needed 
to quantify the robustness to genotyping error of a 
wide variety of other population genetic estimates (for 
example, FST, migration rate, linkage disequilibrium, 
PROBABILITY OF IDENTITY and EFFECTIVE POPULATION SIZE). 
The effect of error on these estimates remains to be 
investigated. For example, errors that occur stochasti-
cally are expected to increase the migration rate and 
decrease the FST value among populations; however, 
to our knowledge, no study has ever dealt with this 
topic. A further possibility is to use tests that, because 
of their statistical power, are robust to the occurrence 
of genotyping errors62,63. Errors can also be dealt 
with by allowing a certain number of inconsistencies 
(considered to result from errors) to occur between 
genotypes. This is the case in parentage studies36 or in 
individual identification from non-invasive samples 
(for example, population-size estimates23). When a 
mismatch occurs, the difficulty is to estimate whether 
it comes from a genotyping error or has a biological 
cause. The estimation of the error rate within the data 
set is crucial to estimate the relative influences of these 
two causes.

It is also valuable to use methods that calculate 
the likelihood of obtained genotypes or pedigrees 
using a model of error occurrence, such as a uniform 
or empirical distribution of errors48,64,65. The field of 
linkage analysis has made the greatest effort to take 
genotyping errors into account during analysis27,52,66. 
Thorough studies are still necessary to apply such 
approaches to other fields that use genetic tools and to 
develop programs that allow the analysis of data sets 
that contain errors52,54,67,68 (TABLE 3).

Finally, analysing data can be all the more compli-
cated because more than one type of error can affect a 
study, and each error type has a different effect on the 
result. For example, errors that follow a stochastic-error 
model have less severe effects on linkage-disequilibrium 
estimates than errors that follow a DIRECTEDERROR MODEL27. 
Therefore, different errors might be taken into account 
separately in the analysis by giving them different 
weights, to avoid skewing the results66.

Towards quality processes for genotyping
In every scientific discipline the reliability of the conclu-
sions strongly depends on the quality of the data. For 
geneticists, genotyping errors can affect results2,13,23,24. 
We propose that the protocol that is used for mini-
mizing the occurrence of errors, the methods for 

error detection and the estimated error rate should 
be provided for each study (FIG. 2). With this informa-
tion it will be possible to assign a quality index to each 
genotype, allowing the scientific community to provide 
a critical assessment when unexpected results are pub-
lished. Quality standards, such as the rules imposed 
by the FBI for forensic DNA analysis43, should be pro-
moted even outside the forensic area.

An increasing number of studies, often in the con-
text of international programmes, generate enormous 
data sets that cannot be produced in a single labora-
tory 40,65. Therefore, the reproducibility of genotyping 
becomes increasingly important69–71. Even for markers 
that are known to be robust (SNPs, microsatellites, 
AFLPs), differences appear between laboratories, and 
over time within the same laboratory70. These com-
plications have led to initiatives such as the European 
Molecular Genetics Quality Network, which was 
established in 1996 to spread quality assurance across 
Europe and harmonize national activities72.

The trend towards quality standards in genetics 
is not restricted to genotyping. Expression studies 
that use microarray experiments are known to be 
error-prone, and the scientific community reacted by 
designing strict standards: the ‘Minimum Information 
About a Microarray Experiment’ (MIAME) docu-
ment73 comprises a checklist to ensure that data are 
made publicly available in a format that allows unam-
biguous interpretation and potential verification of 
the conclusion. It includes several steps for verifying 
experimental design, sample preparation and data 
measurement.

We have been aware of genotyping errors since 
the beginning of molecular genetics. Their conse-
quences for statistical genetics were pointed out in 
1957 REF. 74, and null alleles in blood groups have 
been recognized since 1938 REF. 75. Errors too often 
remained neglected and, given their marked effect 
on some studies, it is clear that they merit more 
attention. Recently, many papers have dealt with 
genotyping errors, and it seems that the scientific 
community has begun to realize their importance. 
The fields of ancient DNA76,77 and gene expres-
sion78,79 suffered a crisis of confidence, with a series 
of erroneous papers published in leading journals. 
As a result, these two scientific communities set 
up strict standards to promote data quality, which 
solved the crisis. In population genetics, the situation 
is different because only a few erroneous papers have 
been published, and therefore this community has 
not been given such a strong incentive to establish 
strict standards. Another explanation for the delay in 
establishing strict standards might be related to the 
complexity of the problems. The wide range of ques-
tions, molecular markers and data-analysis methods 
has prevented simple solutions from being devised. 
Because of the recent awareness about the occurrence 
of genotyping errors and their potential effect, we 
predict that increasing attention will be paid to these 
difficulties when designing experimental protocols 
and publishing results.

PROBABILITY OF IDENTITY
The overall probability that two 
individuals drawn at random 
from a given population share 
identical genotypes at all typed 
loci.

EFFECTIVE POPULATION SIZE
The size of the ideal population 
in which the effects of random 
drift would be the same as those 
seen in the actual population.

DIRECTEDERROR MODEL
A model postulating that there 
is a greater probability for a 
particular allele to be 
consistently incorrectly 
genotyped.
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 Online links

FURTHER INFORMATION
An alphabetical list of genetic analysis software: 
http://linkage.rockefeller.edu/soft/list2.html 
DNA Advisory Board Quality Assurance Standards for 
Forensic DNA Testing Laboratories: http://www.cstl.nist.
gov/biotech/strbase/dabqas.htm#quality%20assurance%20st
andards
European Molecular Genetics Quality Network: http://www.
emqn.org/emqn.php
ISI Web of Science: http://wok.mimas.ac.uk
Minimum Information About a Microarray Experiment: 
http://www.mged.org/Workgroups/MIAME/miame.html
PARENTE: http://www2.ujf-grenoble.fr/leca/membres/manel_
a.html
Programs useful for detecting genotyping and pedigree 
errors: 
http://www2.qimr.edu.au/davidD/Course/part6.html
UCLA Human Genetics Software Distribution: http://www.
genetics.ucla.edu/software
Access to this interactive links box is free online.
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